
Page: 1

Arduino Nano Project One: Thermometer

Page: 2

Introduction

This document is designated to be Public Domain
Author: Lewis Balentine, October 2013

This all began as I was searching Amazon for a thermometer that would record the day’s highs and low
temperature. All the reviews that I read pointed out various problems with the devices from being off by a
number of degrees to infantile mortality. As I read those reviews it occurred to me that it would be very
advantageous if I could send that temperature to the computer that I have sitting in a closet upstairs. Still that
data would have to be accurate to be of any value. Accurate thermometers that can communicate with a
computer turn out to be very expensive. Then it occurred to me how hard could it be to build one: a simple
microcontroller board, a sensor, some wire and bit of code. An easy and cheap solution …… well not exactly.

This document goes through all the steps I went through in starting from scratch. I am NOT a programing GURU
and I have never professionally written “C” programs. I do have three decades of experience in information
technology and some programing back ground but not in the “C” language. Thus this was a journey into the
unchartered wilderness for me. The reason this became an ‘expensive’ thermometer is because I made a several
wrong turnings. I have left those out or explained why they were wrong. This is written from the viewpoint of
“assume nothing”. Hopefully it may provide a path for others to follow (that will be somewhat less expensive
than the path(s) followed).

End Product:

What you end up with is an Arduino microcontroller programed to be a sophisticated thermometer that can
report its readings back to a computer via a standard USB connection. These reports may be generated at
periodic times from one minute to 24 hours. The device is “user” calibrated and may be programed to report
any combination of raw readings, Celsius readings or Fahrenheit readings. The device may be used in a “self-
storage mode” where it is run from an alternate power source (battery) and stores from 440 to 7,040
consecutive readings in its internal memory (estimated real capacity is 3,520). Both “wear leveling” and “data
reduction” are implemented to conserve storage space and extend the life of the internal EEPROM. Over 30
commands have been defined and implemented to allow the connected computer to control the device via a
standard terminal program. All software is provide with full source code and fully commented. Source code files
may be downloaded from http://www.keywild.com/arduino.

Legal Disclaimer:

The author makes no representation or warranty, either expressed or implied, with respect to the data files and/or software,
their quality, accuracy, or fitness for any specific application. Therefore the author shall have no liability to any person or any
entity with respect to any liability, loss, or damage caused or alleged to have been caused directly or indirectly by the use of
the data files and/or software. This includes, but is not limited to, interruption of service, loss of data, loss of consulting or
anticipatory profits or consequential damages from the use of these data files and/or software.

All files unless otherwise noted are the original work product of the author. Unless otherwise noted these files are placed into
the Public Domain for the unrestricted use by anyone for any purpose. Placing these files in the public domain shall in no way
be construed as an obligation of the author (or his heirs and/or assigns) to maintain the web site, web pages, files, data or
software. Further it shall in no way limit the author’s (or his heirs and/or assigns) options to make, produce or use versions of

the software, data files, CAD objects or other material posted under the URL in any other commercial or non-commercial
venture.

In the event of a legal dispute the court is requested to use a “reasonable person’s” interpretation of the “clear intent” of this
disclaimer.

The use of these data files and/or software constitutes acceptance of this disclaimer.

http://www.keywild.com/arduino

Page: 3

Table of contents:

