
Thermometer Application Manual
(quick and dirty)

This is an excerpt from the full program documentation. It covers only the features of the Thermometer.EXE
program, The StripSemilcolonLines.exe utility, Commands that are implemented on the ATMega328/Atmeg168
and the Temperature reporting protocol. It is intended for use by someone who has received Arduino with a
attached temperature sensor and the ThermometerOne software loaded onto the Arduino device. The full
document is available from http://www.keywild.com.

ArduinoThermometer.exe
ArduinoThermometer is a set of programs written in FreeBasic to run in a console window under Windows or
Linux and capture the data from the Arduino Thermometer application. The main program is a customized
version of the Arduino Receiver program. The program supports all the standard options for the Receiver
program (see Arduino_Thermometer.ini) plus it has been modified so that a number of single character
keystroke can be used to control the Arduino:

Keys '1' to '0' set report Times
Key 'A' toggles AVR mode

Key 'B' Restore from Backup

Key 'C' toggles Celsius mode
Key 'D' toggles Debug mode

Key 'E' toggles EEPROM mode

Key 'F' toggles Fahrenheit mode
Key 'L' lists AVR commands

Key 'M' turns on Minimal mode (Fahrenheit only)

Key 'Q' prints AVR storage
Key 'R' toggles Rounding mode

Key 'S' prints AVR Status

Key 'V' toggles Raw Reading mode
Key '>' increase Degree Offset by 0.25 Fahrenheit

Key '<' decrease Degree Offset by 0.25 Fahrenheit

Noticeably missing are any commands to change the calibration or write new parameters to the EEPROM. That
was intentional because this program is intended to be used to capture the data not to calibrate the device.
However there is a way around that. The program allows the user to define five “user” strings via the “.ini” file.
These commands are sent by pressing the “U” key followed immediately by a numeric key “1”, “2”, “3”, “4” or
“5”. There is a one second timeout for the second key. As provide the first three of these are defined as follows:

Key 'U1' INI defined string: "Z1", write test data set 1 to EEPROM

Key 'U2' INI defined string: "Z2", write test data set 2 to EEPROM

Key 'U3' INI defined string: "ZD", Hex/ASCII dump of EEPROM

Because the Thermometer application allows the use of a space as a delimiter a series of commands may be
included in a single user defined string. That is the way that the ‘M’ keystroke works. It sends the command
string "RF CF IF FT ST".

http://www.keywild.com/

Strip Semicolon Lines Utility
The main program writes everything it receives from the device to a tab demitted text file specified in the “.ini”
file. Every line that Arduino application sends that is not an actual report line is prefixed with a semicolon.
StripSemicolonLines.exe is a utility used to separate or extract the report lines. It was written with a number of
options including the ability to mark a point in the input file where it last processed the lines. Running the
program with a “?” as the parameter will print out the options.

Syntax: StripSemicolonLines.exe file1 file2 file3 [options]

 file1 = input filename
 file2 = output filename

 file3 = output filename with stripped lines (optional)
Options:

 /O = Overwrite any existing output file

 /A = Append to any existing output file (overrides /O)
 /D = Delete input file

 /R = Retain blank lines

 /S = Split lines at semicolon and delete trailing portion
 /X = Deletes all lines with semicolon regardless of location

 /M = Mark end of file with ";;--PROCESSED--;;"

 /E = Execute program with output file
 /V = Verbose prints statistics before exiting

 /? = display help and exit

The “file1” is the input file that was produced by the main program. “file2” is the output file where you want the
report lines written. Both of these file names are required and may include a full or relative path specification.
“file3” is optional. If included the lines that are stripped from the input file will be written to this file. The
“overwrite” or “append” option tells the program what to do if you specify a filename for a file that already
exists. If you do not specify an option and the file exists then the program aborts. If the “append” open is
specified then the “overwrite” option is ignored. The “delete” option can be used to delete the original file after
it is processed. Normally the program skips all blank lines however you can use the “Retain” option to keep
them (why you want to I have no idea). The “Split” option divides any lines that have a semicolon somewhere
other than the first character. It writes the first part to “file2” and the full line to “file3”. The “X” option has the
opposite effect. It deletes any lines with semicolons anywhere in the line. The “Mark” option writes the line “;;--
PROCESSED--;;” to the end of the input file after it has processed it. When the program is run with the “Mark” it
reads the entire input file looking for the last occurrence of this line. It then begins processing at the next line. If
the line is not found then it begins processing at the beginning of the file. This is useful for extracting data from
an active log file. The “Execute” will pass the output file to a program such as a spreadsheet or charting
program. The program name must include the full path and should be enclosed in quotes (due to spaces in the
path or file name). The “Verbose” option prints the number of input lines, output lines, blank lines and
semicolon lines before the program exits.