Introduction ..2

End Product: ... 2

Legal Disclaimer: .. 2

Table of contents: ..3

Requirements: ... 10

Access to a working computer: .. 10

Arduino Compatible Development Board: ... 10

USB Cable ... 10

LM34 Temperature Sensor ... 10

Bread Board, 175 Tie points ... 10

Three Bread Board jumpers, 1-1/2 to 2 inches long ... 10

Thermometer ... 10

Access to the internet: ... 10

Optional components ... 11

Small Ceramic Disk Capacitor ... 11

3.5mm stereo female jack, PCB Mount, 3 contacts .. 11

3.5mm stereo male plug, solder terminal, 3 contacts .. 11

3.5mm stereo extension cable ... 11

22 K Ohm 1/4 watt resistor, solder leads ... 11

Optional Tool Requirements .. 11

Wire cutter ... 11

Small soldering iron .. 11

Small quantity of electrical/electronic solder ... 11

Magnifying Glass or Eye Loop ... 11

Tweezers .. 11

Microcontroller: Meet the Arduino Nano .. 12

Arduino Development Environment ... 17

Arduino Programing Environment:... 17

Setting up the Arduino IDE: .. 18

Arduino IDE: Compile and Upload... 22

Enter, Save, Serial Monitor: “Hello Word” .. 28

Funny Math: Bits, Nibbles and Bytes ... 32

Zeroes and Ones (Decimal, Binary and Hexadecimal) .. 32

Divide by Zero (yes we can) .. 39

Special Numbers (true or false?) .. 49

Page: 4

Memory: FLASH, SRAM, EEPROM ... 50

SRAM: Hello Word 001/002 ... 52

FLASH: Hello Word 003/004 ... 53

EEPROM: Hello Word 005/006 (Write, Read) ... 57

EEPROM: EEPROM_Dump, EEPROM_Erase ... 65

Building a Library: The easy way ... 69

Functions: Passing Parameters and Return Values ... 69

Library HexDec: Developing Functions ... 73

Library HexDec: Overloading .. 78

Library HexDec: ASCII Table .. 79

Library HexDec: EEPROMDump .. 80

Library HexDec: Creating the Library .. 81

Library HexDec: Testing the Library .. 83

AVR Internal Temperature Sensor .. 85

Using the ChipTemp Library ... 85

Develop Avr Temperature Functions .. 89

Storing Calibration Constants (EEPROM) .. 93

Thermometer Program... 98

Reporting Protocol ... 98

Thermometer Program, Plan “A” .. 102

Main File Functions .. 103

Global Declarations .. 103

Setup() Function ... 103

Loop() Function .. 103

CmdProcessor() Function ... 104

HelpMe() Function ... 104

PrintSeperatorLine() Function .. 104

ReadTwoCharacters ()Function .. 104

DrainCmdTermiantors() Function ... 104

DebugPrintCharacters() Function ... 105

Thermometer Functions File .. 105

EnableADC() Function ... 105

Read_Calibration_Data() Function ... 105

Write_Calibration_Data() Function .. 105

ClearStorage() Function ... 105

EEmodeFlagSet() Function .. 105

EEmodeFlagClear() Function .. 106

Page: 5

EEmodeFlagTF() Function ... 106

Check_EEPROM() Function ... 106

Print_IdString() Function .. 106

PrintTrueFalse() Function ... 106

ReportStatus() Function ... 106

avrRawTemp() Function ... 106

Convert()Function .. 106

Report() Function ... 106

QuickBlink() Function ... 106

Report2EEPROM() Function ... 106

DumpStorage() Function .. 107

PrintOKStr() Function ... 107

PrintNotRecognized()Function ... 107

PrintNotImplemented() Function ... 107

ShutDown() Function.. 107

software_Reset() Function ... 107

SetRawReadMode() Function ... 108

SetFahrenheitMode() Function .. 108

SetCelsiusMode() Function ... 108

SetReportMode() Function ... 108

ToggleDebugMode() Function .. 108

NewReportTime() Function .. 108

Report_Reset() Function .. 108

NewIdString() Function... 108

NewOffset() Function ... 108

CelsiusEquals() Function ... 109

FahrenheitEquals() Function .. 109

NewCelsius() Function .. 109

NewFahrenheit() Function.. 109

RestoreFromBackup() Function .. 109

OverwriteBackup() Function... 109

TestData1() Function .. 109

TestData2() Function .. 109

CalibrationMode() Function ... 109

void EepromDumpAll() Function .. 110

Temperature Calibration Theory .. 110

Temperature Calibration Procedure ... 111

Page: 6

Temperature Calibration Procedure: Observation Point 1 .. 112

Temperature Calibration Procedure: Observation Point 3 ... 112

Temperature Calibration Procedure: Observation Point 2 ... 112

Plan “A”, Evaluation and Summary .. 113

Thermometer Program, Plan “B” .. 114

External Temperature Sensor: LM34 .. 115

EEPROM Layout .. 118

Global Variables and Constants .. 119

Main Program File Functions .. 121

setup() Function ... 121

loop()Function .. 121

cmdProcessor() function .. 121

HelpMe() function .. 121

PrintSeperatorLine() function ... 122

ReadTwoCharacters() function ... 122

DrainCmdTermiantors() function ... 122

DebugPrintCharacters () function ... 122

Thermometer Functions File .. 123

Read_Calibration_Data() function .. 123

Write_Calibration_Data() function ... 123

ClearStorage() function .. 123

EEmodeFlagSet() function .. 123

EEmodeFlagClear() function ... 123

EEmodeFlagTF() function.. 123

Check_EEPROM() function ... 123

Print_IdString() function ... 123

PrintTrueFalse() function .. 123

ReportStatus() Function ... 123

AvrTemperature() function .. 123

ReadRawTempA1() function ... 123

Convert(word RawReading) Function ... 123

nearestquater () function ... 124

nearesthalf () function .. 124

Report() function .. 124

QuickBlink() function .. 124

Report2EEPROM() function .. 124

DumpStorage() function ... 124

Page: 7

Response() function ... 124

PrintOKStr () function ... 124

PrintNotRecognized() function ... 124

PrintNotImplemented() function .. 124

ShutDown() function .. 124

software_Reset() function .. 124

SetRawReadMode() function ... 124

SetCelsiusMode() function ... 124

SetFahrenheitdMode() function ... 124

SetReportMode() function ... 124

ToggleDebugMode() function .. 124

SetAvrInternalMode() function .. 124

ToggleRoundMode() function .. 124

NewReportTime() function ... 125

Report_Reset() function ... 125

NewIdString() function ... 125

PrintDegreeOffsetEffect() function... 125

ValueNotAccepted() function ... 125

NewDegreeOffset() function .. 125

CalculateDegreeOffset() function ... 125

FahrenheitEquals() function ... 125

CelsiusEquals() function ... 125

NewRefVolt() function .. 125

RestoreFromBackup() function .. 125

OverwriteBackup() function ... 125

TestData1() function ... 125

TestData2() function ... 125

CalibrationMode() function .. 126

EepromDumpAll()function ... 126

Temperature Sensor Calibration .. 128

Calibration Theory .. 128

Calibration Method 1 ... 128

Calibration Method 2 ... 128

Temperature Sensor Extension Cable... 128

Plan “B”, Evaluation and Summary... 130

Thermometer Program, ATMEGA168 .. 131

Arduino Debugging .. 132

Page: 8

Debugging Methods ... 132

Common errors to look for: .. 132

Other Hints: .. 132

RS232 Serial Monitor ... 134

FreeBasic Compiler ... 134

Serial Port Monitor Program .. 137

PC Alternatives: Microsoft .. 141

PC Alternatives: Non-Microsoft .. 141

Why FreeBasic .. 142

ArduinoThermometer.exe .. 143

Strip Semicolon Lines Utility ... 145

Receiver Modifications: .. 147

Conclusion ... 152

Possible Enhancements .. 152

Temperature Accuracy ... 152

EEPROM Storage Mode .. 152

Number of sensors ... 152

Remote Data Collection .. 152

LCD Display ... 152

GUI Interface .. 152

Photo Gallery ... 154

Appendix: Atmel MPU Table .. 158

Appendix: Arduino Check Speed ... 160

Appendix: AVR ADC Sensor Registers .. 163

Appendix: ADC Function test .. 165

Appendix: Disabling Auto Reset .. 170

Appendix: Arduino ElfDump ... 172

Appendix: Arduino Receiver ... 177

Appendix: Thermometer.exe .. 180

Main Program Code ... 180

Global Variables ... 180

Thermometer Functions ... 182

Ini File for Main Program .. 196

Utility Program ... 198

Appendix: Thermometer One Program Code (Plan “A”)... 205

Thermometer One Main Program File ... 205

Thermometer One Functions Module .. 210

Page: 9

Appendix: Thermometer One Program Code (Plan “B”) ... 226

Thermometer One Main Program File ... 226

Thermometer One Functions Module .. 232

Appendix: Thermometer ATMega168 ... 249

Main Program File (ATMega168) .. 249

Thermometer Function ATMega168 File .. 253

Appendix: ASCII Table .. 268

Appendix: Celsius vs. Fahrenheit Table ... 273

Appendix: LM34 Data Sheet ... 277

Appendix: MS takes Bow Shot at console applications .. 282

Page: 10

Requirements:

No Arduino’s were harmed or damaged in the development of this application. That statement actually has
more meaning that it may appear. The goal was for there to be no external components, any additional wiring or
soldering required for this project. Unfortunately reality stepped in and there is now one external component
and 3 wires required.

Access to a working computer:

All the project software is open source and runs under Windows and Linux operating systems. Most of
the software will also operate on a MAC computer.

Arduino Compatible Development Board:

These can purchased for as little as $9 from sources on Amzazon.com and Ebay.com. I recommend the
Nano but any Arduino with an ATmega328P (or ATmega328) and a USB port should work. (The “Pro
Mini”, “Lilo” and “Lillypad” do NOT have USB ports. The Micro might work but I have had problems with
that model).

USB Cable

Used between the Arduino microcontroller board and the computer. Sometimes this will be provided
with the Arduino board.

LM34 Temperature Sensor

This is a Texas Instrument/National Semiconductor series of part for measuring temperature in degrees
Fahrenheit. The specific part number recommended is a LM34DZ. Alternately any other IC from this line
can be used. For those outside the US you may want to consider the LM35 series that is calibrated in
Celsius. I paid too much for mine. You should be able to get these for about US$2.50.

Bread Board, 175 Tie points

This is just to have something so the Nano’s pins do not sit directly on the desktop. It also allows the
temperature sensor to be connected without any soldering. These can be purchased for about $5. A 300
or 400 tie point bread board will also work and allow some expansion for somewhat more advanced
projects.

Three Bread Board jumpers, 1-1/2 to 2 inches long

You will need three breadboard jumpers between 1-1/2 to 2 inches long. Alternatively you can make
your own from insulated 22 to 28 AWG single conductor wire (Cat 5 or Cat 6 LAN cable is an excellent
source).

Thermometer

This is not an absolute requirement. These are used to calibrate the digital thermometer. A bi-metal dial
thermometer, cooking thermometer, wall thermometer or glass tube thermometer may be used. The
task of finding an ‘accurate’ thermometer to use as a reference may be the biggest challenge in this
project.

Access to the internet:
Not actually required after the software is downloaded but highly recommended. There are imbedded
links throughout the text to references on the internet. These URLs are shown as underlined blue text:
 Example: http://www.keywild.com/arduino

http://www.keywild.com/arduino

Page: 11

Optional components

Small Ceramic Disk Capacitor

Atmel recommends placing a capacitor on the Analog reference pin. I used a 22 Pico Farad ceramic disk
capacitor but I cannot say that it made any real difference.

3.5mm stereo female jack, PCB Mount, 3 contacts

3.5mm stereo male plug, solder terminal, 3 contacts

3.5mm stereo extension cable

22 K Ohm 1/4 watt resistor, solder leads

These can be used to separate the sensor from the breadboard. Once that is done any 3.5mm stereo
cable can be used or the sensor can be plugged directly into the board. A stereo jack with 5 to 11
contacts may be used as an alternative (the 3 contact jacks are hard to find). The resistor may be a 1/2
watt or 1/4 watt of any precision and is in fact optional. If it is used then it needs to go inside the
3.55mm stereo plug so the smaller the better.

Optional Tool Requirements

Wire cutter

IF you want a really neat breadboard then you will need something to cut the wire and strip insulation
from it. Alternatively one may use pre-manufactured breadboard jumpers. At least three of these about
1-1/2 to 2 inches long will be required.

Small soldering iron

Small quantity of electrical/electronic solder

If decide to use an extension cable for the sensor then some very minor soldering will be required.
Mounting the sensor in the stereo plug requires soldering. As a starting place, for most small electronics
soldering, 1/32 inch (.03) rosin-cored, 60/40 (tin-lead) or 63/37 solder should work fine. Rosin-cored
lead-free is fine, too. For a god reference on electronic soldering see the URL:
 http://store.curiousinventor.com/guides/how_to_solder/kind_of_solder/

Magnifying Glass or Eye Loop

Tweezers

Some of us with somewhat less than perfect vision may find a magnify glass or eye loop helpful. A set of
tweezers are not a bad idea either.

http://store.curiousinventor.com/guides/how_to_solder/kind_of_solder/

Page: 12

Microcontroller: Meet the Arduino Nano

The goal here is to produce a device that reports the current temperature back to a computer over a USB port
using the minimum about of inexpensive hardware. We will in fact only be using a single piece of hardware.

The first question was: “what microcontroller to use?” I had done a little work in the past with PICs and Basic
Stamps so I first went looking microcontroller board that implemented a form of the basic language. There are
several good offerings available. Among these are Parallax Basic Stamp and Basic Micro’s Nano series. I also
read about other microcontroller offering and ran across information about the Arduino line. This is a series of
microcontroller boards based on “open design” standards that are not encumbered by proprietary copyrights,
licenses (hardware or software) and the associated extra cost of these items. An “official” Arduino
microcontroller board can be obtained for less than $20(US). A “clone” Arduino microcontroller board can be
obtained for less than $10(US). One can be “scratch” built by downloading the appropriate files and obtaining
the raw hardware though I question that being less expensive or more practical that buying a mass produced
board for a “one-of-kind” project.

The Arduino line uses a form of the “C” language. I am not a great fan of the “C” language. I find the simplicity of
Basic to be much more appealing for non-professional programmers. The complex array of files, rules,
structures, pointers and non-intuitive syntax that accompanies “C” and its derivatives may seem friendly to
people that work with it on a regular basis but to someone that only uses it occasionally it can be an excruciating
experience. However in recent years the popular Visual Basic implementation has been “improved” by
Microsoft such that it now conforms to much the same standards as “C”. That “improvement” has also
destroyed most of its simplistic advantages. The Arduino team has done an excellent job of isolating the user
from the some of the complexity in their implementation of the language. One can still delve into the
complexities of “C” to use standard tools and make files to produce Arduino programs but most users will not
need to go beyond the simple user interface of Arduino IDE (Integrated Development Environment). I decided to
give up my preference for Basic and use an Arduino based board.

There are 19 “official” Arduino microcontroller boards and derivatives too numerous to count. I chose the
“Nano” design (developed by Gravitech of Claremont, CA, USA) as a starting point because:

1) It has more or less the same functionality of the larger Arduino Duemilanove
2) Small size: slightly smaller than 3/4 x 1-3/4 inches
3) 8 Analog Inputs (10 bits = 1024 steps)
4) Available with or without header pins
5) Uses either the Atmel ATmega168 (v2.3) or ATmega328 (v3.0) AVR microcontroller
6) Built in USB port (USB Mini-B)
7) 5 Volt operation (low power projects can be powered by USB port)
8) Availability from numerous suppliers (many listed on Amazon.com and Ebay.com)
9) Cost: $35(US) from Gravitech down to $9(US) various clones

http://www.gravitech.us/arna30wiatp.html

Page: 13

Top Image is a Gravitech Nano board version 3.0 (although it has an ATMega168-20AU).
Middle image is the board layout showing the top traces
Bottom Image is a Chinese clone Nano board version 3.0 (although it has an ATMega168-20AU).

Page: 14

Top Image is a Gravitech Nano board version 3.0
Middle image is the board layout showing the bottom traces
Bottom Image is a Chinese clone Nano board version 3.0

Page: 15

You will probably note a lot of references to the term “AVR”(Appendix: Atmel MPU Table). The microcontroller
used on Arduino boards is an Atmel AVR chip. Atmel is the manufacturer’s name and AVR is the product name
for this series of chips. Per Atmel:

“Atmel® AVR® 8- and 32-bit microcontrollers complement Atmel's ARM® microcontrollers and microprocessors to deliver a
unique combination of performance, power efficiency and design flexibility. Optimized to speed time to market, they are based
on the industry's most code-efficient architecture for C and assembly programming.”

Just to put things in perspective: In 1982 the Commodore VIC-20 was the best-selling computer of the year, with

800,000 machines sold. One million had been sold by the end of the year and at one point, 9000 units a day were

being produced. This little device has more memory and computing power than a Commodore Vic 20.

That is a SainSmart Nano clone in the blue ellipse.

http://en.wikipedia.org/wiki/Commodore_VIC-20

Page: 16

Another interesting alternative is the Teensy 3.0 boards development board. This has a much more powerful 32 bit ARM Cortex-M4 48
MHz CPU with 128K FLASH, 16K RAM, 2K EEPROM, 14 each 13 bit Analog Inputs and 34 Digital inputs. It also has the advantage of an on
board clock (but requires crystal and battery). All of this is packed onto a board (1.4 x 0.7 inches) that is even smaller than the NANO.
Also available from SparkFun: https://www.sparkfun.com/products/11780

http://pjrc.com/store/teensy3.html
https://www.sparkfun.com/products/11780

Page: 17

Arduino Development Environment

 The primary goal of this project is to report to the attached computer the temperature over the USB/RS232
communications port. The computer shall provide the user interface and final processing of the data. Thus we
actually have to create software for both sides.

Arduino Programing Environment:

For the Arduino we will use the Arduino IDE (Integrated Development Environment) and its subset of the “C”
language. Although this may seem like an obvious choice there are a number of alternatives that could be used
such as:

1) the avr-g++ environment used to developed, build and run the Arduino IDE.
2) mikroBasic PRO for AVR, mikroPascal PRO for AVR or mikroC PRO for AVR
3) ICCV8 for AVR
4) Atmel AVR Studio (good tutorial here: http://hekilledmywire.wordpress.com/2010/12/04/22/)
5) codebender (online code development for Arduino)
6) MariaMole
7) NextEdge android /iPhone Arduino Compiler (then you have to get it to your Arduino)
8) Microsoft Visual Studio (configured Arduino with plugins)
9) BASCOM-AVR
10) SmallC for AVR

Most of these use C or use GCC in the background. The Arduino IDE was chosen because it works, it works across
platforms (Windows, Linux, Mac) and it is free. There is also implementation of the GDB/INSIGHT debugger for
the AVR line (not covered in this document).

Arduino Web Site: http://arduino.cc/en/
Arduino Download: http://arduino.cc/en/Main/Software
Arduino Forum: http://forum.arduino.cc/

Another interesting alternative is AttoBasic from:

http://www.cappels.org/dproj/AttoBasic_Home/AttoBasic_Home.html

“AttoBasic is an on-chip resident interactive Basic interpreter loosely based on memories of NASCOM Tiny Basic. AttoBasic interprets
single lines from a terminal or an entire program stored in memory without the delay of compiling and loading an entire program.”

One disadvantage is that if you use this in a “commercial” environment then you have to get a license.

http://www.mikroe.com/mikrobasic/avr/
https://www.imagecraft.com/devtools_AVR.html
http://hekilledmywire.wordpress.com/2010/12/04/22/
http://hekilledmywire.wordpress.com/2010/12/04/22/
http://codebender.cc/
http://dalpix.com/mariamole
http://arduino.cc/en/
http://arduino.cc/en/Main/Software
http://forum.arduino.cc/
http://www.cappels.org/dproj/AttoBasic_Home/AttoBasic_Home.html

Page: 18

Setting up the Arduino IDE:

Download the software from the official ARDUNIO web site:
http://arduino.cc/en/Main/Software.

Then follow the direction for installing the software according to your operating system.

There are several ‘alternative’ IDEs for the Ardunio. One that includes a complete rework of the ‘standard’ Arduino package can be found
in this Arduino Forum msg: http://forum.arduino.cc/index.php?topic=118440.0

There are a few things that you can do to make the Arduino IDE a bit more efficient and user friendly. When you
install Arduino IDE it should create a directory in your documents folder. On Windows this will be:
 C:\Users\<User Name>\Documents\Arduino (Windows 7)
 or
 C:\Documents and Settings\<User Name>\My Documents\Arduino (XP)

It will also create a directory where it installs the actual software. On Windows this will be (hereafter called <app
path>):
 C:\Program Files (x86)\Arduino (64 bit Windows)

or
C:\Program Files\Arduino (32 bit Windows)

It will also create a directory for its “preferences file”. On windows this will be:
 <User Home>\AppData\Roaming\Arduino (Windows 7)

or
<User Home>\Application Data\Arduino (XP)

This location of this last directory is an unfortunate choice because it is normally hidden from the user. You need
to be able to edit the file in this directory. In Windows Explorer Browse to you home directory. It should be
something like “C:\Users\<your name>” or “C:\Documents and Settings\<your name>” (consistency is not one
of Microsoft’s strong points). Then select “Tools”, “Folder Options”. Then select the “View” tab at the top. Pick
the radio button “Show hidden files, folders, and drives”. Then click on “OK” (you can change it back later … or
not). You should now be able to see several more folders and files. One of those will be “AppData”.

In this directory you will find a folder named “Roaming”. In that directory will a folder named “Arduino” with a
single file named “preferences.txt”. Now that you can see the file let us go back up to our <user home>\My

http://arduino.cc/en/Main/Software
http://forum.arduino.cc/index.php?topic=118440.0

Page: 19

Documents\Arduino directory. Create a new directory there named “preferences”. In that directory right click
you mouse and select “New”, “ShortCut”. In the dialog box choose the “Browse” button and navigate to the file:
 <User Home>\AppData\Roaming\Arduino\preferences.txt
Select that file and click on “OK”, “Next” and “Finish”.

Double clicking on this file should open the preferences.txt file in notepad (or your default system text editor if
you have replaced notedpad). You can now go back and change the “Show hidden files …” if you like.

Normally when the Arduino IDE compiles a new program it creates a working directory in your personal temp
folder. The path will be something like:

C:\Users\<user home>\AppData\Local\Temp\build2572074991509959449.tmp

This is inconvenient for two reasons. First at some point one may want to take a look at the files in “build”
directory. Second, and most importantly, the Arduino IDE does a very poor job of cleaning up after itself. You
will eventually have dozens of these working directories taking up space and generally making a garbage dump
of your machine. We can fix that (unfortunately it turns out that the IDE creates numerous other temp
directories that it does not delete as well). First create another new folder named <user home>\My
Documents\Arduino\Build. Now double click on your new “preferences.txt” short cut. Insert a new line in the
file:

build.path=C:\Users\<your name>\Documents\Arduino\Build

Page: 20

Be sure that you change <your name> to the actual name your system uses. To answer the more advanced users
question: No, the Arduino IDE does not recognize the environmental variable %HOMEPATH% or %HOME%.

You might have noticed the next line in the preferences.txt file is the path to your SketchBook (where the
Arduino IDE stores your projects). Many (not all) of these options are documented in the file:

<app path>\Arduino\lib\preferences.txt

This file has a number of inaccuracies in it. Note lines 5 and 6 above in preferences file. Those are totally ignored
by the Arduino IDE.

There is one option that is helpful and does work. We can change the font used by the editor. The default font is
“editor.font=Monospaced,plain,12”. First of all there is no font for Windows with the name “monspaced”. The
IDE appears to be using “Courier New” but in that font there is very little difference between parenthesis and
curly braces. The Arduino code uses these lot and we really need to be able to see the difference easily.
Microsoft does not provide any good monospaced fonts. We have to look elsewhere. One font that works well is
“Envy Code R”. You can download it here:
 http://damieng.com/blog/2008/05/26/envy-code-r-preview-7-coding-font-released

Another font that works well is “Source Code Pro”. You can download it here:

http://sourceforge.net/projects/sourcecodepro.adobe/files/

http://damieng.com/blog/2008/05/26/envy-code-r-preview-7-coding-font-released
http://sourceforge.net/projects/sourcecodepro.adobe/files/

Page: 21

Download the font of your choice and double click on the file. It should install automatically. Then change the
line in your preferences file to:
 editor.font=Envy Code R,plain,16 or editor.font=Source Code Pro,plain,16

Envy Code R Font:
1234567890

ABCDEFGHIJKLMNOPQRST
() {} [] <> !@#$%^&*

1234567890
ABCDEFGHIJKLMNOPQRST
() {} [] <> !@#$%^&*

1234567890
ABCDEFGHIJKLMNOPQRST
() {} [] <> !@#$%^&*

One thing to note: Do NOT edit the preferences.txt file while you have the Arduino IDE running. It will
overwrite your changes when it exits.

This is what my “My Documents\Arduino” directory looks like:

You already know what the folders: “Build” and “Sketches” are for. “Code_Snips” is for storing bits of code that I
might want to use later or something that I have found on the internet that I want examine closer at some point
when I have time. “Documents” is where I store related documentation … like this document that I am writing in
Word. “Libraries” is created by the Arduino IDE install program for storing users supplied/produced libraries
(code shared among several sketches). “Utilities” holds small programs to do other things relative to Arduino
environment. So far the only thing in it is a program to produce an assembly code listing from the from the ELF
file produced by the Arduino IDE. The actual work is done by the utilities that come with the IDE but this
program simplifies using them as they require some really long command lines (about 260 characters). The four
shortcuts at the bottom should be self-explanatory. You may note that I have two shortcuts for the “Reference
Guide”. There are sometimes differences between the on-line version and the one that comes with the IDE.

Page: 22

Arduino IDE: Compile and Upload

First thing that we need to do is learn how to enter, compile and upload a program in the in the Arduino IDE.
Once the software is installed it must be configured for the ARDUNIO that is being used. From the top menu
select “Tools”, “Board”, “Arduino Nano w/ATmega328”.

Next we have to tell the software where to find the Nano. Because we are using a USB hosted device that
creates a “virtual” com port we can be certain that the port will not be COM1 or COM2. When the Nano is
plugged into the computer Windows should automatically search for and find the device driver. If not then you
can download the driver from:

http://www.ftdichip.com/FTDrivers.htm.

If you open “Device Manager” then you should be able to Identify the COM port in Device Manager.

From the top menu select “Tools”, “Board”, “ComXX” where XX is the appropriate port number.

http://www.ftdichip.com/FTDrivers.htm

Page: 23

Most (if not all) Arduino boards have an LED (Light Emitting Diode) attached to pen 13. There is a small program
to make this LED turn on and off. This program (it is often called “Blinky”) is used to verify the configuration and
that you have a working Arduino board. From the top menu select “File”, “Examples”, “01. Basics”, “Blink”. This
will open up a new Arduino window. You can close the previous blank one (this is one of the things that I do NOT
like about this IDE).

We need to compile the source code. Arduino programs are called “sketches”. From the top menu select
“Sketch”, “Verify/Compile”.

http://en.wikipedia.org/wiki/Light-emitting_diode

Page: 24

In the area between the top and bottom panes of the program you will see a message telling you “Compiling
Sketch”. To the right will be a progress bar. That itty-bitty number down in the lower left corner is the current
line number. It is very useful when you are trying to debug a program. After the compile is completed the
message will change to “Done Compiling”. In the bottom pane will be the results of the compile. In this case it
tells us how big our program is. If there had been a problem like bad “syntax” then there would be error
messages in this pane. Note also that at the bottom right the software shows the target board and com port.

It is time to upload the program. From the top menu select “File”, “Upload”. The Arduino software will compile
the sketch again and automatically upload it to the Nano over the USB connection. After a moment the LED
should begin blinking.

Page: 25

When you select “compile” or “upload” the Arduino IDE actually uses several industry standard open source
programs to turn the source code into an executable file and upload it to the Nano (avr-gcc, winavr, avdude).
For a detailed explanation see one of these URLS:

http://arduino.cc/en/Hacking/BuildProcess
https://code.google.com/p/arduino/wiki/BuildProcess
http://openhardwareplatform.blogspot.com/2011/03/inside-arduino-build-process.html

Now let us take a look at the Actual source code for this sketch.