Although all the options are shown with forward slashes “/” the dash “-“ can be used as well. The options may
be in in order or case. These are some examples of valid command lines.

StripSemicolonLines.exe Thermometer.LOG work.txt

StripSemicolonLines.exe Thermometer.LOG work.txt dump.txt
StripSemicolonLines.exe Thermometer.LOG work.txt dump.txt /X /O /D /V

StripSemicolonLines.exe Thermometer.LOG work.txt dump.txt -o -D -X –V

StripSemicolonLines.exe Thermometer.LOG work.txt -O /x –V /M /d

StripSemicolonLines.exe Thermometer.LOG work.txt /E:”c:\program Files\suite\sheet.exe”

Implemented Commands
Arduino Thermometer One Application

AtMega328 Command AtMega168

Output ID string ID Output ID string

Output Status ST Output Status

Raw=True RT Raw=True

Raw=False RF Raw=False

Fahrenheit=True FT Fahrenheit=True

Fahrenheit=False FF Fahrenheit=False

Enter Current Fahrenheit F= Enter Current Fahrenheit

Celsius=True CT Celsius=True

Celsius=False CF Celsius=False

AVR Internal Temperature=True IT

AVR Internal Temperature=False IF

Enter Current Celsius C=

New Degree Offset (Fahrenheit) DO New Degree Offset (Fahrenheit)

Same as DO DF

New Reference Voltage RV New Reference Voltage

Report time = 01 minutes T1 Report time = 01 minutes

Report time = 02 minutes T2 Report time = 02 minutes

Report time = 03 minutes T3 Report time = 03 minutes

Report time = 04 minutes T4 Report time = 04 minutes

Report time = 05 minutes T5 Report time = 05 minutes

Report time = 10 minutes T6 Report time = 10 minutes

Report time = 15 minutes T7 Report time = 15 minutes

Report time = 20 minutes T8 Report time = 20 minutes

Report time = 30 minutes T9 Report time = 30 minutes

Report time = 60 minutes T0 Report time = 60 minutes

Report time = 02 hours TA

Report time = 04 hours TB

Report time = 06 hours TC

Report time = 08 hours TD

Report time = 12 hours TE

Report time = 24 hours TF

Print mode = False PF Print mode = False

Print mode = True PT Print mode = True

Debug mode toggle DB Debug mode toggle

Rounding mode toggle 00 Rounding mode toggle

New Location L: New Location

Write Calibration data to EEPROM WW Write Calibration data to EEPROM

Overwrite Backup Calibration data W+ Overwrite Backup Calibration data

Restore from Backup Calibration data W- Restore from Backup Calibration data

Set Flag to send next run to EEPROM E+ Set Flag to send next run to EEPROM

Clear Flag to send next run to EEPROM E- Clear Flag to send next run to EEPROM

Clear EEPROM Storage EC Clear EEPROM Storage

Dump data stored in EEPROM ED Dump data stored in EEPROM

List implemented commands LL List implemented commands

List implemented commands ?? List implemented commands

Shutdown (send twice) SS Shutdown (send twice)

Reset (send twice) !! Reset (send twice)

Write test data 1 Z1 Write test data 1

Write test data 2 Z2

Toggle 5 Second reporting ZZ

Dump ALLL EEPROM to serial ZD

Response 'XX' = not implemented Response 'XX' = not implemented

Response '??' = not recognized Response '??' = not recognized

Protocol
Linear Calibrated Temperature Sensor(s) Reporting Protocol

Established: September 2013 by Lewis Balentine
This Protocol is designated to be Public Domain