Notice that “key words” are color coded in the code window. In the “C” language and the Arduino environment
there are two ways to put in comments. One way is to place matching delimiters “/*” and “*/” around a section.
We see this method used at the beginning of the sketch where the program is described. The second method is
to use “//”. Anything on the line after two forward slashes is ignored by the compiler. We see that method used
where the code explains Pin 13. Comments may appear anywhere in the program listing. Next we have our first
line of code.

This is a declaration of an “integer” variable with the name “led” that is initialized to be equal to “13”. All this
does is to make the program code easier to read later on. Statements in “C” code are terminated with a
semicolon “;” (think of it like a period that ends a complete sentence). If we had another LED on pin 14 we could
change the variable in the program so as to blink either LED. As there is only the one then a constant (a value
that does not change during the execution of the program) could have been used. That declaration would look
like this:

http://arduino.cc/en/Hacking/BuildProcess
https://code.google.com/p/arduino/wiki/BuildProcess
http://openhardwareplatform.blogspot.com/2011/03/inside-arduino-build-process.html

Page: 26

Next we have our first function.

All functions take the form of:

 Type (Parameters) { Name
 Program Code;

 }

“Type” The data type of the returned value from the function. The keyword “void” indicates
that “setup” will not be returning a value.

“ ” The name of the function that is used to call it from other sections of the program code. Name

The “setup” function is the first of two functions required by all Arduino sketches. This
function runs once when the program first begins.

“Parameters” A coma delimited list of values that are passed to the function when it is called. This list

is always enclosed in parentheses “()”. The “setup” function is called without
parameters.

“Program Code” The program statements that are to be executed by the function. These are always

enclosed in braces “{ }”. In this case the keyword “pinMode” is used to set Pin 13 to a
digital output (“led” was set to equal 13 in the declare statement above). We only need
to do this once so setup is the appropriate place.

The “setup” function is followed by the second required function named “loop”.

Note that this function, like the “setup” function, returns nothing and gets no calling parameters. This function is
what programmer’s generally try to avoid ---- an endless loop, but here it serves a purpose. It will run until the
end of time, the Nano is reset or power is removed. The comments following each statement explain what the
statement does.

Page: 27

Just for completeness here is a sample of the disassembled machine code for this program.
// the loop routine runs over and over again forever:

void () { loop

 (led, digitalWrite); // turn the LED on (HIGH is the voltage level) HIGH
 100: 80 91 00 01 lds r24, 0x0100

 104: 61 e0 ldi r22, 0x01 ; 1
 106: 0e 94 b8 01 call 0x370 ; 0x370 <digitalWrite>
 (1000); // wait for a second delay

 10a: 68 ee ldi r22, 0xE8 ; 232

 10c: 73 e0 ldi r23, 0x03 ; 3
 10e: 80 e0 ldi r24, 0x00 ; 0
 110: 90 e0 ldi r25, 0x00 ; 0
 112: 0e 94 e5 00 call 0x1ca ; 0x1ca <delay>

 (led, digitalWrite); // turn the LED off by making the voltage LOW LOW
 116: 80 91 00 01 lds r24, 0x0100
 11a: 60 e0 ldi r22, 0x00 ; 0
 11c: 0e 94 b8 01 call 0x370 ; 0x370 <digitalWrite>
 (1000); // wait for a second delay
 120: 68 ee ldi r22, 0xE8 ; 232

 122: 73 e0 ldi r23, 0x03 ; 3

 124: 80 e0 ldi r24, 0x00 ; 0
 126: 90 e0 ldi r25, 0x00 ; 0
 128: 0e 94 e5 00 call 0x1ca ; 0x1ca <delay>
}
 12c: 08 95 ret

0000012e <setup>:

int led = 13;

// the setup routine runs once when you press reset:
void () { setup
 // initialize the digital pin as an output.
 (led, pinMode); OUTPUT
 12e: 80 91 00 01 lds r24, 0x0100
 132: 61 e0 ldi r22, 0x01 ; 1
 134: 0e 94 79 01 call 0x2f2 ; 0x2f2 <pinMode>
}
 138: 08 95 ret

Page: 28

Enter, Save, Serial Monitor: “Hello Word”

The classic first program for any system is called “Hello World”. Open the Arduino IDE and type the following
seven lines into the editor window (this is about as simple as it gets - caution: “C” is case sensitive):

Note the two functions Serial.begin and Serial.println. These two functions belong to a special “class” library that
is part of the Arduino base system. The class member names (begin and println) are separated from the name of
the library class (Serial) by a dot “.”. This library is only included in the final program when one of its functions is
used. It adds about 1,750 bytes to the size of final program file. The “Serial.begin” function is called a
“constructor” function. It constructs a new “instance” of the serial class that the other members can use. It must
be called before any of the other class members can be called. In this case it is initializing the default TTL
(transistor to transistor level) serial port at a speed of 9,600 baud . Serial.println sends a line of text to the serial
port with a terminating character. The default serial port use RS-232 serial protocol (this is one of several
protocols the Arduino can use). This allows the Arduino to communicate with the computer via a serial terminal
program.

Now from the top menu select “File”, “Saves As”. When prompted for a name use “HelloWorld_000”. Notice
that the Arduino IDE automatically creates a new folder for the sketch with the same name that you gave the
file. This is your “project” folder. In that folder you should find a file with the name “HelloWorld_000.ino”. This is
a plain text file that can be opened with any text editor except for Microsoft Windows Notepad (consider
replacing notepad with something like Notepad++). The Microsoft convention is that all lines end with a
combination of carriage return and line feed (ASCII 13, 10). The Arduino editor uses the Linux convention of
terminating lines with only a line feed (ASCII 10). ASCII stands for American Standard Code for Information
Interchange. See http://en.wikipedia.org/wiki/Ascii for more information on ASCII character codes.

http://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
http://en.wikipedia.org/wiki/Baud
http://en.wikipedia.org/wiki/RS-232
http://notepad-plus-plus.org/
http://en.wikipedia.org/wiki/Ascii

Page: 29

Warning: The Arduino IDE is very picky about file names: Sketch names may only include basic letters and
numbers (ASCII only) with no space. Sketch names may not begin with a numeric character.

Page: 30

Compile and upload the program to the Nano. So you are saying to yourself “Nothing is happening”. From the
top menu select “Tools”, “Serial Monitor”.

Now you should see the Nano printing Hello World once a second until the end of time (or when you disconnect
it).

Whenever the computer opens the serial connection to Arduino the device is automatically “reset”. It has a
special program called a “boot loader” that is run when the device is reset. That program waits for a few
moments listening to the serial port. If it receives a special set of codes from the computer then it begins the
process to upload a new program. Otherwise it starts the program that was previous uploaded. That is how the
Arduino IDE is able to load new programs and communicate with the device over the same serial connection.

Page: 31

A brief word about my personal programing style (or lack thereof):

I tend to try to make program code as easy as possible for someone who is not familiar it with to read. Thus there will be
lots of verbose comments. I also have a tendency to try to get a single concept into a space where it can be seen and
comprehended without paging back and forth or digging through multiple files. This happens to be in direct conflict with
conventional “C” programing style. There will also be examples of structures and functions that are supported by the
language but are frowned upon by the many professional level programmers. Same experienced and/or professional “C”
programmers are going to be offended by some of the code presented here. So be it.

The concept is for a person with absolute no knowledge or experience with the “C” language to build enough of a basic
understanding of the language to get the task accomplished. It is NOT a dissertation aimed at producing the optimum “C”
language program.

One must learn to walk years before they can enter the trials for Olympic Sprinters.

Some of the code shown will be in the form of screen captures because formatting code segments in Microsoft Word is a
time consuming pain in the southern most region.

Page: 32

Funny Math: Bits, Nibbles and Bytes

Zeroes and Ones (Decimal, Binary and Hexadecimal)

Have heard that computing is all about “zeros and ones”? More likely you heard it was all about “ones and
zeros” but zero should always come before one. Regardless of order the concept is true and that leads to some
different ways of doing math. Input the following code into a new sketch called “Bits_and_Bytes01”.

void () // note this is shown in properly formatted “C” style setup

{
 Serial (9600); .begin
 word w = 0x000F;

 Serial ("w: "); .print
 Serial (w,); .print DEC
 Serial (", "); .print
 Serial (w,); .print HEX
 Serial (", "); .print
 Serial (w,); .print BIN

}

void () { loop
} // do nothing

We use the HEX input format “0x000F” for the initializing the word variable “w”. The “0x” (that is a zero not an
upper case O) indicates the HEX format. The characters that follow it must be in the set “0123456789ABCDEF”
(lower case alpha characters can be used but generally not). A word is a 16 bit unsigned number. Bytes are eight
bits and nibbles are four bits. Our variable “w” is two bytes or four nibbles or sixteen bytes long. Each HEX
character represents one nibble. Because the first three nibbles are zero we could have written “0xF”.

Notice that we have used a different member of the Serial class. Serial.print is like Serial.println but it does not
send a newline termination. The DEC, HEX, OCT and BIN keywords tell the Serial.print function how to format
the variable “w” when it is printed. It should be obvious but we “try” to never assume:

DEC = format as decimal (number base 10) format
HEX = format as hexadecimal (number base 16) format
OCT = format as octal (number base 8) format … (rarely used)
BIN = format as binary (number base 2) format

The Arduino IDE has a special function “Auto Format” feature under the tools menu to format your code in
proper “C” style. I find it inconsistent. Notice in the setup function that it drops the open parenthesis to the first
characters of the next line. The loop function has the open parenthesis appended to the end of the line where
the function is declared. I find such inconsistences irritating (consistency in next to godliness). That is another
reason you will find that my code is often NOT properly formatted.

That is not all very impressive, but we are going to make it more interesting … after we create a function to print
the value of a word variable in all three formats on a single line. Open the Arduino IDE and start a new project
named “Bits_and_Bytes01”. We are going to create an additional file for this project.

We want to add a file to the project. That option is not part of the IDE’s menu system. We must use an idiotcon

Page: 33

for that. It is in the top left corner and looks like an upside down triangle. Click on that you will have a menu.
Select “New Tab”. The IDE will prompt you for a file name: use “functions”. Then click on the “OK” button.

Now you should now have two tabs for the IDE editor window including one named “functions”. The file is saved
in the same directory of your sketch. The IDE will open any addition “.ino” files it finds in the sketch directory
when you open the project sketch.

Open the new tab and enter the following code (hint … you can copy and paste).

void printdhb (char c, word n)

{

 Serial (c); .print
 Serial (": "); .print
 Serial (w,); .print DEC

 Serial (", "); .print
 Serial (w,); .print HEX
 Serial (", "); .print
 Serial (w,); .print BIN
}

The keyword “void” tells the compiler that our user defined function named “printhdc” will not be returning a
value. In the parameter section we tell the compiler to expect two variables: a single character variable “c” and a
two byte word variable “n”. These variables will ONLY be visible inside the function. Note that we had to add
one line to print the incoming character. Now go back to first tab and enter a line to call our new function.

void () setup
{
 Serial (9600); .begin
 word w = 0x000F;

Page: 34

 printdhb ('w', w);

}

void () { loop
} // do nothing

When you run this program the output should look the same as the previous one. Now add some more values.

void () setup

{

 Serial (9600); .begin
 word v = 0x0000;
 word w = 0x000F;

 word x = 0x00FF;
 word y = 0x0FFF;
 word z = 0xFFFF;
 printdhb ('v', w);
 printdhb ('w', w);
 printdhb ('x', x);
 printdhb ('y', y);

 printdhb ('z', z);

}

void () { loop
} // do nothing

By creating the function we avoided all that extra typing to enter the print statements for the new values.

This would be much easier to comprehend if the numbers were “right justified”. Even better would be to have
them zero padded. We can do that! Go back to the functions tab and enter this code (hint … read ahead a bit).

void printdhb (char c, word n) // properly formatted “C” style code

{
 byte i,s;
 Serial (c); .print

 Serial (": "); .print

 (n<10) // begin if then for decimal if

 {
 s=4;

 }
 (n<100) else if
 {
 s=3;
 }
 (n<1000) else if
 {
 s=2;
 }
 (n<10000) else if

 {

 s=1;
 }
 { else
 s=0;

Page: 35

 } // end of if then for decimal

 i=0;
 (i < s) // begin while loop for decimal while

 {
 Serial (' '); .print

 i= i+1;
 } // end of while loop for decimal
 Serial (n,); .print DEC

 Serial (", "); .print
 (n<0x10) // begin if then for hex if
 {
 s=3;
 }

 (n<0x100) else if
 {
 s=2;
 }
 (n<0x1000) else if
{

 s=1;
 }
 else
 {
 s=0;

 } // end of if then for hex
 i=0;

 (i < s) // begin while loop for hex while
 {
 Serial ('0'); .print
 i= i+1;
 } // end of while loop for hex
 Serial (n,); .print HEX

 Serial (", "); .print
 Serial (n,); .println BIN
}

Obviously whoever determined the proper format for “C” code was getting paid by the number of lines of code
that they produced. Here is the (almost) human readable form with the binary formatting added as well.

void printdhb (char c, word n) // improperly formatted “C” style code

{ byte i,s,v;

 Serial (c); .print
 Serial (": "); .print

 (n< 10) { s=4;} // begin if then for decimal if
 (n< 100) { s=3;} else if

 (n< 1000) { s=2;} else if
 (n<10000) { s=1;} else if
 { s=0;} // end of if then for decimal else
 i=0;

 (i < s) // begin while loop for decimal while
 { Serial (' '); .print
 i= i+1;
 } // end of while loop for decimal
 Serial (n,); .print DEC

 Serial (", "); .print
 (n< 0x0010) { s=3;} // begin if then for hex if

 (n< 0x0100) { s=2;} else if
 (n< 0x1000) { s=1;} else if
 { s=0;} // end of if then for hex else
 i=0;
 (i < s) // begin while loop for hex while

Page: 36

 { Serial ('0'); .print

 i= i+1;
 } // end of while loop for hex

 Serial (n,); .print HEX

 Serial (", "); .print
 /* the Arduino IDE/compiler has a problem with the binary format values larger than a byte
 so we have to do this a byte at a time */

 v = (n); highByte
 (v< B00000010) { s=7;} // begin if then for binary high byte if
 (v< B00000100) { s=6;} else if
 (v< B00001000) { s=5;} else if
 (v< B00010000) { s=4;} else if
 (v< B00100000) { s=3;} else if

 (v< B01000000) { s=2;} else if
 (v< B10000000) { s=1;} else if
 { s=0;} // end of if then for binary high byte else
 i=0;
 (i < s) // begin while loop for binary high byte while
 { Serial ('0'); .print

 i++;
 } // end of while loop for binary high byte
 Serial (v,); .print BIN
 Serial (" "); .print
 v = (n); lowByte

 (v< B00000010) { s=7;} // begin if then for binary low byte if
 (v< B00000100) { s=6;} else if

 (v< B00001000) { s=5;} else if
 (v< B00010000) { s=4;} else if
 (v< B00100000) { s=3;} else if
 (v< B01000000) { s=2;} else if
 (v< B10000000) { s=1;} else if
 { s=0;} // end of if then for binary low byte else
 i=0;
 (i < s) // begin while loop for binary low byte while
 { Serial ('0'); .print
 i= i+1;
 } // end of while loop for binary low byte
 Serial (v,); .println BIN
}

Obviously there are better ways to do this, but first we need to learn some funny math and other things. One of
those is “control structures”. A control structure is used where the program has to make a decision: “What do I
do next?” In this program we have our first control structure the “if then else” structure.

 (n< 10) { s=4;} // begin if then for decimal if

 (n< 100) { s=3;} else if
 (n< 1000) { s=2;} else if

 (n<10000) { s=1;} else if
 { s=0;} // end of if then for decimal else

Usually a control structure has a criteria or condition to use in making its decision. The “if” keyword is followed
by that criteria enclosed within parentheses. In this case we testing the value of the variable “n” to see if it is less
than 10 by using the less than comparison operator “<”. If the condition within the parentheses is true then the
program executes the statements within the curly braces that follow. In this case we have only one statement so
I have written the entire sentence on one line to make it easier to read. If the condition within the parentheses
is false then the program skips those steps and goes to the next line. The “else” keyword ties our next line to the
previous “if” control. We increase the test by a factor of ten for each digit. The program executes the first line
that it finds to be true and skips the rest. We end to the structure with a simple “else” statement that is to be
executed if none of the test conditions preceding it were found to be true. In this case we are dividing our
decimal number by decimal ten to see how many zeroes we need to pad to the left of the number. If the

Page: 37

number is between 0 and 9 (inclusive) then we need 4 zeroes. We follow this same logic until we get to the point
where the number is greater than (or equal to 10000). In that case we do not need any extra zeroes. This is a
form of “fall through” logic. We fall through each test until we find a match. Then we come to our next control
structure:

 i=0;

 (i < s) // begin while loop for decimal while
 { Serial (' '); .print
 i= i+1;

 } // end of while loop for decimal

This is called a “while” loop. It will execute the statements between the curly braces for as long as the test
condition is true. There needs to be some sort of statement within those braces to affect the test condition.
Otherwise the loop will execute forever (like the main loop required by the Arduino IDE). Here we use the
statement “i = i+1;” to increase the value of our variable “i”. Note that we set the value of “i=0;” before we
execute the while statement. If “s” is equal to zero then the while loop will not execute at all. We use this loop
to print the required number of space in front of the decimal value. Then we print the decimal value.

Note: Conditional statements and/or control structures may be followed by a group of executable statements
but that is not always the case. If there is only a single statement then the curly braces are NOT required. These
two sections of code are both valid and equivalent:

 (n< 10) { s=4;} // begin if then for decimal if

 (n< 100) { s=3;} else if

 (n< 1000) { s=2;} else if
 (n<10000) { s=1;} else if
 { s=0;} // end of if then for decimal else
//--
 (n< 10) s=4; // begin if then for decimal if
 (n< 100) s=3; else if

 (n< 1000) s=2; else if
 (n<10000) s=1; else if
 s=0; // end of if then for decimal else

Note: A while loop does NOT require executable statements.

 n=0;

 (n<10) {n = n+1;} // all three of these statements while
 (n<10) n = n+1; // are valid while
 (n++<10); // and produce the same result while

 . . .
 n=0;

 (n==0); // valid but generates an endless loop while
 (n!=0); // valid, does nothing (may be ignored by the compiler) while

Note: A while may use multiple conditions separated by commas.

 byte a=13, b=0, c=1;
 Serial (); .println
 (a>0, b<5, c!=7) // multiple conditions specified for while loop while
 { Serial ("a="); .print
 Serial (a--); .print
 Serial (", b="); .print
 Serial (b++); .print

 c=a-b;
 Serial (", c=(a-b)="); .print
 Serial (c); .print
 Serial (); .println
 // the next statement waits for serial input
 (while Serial. ()==0); // note that the executable statement is the parameter available
 }

Page: 38

The same type of logic is used for the hex and binary values. The difference is how we specify the value limits we
are testing. We use the hex notation for the hex values and binary notation for the binary values. The “B” in the
front of the number “B00000010” tells the compiler to interpret the following digits as a binary number. Each
digit must be in the set “01”. Some programing languages have used a similar notation for HEX numbers (i.e.
“H00FF”) and some assembly code system used postfix notation (i.e. “00FFh”). You may see this form of hex
notation in notes, comments and documentation. Unfortunately consistency is not one of the “C” language’s
strong points. Because the IDE/compiler cannot handle the Binary format of more than one byte we must
introduce our first bit of funny math. The two keywords “lowByte” and highByte” (remember “C” is case
sensitive) are used to split our two byte word value into single bytes in the temporary byte variable “v”.

If you run the program with the new form of the function then it should be much easier to understand the
results.

Notice now all our highest values are odd numbers. In the everyday life zero has no value so you were probably
taught in kindergarten to count starting with one. Digital computers only have two numbers: zero and one. Thus
zero is very important. In “C” and most other programing languages we start counting at zero.

Side note:

Traditional Chinese weighing units was a hexadecimal system (like ounces in the English

system). Early Chinese suanpan abacuses with two ‘heaven’ beads and five ‘earth’ beads could

be used for either decimal or hexadecimal calculations.

The “C” language allows us to pass variables of the same size but of a different type to a function. It is up to the
programmer to be certain that the function will handle the variable passed properly. In the setup function
comment out the variable declarations and declare them to be integers. Then add the additional code at the
bottom.

void () setup

{
 Serial (9600); .begin
// word v = 0x0000;
// word w = 0x000F;
// word x = 0x00FF;
// word y = 0x0FFF;
// word z = 0xFFFF;

 int v = 0x0000;
 int w = 0x000F;
 int x = 0x00FF;

 int y = 0x0FFF;

 int z = 0xFFFF;
 printdhb ('v', w);
 printdhb ('w', w);
 printdhb ('x', x);

Page: 39

 printdhb ('y', y);

 printdhb ('z', z);

 Serial (""); .println
 w=-15;

 Serial ("w: "); .print
 Serial (w,); .print DEC
 Serial (" "); .print

 Serial (w, HEX); .print
 Serial (" "); .print
 Serial (w, BIN); .println
 printdhb ('w', w);
}

void () { loop
} // do nothing

WOW! Look at all those ones. Our Arduino handles negative numbers as the “two's complement” (see
http://en.wikipedia.org/wiki/Two's_complement). When the “C” compiler passed the parameters to our
function it checked the number of parameters and size but did not place limits on the type. Our function was
not designed to handle negative numbers and had no way of knowing that the passed parameter was supposed
to be a signed integer. The systems Serial.print function did a bit better in that it recognized that the number
was negative but it handled the number as signed long (four bytes). This is something to be very conscious of. If
you deal with negative numbers be sure that the functions that you use are provisioned for negative numbers.
The same thing applies for using unsigned numbers.