A. Default communications will be via RS232 protocol at 9600 Baud
B. All communications will be done in ASCII 7 bit characters
C. The device will monitor the serial port for commands as specified below
D. All commands will be Two Characters of which the first must be an Alpha character
E. Command terminations/separators may be either a carriage return (ASCII 13) character or a new

line (ASCII 10) character or null character (ASCII 0) or a tab character (ASCII 9) or a space character
(ASCII 32) or any combination of the these characters

F. Only one command is accepted at a time but additional data may be sent as required by the
command. This data shall be delimited from the command by a command terminations/separator.
When that data is an ASCII string then the space character (ASCII 32) is excluded from the list of valid
terminations/separators within the length of the string.

G. The following two character commands will be considered valid
1. ID Output sensor/location ID string(s)

For multiple sensors each ID string will be proceeded by
a designation digit/character, a colon and a space

2. ST Output Status (as applicable to implementation)
a. Reporting mode, true or false
b. Debug mode active, true or false
c. Report Raw reading, true or false
d. Report Fahrenheit temperature, true or false
e. Report Celsius temperature, true or false
f. Internal Temperature, true or false
g. Minutes between readings
h. Reference voltage
i. Sensor Parameters

Repeat the ID, Offset, Fahrenheit, Celsius constants as applicable for each sensor.
For multiple sensors each ID string will be preceded by a designation numeral, a
colon and a space.

l. If any current in memory constants have not been written to storage then include
line that to that effect.

m. Report storage Mode flag set if it is set
3. RT Raw True = include raw reading from temperature sensor
4. RF Raw False = do not include raw reading from temperature sensor
5. RV New reference voltage
6. CT Celsius True = include degrees Celsius
7. CF Celsius False = do not include degrees Celsius
8. C= Celsius input. Recalculate raw reading offset based on input temperature.

Device with multiple sensors must be placed in “Single Sensor” mode.
9. FT Fahrenheit True = include degrees Fahrenheit
10. FF Fahrenheit True = do not include degrees Fahrenheit
11. F= Fahrenheit input. Recalculate raw reading offset based on input temperature.

Device with multiple sensors must be placed in “Single Sensor” mode.
12. T# Sets time between report lines where # is one of the following

a. 1 Report reading every 01 minute
b. 2 Report reading every 02 minutes

c. 3 Report reading every 03 minutes
d. 4 Report reading every 04 minutes
e. 5 Report reading every 05 minutes
f. 6 Report reading every 10 minutes
g. 7 Report reading every 15 minutes
h. 8 Report reading every 20 minutes
i. 9 Report reading every 30 minutes
j. 0 Report reading every 60 minutes
k. A Report reading every 2 hours
l. B Report reading every 4 hours
m. C Report reading every 6 hours
n. D Report reading every 8 hours
o. E Report reading every 12 hours
p. F Report reading every 24 hours

(it is intended that the data is the average temperature for the given period)
13. TT Followed by data (units, number) for other reporting period (not implemented)
14. PF Stop printing report lines and accept commands only (report printing mode/state)
15. PT Resume printing report lines (report printing mode/state)
16. DB Toggle debug mode for extended reporting

a. Average time for each read cycle
b. Number of reads cycles for each report line
c. Actual time for each report Line
d. Other information according to implementation

17. DO New Degree offset for minor adjustment to temperature scale
18. DF New Degree offset for minor adjustment to temperature scale (Faherenheit)
19. DC New Degree offset for minor adjustment to temperature scale (Celsius)
20. S: plus command separator plus sensor designator. This command is ONLY used for

devices with multiple sensors. The designator shall be a single alpha or digit character
as determined by the implementation. This command selects the sensor for all following
sensor specific commands until another “S:” command is received. This command
essentially places the device in “single sensor” mode. To exit this mode enter the “S:”
command without a designator.

21. L: plus command separator plus new ID/Location string
22. O: plus command separator plus new Raw reading offset (capital O colon)
23. C: plus command separator plus new Celsius scale factor
24. F: plus command separator plus new Fahrenheit scale factor
25. A: Extended protocol (zero, colon).