Side note:

The official ASCII character table is only 7 bits. However most ASCII character charts lists character

codes from 0 to 255 (8 bits). Note the definition of the char type in the Arduino reference:

 The char datatype is a signed type, meaning that it encodes numbers from -128 to 127.

The second page (128-255) of the character chart should actually be listed as negative numbers, however

the way the two's complement works out … it is the same thing (hint: -255 = 128 ~~~ funny math ~~~).

Save your work.

Divide by Zero (yes we can)

Copy the previous files to a new folder. Be sure that you rename the folder and the file “Bits_and_Bytes03” (and
do not forget to include the functions file). We are going to do some funny math. Before we do that let us take a
quick look at some simple normal math.

http://en.wikipedia.org/wiki/Two's_complement

Page: 40

16/2=8
8/2=4
4/2=2
2/2=1

2*2*2*2=16
4*4=16

16/16=1 16/0= ???
NOT ALLOWED!

You were probably taught that you cannot divide by zero. Well we can and by doing it different ways we can get
different answers.

/* Bits, Bytes and Nibbles */

void () setup
{
 Serial (9600); .begin
 word a,b,c;

 Serial ("a=0xFFFF"); .println
 a=0xFFFF;
 printdhb ('a', a);

 Serial (""); .println

 Serial ("16="); .print

 Serial (16, HEX); .println

 Serial ("a/16="); .println

 a=a/16;
 printdhb ('a', a);
 Serial (""); .println

 Serial ("16*16="); .print

 Serial (16*16, HEX); .println
 Serial ("a/(16*16)="); .println
 a=a/16;
 printdhb ('a', a);
 Serial (""); .println

 Serial ("16*16*16="); .print

 Serial (16*16*16, HEX); .println
 Serial ("a/(16*16*16)="); .println
 a=a/16;
 printdhb ('a', a);

 Serial (""); .println

 Serial ("16*16*16*16="); .print

 Serial (16*16*16*16, HEX); .println
 Serial ("a/(16*16*16*16)="); .println
 a=a/16;

 printdhb ('a', a);
 Serial (""); .println

 a=0xFFFF;
 b=16*16*16*16;
 printdhb ('b', b);
 a=a/b;
 printdhb ('a', a);
 Serial (""); .println

}

void () { loop
} // do nothing

Page: 41

There are no comments in this code because the print statements make it “self-documenting”. We start off with
word value set to its maximum value 0xFFFF (all ones). We divide it four times by the number 16. According to
normal math that should be the same as dividing by (4*16) but such is not the case. Lastly we take the number
0xFFFF and divide it directly by zero. The last value returned is zero. The compiler does not object and returns
the original value (same as dividing by one). ~~~funny math~~~

What is actually happening we are hitting the upper and lower limits? When we divide by 16 we are shifting the
number to the right by one hexadecimal position. The ones on the right are discarded and the left is filled with
zeroes. When we do this four times all of the ones have been discarded. Thus the answer is zero.

Did you notice 16*16*16*16=0? We hit the upper limit and it rolled over to the beginning which is of course
zero. So why did directly dividing by zero return the original number. I do not have a good answer for that one. I
believe it is because integer division is actually done using the shift operator and subtraction. Shift left or right
zero positions does nothing.

The whole point to this exercise is that dividing a hex number by decimal sixteen is similar to dividing a decimal
number by decimal ten. In in hexadecimal notation the decimal value 16 = hexadecimal 10. All it is doing is
moving the number left or right one position. Computer processors have a special instruction for this that is
much faster than integer division. It is called the “shift” instruction. In “C” the operation is noted by bitwise shift
operator “>>”.
 XXXX >> 0 is the same as XXXX /1 (1)

XXXX >> 1 is the same as XXXX / 2 (2)
 XXXX >> 2 is the same as XXXX / 4 (2*2)
 XXXX >> 3 is the same as XXXX / 8 (2*2*2)
 XXXX >> 4 is the same as XXXX / 16 (2*2*2*2)

XXXX >> 5 is the same as XXXX / 32 (2*2*2*2*2)
XXXX >> 6 is the same as XXXX / 64 (2*2*2*2*2*2)
XXXX >> 7 is the same as XXXX / 128 (2*2*2*2*2*2*2)

 XXXX >> 8 is the same as XXXX / 256 (2*2*2*2*2*2*2*2)
 XXXX >> 9 is the same as XXXX / 512 (2*2*2*2*2*2*2*2*2)
 XXXX >> 10 is the same as XXXX / 1,024 (2*2*2*2*2*2*2*2*2*2)

Page: 42

 XXXX >> 11 is the same as XXXX / 2,048 (2*2*2*2*2*2*2*2*2*2*2)
 XXXX >> 12 is the same as XXXX / 4,096 (2*2*2*2*2*2*2*2*2*2*2*2)
 XXXX >> 13 is the same as XXXX / 8,192 (2*2*2*2*2*2*2*2*2*2*2*2*2)
 XXXX >> 14 is the same as XXXX / 16,384 (2*2*2*2*2*2*2*2*2*2*2*2*2*2)
 XXXX >> 14 is the same as XXXX / 32,768 (2*2*2*2*2*2*2*2*2*2*2*2*2*2*2)
 XXXX >> 16 is the same as XXXX / 65,536 (2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2)

Hopefully you will have noticed an important pattern. This is handy for isolating a portion of a piece of data …
just like the lowByte and highByte keywords we used earlier. Comment out the earlier code (I hope that you
have found the “Edit, Comment/Uncomment” feature) so we can try something else. First let us modify our print
function a slightly.

// void printdhb (char c, word n)
void printdhb (char c[], word n)
{ byte i,s,v;
 Serial (c); .print
 // Serial.print (": ");

... /// those three dots means the code is continued on as it was previously

All we are doing changing the function such that it can print a char array rather than a single character by adding
the array notation “[]”. The compiler now passes pointer to the array rather than trying to pass the entire array
itself. Serial.print knows the difference between a pointer and char value. Now try this in setup.

/* Bits, Bytes and Nibbles */

void () setup
{

 Serial (9600); .begin
 word a,b,c;
 printdhb (" DHB values 0xFFFF: ", 0xFFFF);

 printdhb (" DHB values 0xFFFF/16: ", (0xFFFF / 16));
 printdhb (" DHB values 0xFFFF >> 4: ", (0xFFFF >> 4));
 Serial (""); .println
 printdhb (" DHB values 0xFFFF: ", 0xFFFF);
 printdhb (" DHB values 0xFFFF*16: ", (0xFFFF * 16));
 printdhb (" DHB values 0xFFFF << 4: ", (0xFFFF << 4));
 Serial (""); .println
 printdhb (" DHB values 0xFFFF: ", 0xFFFF);
 printdhb (" DHB values 0xFFFF/256: ", (0xFFFF / 256));

 printdhb (" DHB values 0xFFFF >> 8: ", (0xFFFF >> 8));
 Serial (""); .println
 printdhb (" DHB values 0xFFFF: ", 0xFFFF);

 printdhb (" DHB values 0xFFFF*256: ", (0xFFFF * 256));

 printdhb (" DHB values 0xFFFF << 8: ", (0xFFFF << 8));

 Serial.println ("");

// Serial.println ("a=0xFFFF");
// a=0xFFFF;
. . .

Page: 43

Sometime you want a specific part of the whole that is not conveniently located on the end. In that case you
simple use a combination. Let us put the center 8 bits into the lower byte. We are going to use a number that is
a bit more distinctive.

/* Bits, Bytes and Nibbles */

void () setup
{
 Serial (9600); .begin

 word a,b,c;

 a=0x4321;
 printdhb ("DHB values 'a' = 0x4321: ", a);
 a=a << 4;
 printdhb (" DHB values 'a' << 4: ", a);
 a=a >> 8;
 printdhb (" DHB values 'a' >> 8: ", a);

// printdhb (" Hex value 0xFFFF: ", 0xFFFF);
. . .

See how the digits “32” moved from the center to the left end and then they were moved to the right end. The
“C” language lets us do things inside the function calls as well. This version works the same as the code above
(but is a bit less obvious).

/* Bits, Bytes and Nibbles */

void () setup
{
 Serial (9600); .begin
 word a,b,c;
 printdhb (" DHB values 'a' = 0x4321: ", (a=0x4321));
 printdhb (" DHB values 'a' << 4: ", (a=a << 4));

 printdhb (" DHB values 'a' >> 8: ", (a=a >> 8));

// printdhb (" Hex value 0xFFFF: ", 0xFFFF);
. . .

Page: 44

There are “many ways to skin a cat” in the “C” language. An even shorter form uses the compound operator
notation and no inside parenthesis. In the case of the shift operator the operator must precede the equals sign.

/* Bits, Bytes and Nibbles */

void () setup

{
 Serial (9600); .begin
 word a,b,c;

 printdhb (" DHB values 'a' = 0x4321: ", a=0x4321);

 printdhb (" DHB values 'a' << 4: ", a <<= 4);
 printdhb (" Hex value 'a' >> 8: ", a >>= 8);

// printdhb (" Hex value 0xFFFF: ", 0xFFFF);
. . .

There are some other compound operators that are very useful but look a little funny when you firs see them.
Go back and look at the loop our printdhb function.

 i=0;

 (i < s) // begin while loop for decimal while
 { Serial (' '); .print

 i= i+1;
 } // end of while loop for decimal

We can use the “C” compound increment function “++” to shorten this code a bit.

 i=0;

 (i++ < s) { while Serial (' ');} // while loop for decimal .print

The “++” operator increments the variable “i” by one: (i=i+1). This is “postfix” notation. That means it returns
the value of “i” to the function before it does the “i=i+1” operation. The first time into the loop the value zero is
returned. The next time the value one is returned and so on until the value reaches “s”. There is also a “prefix”
notation form:

i=0;

 (++i < s) { while Serial (' ');} .print

In this case the value is incremented before it is returned. Thus the first time in to the loop the value of “i” is
one. There is a similar function to decrement the value of a variable: “--“. To make the program even shorter
we can initialize the value for the variable inside the test criteria.

 (i=0, ++i < s) { while Serial (' ');} .print

Here are some more compound operators ~~~funny math~~~:

Operation Compound Operator Sample Same as

Addition += i += 5 (i = i + 5)

Subtraction -= i -= 5 (i = i – 5)

Multiplication *= i *= 5 (i = i * 5)

Division /= i /= 5 (i = i / 5)

We are going to add another control structure. It is the “for” control structure. Here is a simple example.

(i=0; i<10; i= i+1)for

{
 Serial (i,); .println DEC
 }

The “for” keyword needs three sets of parameters. The parameters are delimited by semicolons. The first is for
the initialization. This statement is executed one time. The second is the test condition. This is executed before
the before executing the code block. If the result is false then the code block is not executed. The third will be
executed after the code block. The “for” control structure repeatable executes the block of code {statements

Page: 45

between the curly braces} until the condition returns false. The example above would print the digits “0” to “9”
to the serial terminal. You will frequently see the compound operator used in the third parameter set of the
“for” control structure. I have been using the word “set” because you can actually have multiple comma
delimited statements in each parameter set as in this example:

(i=0, c=65; i<26, c<100; i++, c++)for

{
 Serial (char(c)); .println
 }

This example would print the characters “A” to “Z” to the serial terminal.

Consider the “if then else” structure that we used in the printdhb function.

 (n< 10) { s=4;} // begin if then for decimal if

 (n< 100) { s=3;} else if
 (n< 1000) { s=2;} else if
 (n<10000) { s=1;} else if
 { s=0;} // end of if then for decimal else

This was not bad for decimal and hex but it got rather long for binary. It uses a value the is repeatable multiplied
by 10. We can take advantage of some of our funny math and new control structures to shorten the function.

void printdhb (char c[], word n) // function to print value as

 { byte s; // Decimal, Hexidecimal and binary

 long i;

 Serial (c); // print incoming string .print
 (i=10, s=0; i <= 10000; i *= 10) // pad decimal value with spaces for

{ (n<i) { s++;} if
 }
 i=0;

 (i++ < s) { while Serial (' ');} .print
 Serial (n,); // print decimal value .print DEC

 Serial (", "); // print seperator .print
 (i=0x10, s=0; i <= 0x1000; i *= 0x10) // pad hex value with zeroes for

{ (n<i) { s++;} if
 }

 i=0;

 (i++ < s) { while Serial ('0');} .print
 Serial (n,); // print hex value .print HEX

 Serial (", "); // print seperator .print
 /* the Arduino IDE/compiler has a problem with the binary format values larger than a byte

 so we have to do this a byte at a time */
 printbin((n)); // call function to print high byte highByte

 Serial (' '); // print seperator .print
 printbin((n)); // call function to print low byte lowByte
 Serial (); // print a new line .println
 }

void printbin (byte v) // functiion to pad and print one bianry byte
 { word i;
 byte s;
 byte n; // used for a nibble
 n= v >> 4; // move high nibble into low nibble position
 (i= B10, s=0; i <= B1000; i *= B10) // pad binary value with zeroes for

{ (n<i) { s++;} if
 }
 i=0;

 (i++ < s) { while Serial ('0');} .print
 Serial (n,); // print binary value .print BIN

Page: 46

 Serial (' '); .print

 n= v << 4; // roll the high bits off to the left

 n= n >> 4; // move the left over bits back to the right
 (i= B10, s=0; i <= B1000; i *= B10) // pad binary value with zeroes for

{ (n<i) { s++;} if
 }
 i=0;

 (i++ < s) { while Serial ('0');} .print
 Serial (n,); // print binary value .print BIN

 }

Oops … another function slipped in there. Our function calls are now three levels deep. Every level deeper we go
the code becomes more difficult to read. The upper levels begin to look nothing at all like the original language.
Take a look at the setup function in our program. It is comprised principally of calls to our user defined
functions. In order to understand what is happening one must start at the top and work their way down to the
bottom level while learning the meanings of the user defined “keywords” we have added to the language. Two
or three levels are not too bad. Unfortunately the larger and more complex the program becomes then the
tendency is for the number of function call levels to increase. This is true for all programing languages.

In the new function we have used the shift operators “>>” and “<<” to isolate each nibble. That way we can print
each nibble separately making the binary format much easier to read.

The other thing that your notice is that the variable “i” was changed to a “long”. A long is a 4 byte variable. This
was done in order for “i” to be able to hold the larger values required in the test condition for the “if” control
structures. If you change it to a “word” (two bytes) then the value will overflow. The program will crash and
burn. Note that we used the compound operator “*=” to increase the value of “i” by a factor of 10.

Now that we have our nifty new print function we want to take a look at two more operators. They are the
bitwise “or” and the bitwise “and” operators. The first thing that happens is we run into the Arduino’s binary
input limit again but this time we know how to deal with that.

void () setup

{
 Serial (9600); .begin
 word a,b,c;
 a= (B10101010 << 8) + B10101010;
 b= (B10011001 << 8) + B10011001;

 printdhb (" a: ", a);

 printdhb (" b: ", b);
 printdhb ("'and' a | b: ", a | b);
 printdhb (" 'or' a & b: ", a & b);

Page: 47

The first thing to note is the use of the “<<” operator to get around the limitations of the Arduino’s
IDE/compiler. The last two lines have our new operators in them. The “or” operator “|” (that is a vertical bar
not a capital I) returns a one for each bit position where either number has a one. The “and” operator
“&”returns a one for each bit position where both number have a one.

The numbers that we have used represent every possible combination of one and zero between the two
numbers. The “and” operator is frequently used to isolate a portion of a number. For example a place where we
only want the lower nibble.

void () setup

{

 Serial (9600); .begin
 word a,b,c;

 a= 54321; // we want the lowest nibble of the word
 b= B1111; // this is our bit mask

 printdhb (" a: ", a);
 printdhb (" b: ", b);

 printdhb (" 'or' a & b: ", a & b);

This could be used to simplify our “printdhb” function but I will leave that up to you. The last thing we are going
to look at is the actual “.cpp” file generated by the Arduino IDE to send to the compiler. That is shown below.
Note that the two file have been combined into one with the main file first. The lines highlighted in yellow tell
the compiler what line of what file the included lines come from. The compiler uses this information to return
the correct location of any errors it encounters. The lines highlighted in green are called “forward declarations”.
These tell the compiler what are functions are defined in the rest of the file.

#line 1 "Bits_and_Bytes03.ino"

/* Bits, Bytes and Nibbles */

#include "Arduino.h"

void setup ();

http://en.wikipedia.org/wiki/Forward_declaration

Page: 48

void loop();

void printdhb (char c[], word n);

void printbin (byte v);

#line 3

void setup ()

{

 Serial.begin (9600);

 word a,b,c;

 a= (B10101010 << 8) + B10101010;

 b= (B10011001 << 8) + B10011001;

 printdhb (" a: ", a);

 printdhb (" b: ", b);

 printdhb ("'and' a | b: ", a | b);

 printdhb (" 'or' a & b: ", a & b);

}

void loop() {

} // do nothing

#line 1 "functions.ino"

void printdhb (char c[], word n) // function to print value as

 { byte s; // Decimal, Hexidecimal and binary

 long i;

 Serial.print (c); // print incoming string

 for (i=10, s=0; i<=10000; i *= 10) // pad decimal value with spaces

 { if (n<i) { s++;}

 }

 i=0;

 while (i++ < s) { Serial.print (' ');}

 Serial.print (n, DEC); // print decimal value

 Serial.print (", "); // print seperator

 for (i=0x10, s=0; i<=0x1000; i *= 0x10) // pad hex value with zeroes

 { if (n<i) { s++;}

 }

 i=0;

 while (i++ < s) { Serial.print ('0');}

 Serial.print (n, HEX); // print hex value

 Serial.print (", "); // print seperator

 /* the Arduino IDE/compiler has a problem with the binary format values larger than a byte

 so we have to do this a byte at a time */

 printbin(highByte(n)); // call function to print high byte

 Serial.print (' '); // print seperator

 printbin(lowByte(n)); // call function to print low byte

 Serial.println (); // print a new line

 }

void printbin (byte v) // functiion to pad and print one bianry byte

 { word i;

 byte s;

 byte n; // used for a nibble

 n= v >> 4; // move high nibble into low nibble position

 for (i= B10, s=0; i <= B1000; i *= B10) // pad binary value with zeroes

 { if (n<i) { s++;}

 }

 i=0;

 while (i++ < s) { Serial.print ('0');}

 Serial.print (n, BIN); // print binary value

 Serial.print (' ');

 n= v << 4; // roll the high bits off to the left

 n= n >> 4; // move the left over bits back to the right

 for (i= B10, s=0; i <= B1000; i *= B10) // pad binary value with zeroes

 { if (n<i) { s++;}

 }

 i=0;

 while (i++ < s) { Serial.print ('0');}

 Serial.print (n, BIN); // print binary value

 }

Page: 49

Special Numbers (true or false?)

There are constants that are defined that are not really numbers but they always have a value. The keyword
“ ” is defined to be equal to zero. Most often the keyword “ ” will be set equal to one or minus one but false true

it may be any number other than zero. Many times these two special numbers are used with an associated data
type named “boolean”.

If you set a variable equal to “ ” then that variable will be evaluated as zero. However if you set a variable false

equal to “ ” then the value returned from evaluating the variable should not be considered predictable true

(actually for a specific system it will be … but that is not something to depend on).

These conditional phrases are equivalent:

boolean grape;

. . .

 (grape ==) if false
 (grape == 0) if

As are these:
boolean berry;

. . .
 (berry ==) if true
 (berry != 0) if

/* sample code */

boolean grape = ; true

boolean berry = ; false
. . .

 (grape) makeJuice (); // will execute make grape juice if
 (berry) makeJelly (); // will not execute make berry jelly if

 (grape ==) makeJuice (); // will execute make grape juice if true
 (berry ==) makeJelly (); // will not execute make berry jelly if true

 (grape !=) makeJuice (); // will execute make grape juice if false
 (berry !=) makeJelly (); // will not execute make berry jelly if false

//------------------- //----------------------------
 (grape ==) makeJuice (); // will not execute make grape juice if false

 (berry ==) makeJelly (); // will execute make berry jelly if false

 (grape !=) makeJuice (); // will not execute make grape juice if true
 (berry !=) makeJelly (); // will execute make berry jelly if true

Page: 50

Memory: FLASH, SRAM, EEPROM

The Nano comes with three type of memory that have different properties and functions:

EEPROM: 1 K for the ATmega328 (1/2 K for the ATmega168)
SRAM: 2 K for the ATmega328 (1 K for the ATmega168)
FLASH: 32 K for the ATmega328 (16 K for the ATmega168)

EEPROM retains its values when power is shut off and even when a new sketch is uploaded but access is slow.
The AVR core actually has to be shut down to access EEPROM (2 clock cycles for write, 4 clock cycles for read).
Thus a special function in used in order to read or write the data in the EEPROM. It is good for about 100,000
write cycles. Well written software will compare the value to be written to value that is already stored there. If
the two are the same then it does not overwrite the value. This is the location to store values that may change
but need to be retained when the device is rebooted. An example of such data would be a calibration factor for
the internal temperature sensor, the location of a remote sensor or a data log.