These commands are specific to a given specific implementation.
26. WW Write new constants to device storage

“WW” MUST be upper case!
This command (WW:) shall only update the working copy of the constant data

27. W+ Overwrite backup constant data with working constant data. “W” MUST be upper case!
28. W- Overwrite working constant data with backup constant data. “W” MUST be upper case!
29. E+ This is a special mode that writes the readings to EEPROM rather than to the serial port

(This will of course require an alternate power source)
a. Set device storage flag
b. On the next “Reset” or “Startup”

1. Clear device storage flag
2. Read and store RawReading to device storage until space is exhausted
3. Shutdown, Sleep or Resume normal operation as available in implementation

30. E- Clears Flag for EEPROM mode
31. ED Dumps data from device storage according to current conversion constants

 (debug mode ignored and all three values are output)
32. EC Clears device storage area (if EEPROM writes 0xFF to all locations)
33. AA Extended protocol .

These commands are specific to a given specific implementation.
34. M? Undefined, reserved for future use by this protocol specification.
35. N? Undefined, reserved for future use by this protocol specification.
36. U? Undefined, reserved for future use by this protocol specification.
37. X? Undefined, reserved for future use by this protocol specification.
38. Y? Device specific command(s) (implementation specific).
39. Z? Device specific command(s) (implementation specific).
40. LL Output list of device implemented commands

Each line shall be prefixed with semicolon and space
The first line shall include device Identification and/or serial number
The required output is the 2 character commands
Optionally each line may include a short description

41. ?? Same as LL
42. SS Shutdown or Sleep (implementation specific).

This command MUST have two consecutive calls.
The device will respond with “; SHUTDOWN” or “; SLEEPING” as applicable.

43. 00 Turn rounding on or off (implementation dependent)
44. !! Reset or reboot device (that is two exclamation marks)

This command MUST have two consecutive calls.
The device will respond with “; RESETTING” (implementation limited)

H. The device/application may implement any set or subset of the commands that include the
following commands: ST, CT, CF, FF, FT, T1, T2, T3, T4, T5, ??

I. Any response line from the device that is NOT a report line shall be prefixed with a semicolon “;”
and a space.

J. Valid commands that do not otherwise generate responses shall respond with the two character
command plus space plus “OK”.

K. If the device receives a command it does not recognize then it will respond with “??”.
L. If the device receives a command it recognizes but is not implemented then it may respond with

either “XX” or “??” but “XX” is preferred.
M. Commands with a terminating colon may be used for multiple sensors by replacing the colon with a

numeral to identify the sensor number.
N. Report lines from the device shall consist of the designated data fields separated by a tab character

(ASCII 09) in the following order:
1. Raw reading
2. Calibration corrected Celsius temperature
3. Calibration corrected Fahrenheit temperature
4. Extended debugging data as defined above

That should be enough to confuse the issue. Our device currently only has one sensor but the protocol makes
provisions for multiple sensors (Engineering is the art of “Planning and Forethought”). Tab characters (ASCII 09)
are one of the commonly used delimiters for text files. This makes it easy to import the data file into a
spreadsheet program or database for charting and/or analysis. The semicolons prefixed to the devices responses
may it easy to strip out those lines from the data file or signal the receiver application that this is NOT a normal
reporting line. If the PC application includes device commands in its output stream and/or log then it should
prefix these with a semicolon and a space as well. Although the protocol specifies all upper case characters for

command characters it is recommended that the device application accepts either upper or lower case or a

combination of both with the exception “W” commands. The reset command “!!” (that is two exclamation
marks) is intended to be used for “If all else fails then abort and start over”. The reset command may also be
used as an entry point to update the device software (depending on the reset characteristics of the device).

The commands “A:”, “A?”, “X?” and “Z?” (the “?” is wild card that is to be interpreted as any character) are
intended to be used to extend the protocol as may be required for a specific senor(s) while keeping the
functionality of the basic protocol in place. This allows for a standard reporting application to use sensor(s) with
extended capabilities. However an extended reporting application specific to the implementation may be
created to take advantage of the additional features (for example “wet” and “dry” bulbs or a humidity sensor).
Any command beginning with the letter “M”, “N”, “U” or “X” is defined to be undefined and reserved for future
use by this specification.

	ArduinoThermometer.exe
	Strip Semicolon Lines Utility
	Implemented Commands
	Protocol