FLASH retains its data until it is overwritten by a special piece of software (boot loader) or hardware
(programmer). It is good for about 10,000 write cycles. Our sketches can read from the FLASH memory but they
cannot write to it. This is where the code for the sketches is stored when they are uploaded. A special “FETCH”
mechanism moves program code from the FLASH memory to the microprocessor core. One of the registers in
the SRAM address space is used as a “program pointer” to tell the FETCH mechanism which bytes to transfer.

SRAM loses its values whenever power is removed but it is very fast. There is not practical limit to the number of
times that it can read and written. The AVR core has direct access to all the SRAM address space. This is where
our variables and the programs stack are stored. What is a stack? It is a special section of memory used by the
software to pass parameters between functions including the return address. It is also used for local variables
defined within a function. It is possible to write a function that repeatedly calls itself (that is called a recursive
function) and overfill the stack. That is called stack overflow and will most likely crash your Nano. Some of the
AVR mpu’s have a provision for external RAM. In that case it is “mapped” into a reserved area of the SRAM
space one section at a time. None of the Arduino boards (that I have seen) have this option.

Page: 51

All we have to do to read or write to the SRAM is declare a variable. Examples:

FLASH is a bit more of a challenge. In theory is you declare a constant then the preprocessor/compiler should be
able to calculate and imbed the value in line with the machine code. I am however told that the value gets
copied to RAM. We will ignore that for the moment as it really does not affect us at the level we are working.
There is however another method of storing and retrieving data in FLASH using a set of special functions. This is
best utilized for such things as a data table or group of strings where you are going to look up a specific value or
string. That saves you from having to place the entire table in the valuable and scarce SRAM space.

EEPROM is much the same as FLASH in that we need to use a special set of functions to read and write it. If we
use multiple sketches with the same Arduino board then we also need a bit of upfront planning so that we do
not overwrite valuable data that another sketch needs. We may also want several sketch to be able to access
the same data. This can be done by including a file in our sketch that holds the the declarations for the locations
in EEPROM.

We are going to expand the “Hello World” program with versions that uses each form of memory.

Page: 52

SRAM: Hello Word 001/002

In this version we are going to use SRAM by declaring s string for our message.

Notice that we did not specify the size of the array. The compiler will figure that out for us. The other thing to
notice is that this version and the previous version came out the very same size: 2,118 bytes.

Another way to do this is to use the string library that comes with Arduino IDE. We use the “#include” statement
to do that.

Wstring.h is found in the directory:

<your program path>\Arduino\hardware\arduino\cores\arduino

Page: 53

This provides a new variable type “String”. There are additional functions added to manipulate the string such
concatenation and compare but note what that costs us. The size of the program is now 3,680 bytes. The
Arduino is probably not the optimum location to be manipulating strings but it is good to know we have that
capability if needed.

FLASH: Hello Word 003/004

Flash memory (or program memory) is where we want to store most of our data because it is the largest area we
have to work with. In the case of Hello World the easiest way to that is with the special function F().

There seems to be some controversy about the value of using this function because the Arduino has to copy the
string variable from FLASH to SRAM in order for the serial print routine to print it. This is however considered
the ‘proper’ method of printing inline literals. Quote from Mathew Ford of Forward Computing and Control Pty.
Ltd.: http://www.forward.com.au/pfod/ArduinoProgramming/index.html

“The syntax just puts the string in Program memory (Flash) and casts the resulting point to a F()

unique class. This unique class insures that the correct method is called to read the print()

bytes from the program memory and them. Any class that inherits from Print can use this write()
approach.

That includes Server, Steam, Client, HardwareSerial, SoftwareSerial and UDP.”

Well that is cool but it is not much help if we want to manipulate the string or if we want to use the same string
several places in the program. In order to do that we have to use functions from “PROGMEM” that are found in
“<your program path>\avr\pgmspace.h”. This is a collection of functions to store and recall data from flash
memory. These are defined in avr/pgmspace.h. If you look at some of the examples that are on line then be
careful that they use the latest version: the proper syntax has changed. The current syntax is documented at the
URL:

http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html

http://www.forward.com.au/pfod/ArduinoProgramming/index.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html

Page: 54

Before we go on we want to make two small additions to our program. First we will add a description of the
program the program at the top. Then we will make the Nano wait for us to talk to it.

/* Program: Hello World

 Description: Sketch to print “Hello World” in serial monitor.
*/

int junk = 0; /* incoming serial byte */

void () setup

{ /* run once each time the Nano is reset or powered on */

 /* This sets up a serial connection, 9.6 kbts/second */
 Serial (9600); .begin
}

void () loop
{ /* loop until the end of time */
 (if Serial () > 0) // this line checks to see if there is something to read .available
 {
 /* get incoming byte */
 junk = Serial (); .read
 /* this next line is useful for debugging if you remove the comment markers */

 /* Serial.println(junk); */
 /* Print a line over RS232/USB the connection. */
 Serial (.println ("Hello World!")); F
 }
}

Upload the new code. Then switch to the monitor window and type a single character followed by selecting the
send “button”. What happens if you enter s string like 12345 ?

PROGMEM is really most useful for tables. So our program is going to build a table in four languages. It will then
inquire which language to use. Please read the comments in the following code for details.

/* Program: Hello World in four languages using PROGMEM */

//---declarations--

Page: 55

/* include library to use flash memory (PROGMEM) for fixed data storage */

#include <avr/pgmspace.h>

/* this is where we define our PROGMEM string */
char HelpStr[] = "E=English, F=French, S=Spanish, I=Italian, A=All"; PROGMEM

char EnglishGreetingStr[] = "Hello World"; PROGMEM
char FrenchGreetingStr[] = "Bonjour tout le monde"; PROGMEM
char SpanishGreetingStr[] = "Hola mundo"; PROGMEM

char ItalianGreetingStr[] = "Ciao mondo"; PROGMEM

/* Here we set up an enumerated array of constants.
 This is how all the example code is shown. I was
 unable to find an example anywhere that put strings
 in PROMEN did not use an array to access them. */

const char *Language[] = PROGMEM
{ EnglishGreetingStr, // Language [0]
 FrenchGreetingStr, // Language [1]
 SpanishGreetingStr, // Language [2]
 ItalianGreetingStr }; // Language [3]

/* Here we set up a separate constant name for each string.
 This may be the only example of this type syntax/usage. */
const char *English = {EnglishGreetingStr}; PROGMEM
const char *French = {FrenchGreetingStr}; PROGMEM
const char *Spanish = {SpanishGreetingStr}; PROGMEM

const char *Italian = {ItalianGreetingStr}; PROGMEM
const char *HelpMe = {HelpStr}; PROGMEM

/* Unfortunately the software cannot use the strings in
 PROGMEM directly. We have to use a special function to

 transfer the strings from PROGMEM to SRAM so that they
 are in the same memory where the program runs. This
 sets an area in SRAM to work with the strings. */
char OutBuffer[60];

/* this byte is used to read from the RS232/USB port */
char junk;

//---setup--
void () setup

{ /* run once */
 Serial (9600); // This sets up a serial connection, 9.6 kbts/s. .begin

 /* wait for serial port to connect. Needed for Leonardo only */
 (! l) { ; } while Seria
 /* We are going to prompt the user for input.

 Note that we are using the F() function here to wrap the
 "string literal" */

 Serial (.println ("Enter: E, F, S, I or A")); F
 Serial (""); .println
}

//----main---
void () loop
{ /* loop until the end of time */

 (if Serial () > 0) .available
 {
 /* get incoming byte */
 junk = Serial.read();
 /* this next line is useful for debugging if you remove the comment markers */
 /* Serial.println(junk); */

 /* now that we have a character from the user we have to decide what
 to do. First off we are really particular. We will only accept
 1 of the 5 charcters we asked for to begin with. If the character
 is not in that group we are going to send the user another message
 to explain the situation. That is the string tha we defined as

Page: 56

 "HelpMe" in our declarations. So the first thing that we do is copy

 that string to the OutBuffer using the special PROGMEM string copy
 function. I am not going to try to explain the syntax because I

 do not understand it myself. The importent parts to know are:
 1) strcpy_P() is the special function to copy a string from PROGMEM

 2) the first parameter (in thise case "OutBuffer") is the SRAM array
 to copy the string to.
 3) the last parameter (in this case "HelpMe") is the constant that

 points to the string that we wish to retrieve. */
 (OutBuffer, (char*) (&(HelpMe))); strcpy_P pgm_read_word

 /* Now to test our user input. This is very straight foward. If the byte
 matches the character then we copy the appropriate string to the
 OutBuffer using the same syntax that we used for default string above.

 We repeat the test for each character (fall through logic). */
 (junk == 'E') if
 { (OutBuffer, (char*) (&(English)));} strcpy_P pgm_read_word
 (junk == 'F') if
 { (OutBuffer, (char*) (&(French)));} strcpy_P pgm_read_word
 (junk == 'S') if

 { (OutBuffer, (char*) (&(Spanish)));} strcpy_P pgm_read_word
 (junk == 'I') if
 { (OutBuffer, (char*) (&(Italian)));} strcpy_P pgm_read_word
 (junk == 'A') if
 /* This is a bit different. Here we are using the Constant array to print

 all the various language strings that we defined. This is maily here to
 show the difference in systax: speciically the "[i]" at for the

 constant array. The loop starts with the variable i equal to zero.
 It copies the PROGMEM string to the OutBuffer and prints it. Then the
 loop increases the value of i by 1 (i++ means i=i+1) and checks to see

 if the value is less than 4. If it is then then the loop is processes
 again. It repats this process until i=4. */
 { (int i = 0; i < 4; i++) for
 { (OutBuffer, (char*) (&(Language[i]))); strcpy_P pgm_read_word
 Serial (OutBuffer); .println
 }
 /* clear the buffer so that the main print statement will output a blank line
 C use schar(0) to define the end of a string.
 We simply write 0 to the first byte */
 OutBuffer[0]= char(0) ;

 }
 /* Print whatever we happen to have in the OutBuffer */

 Serial (OutBuffer); .println
 }
}

Page: 57

EEPROM: Hello Word 005/006 (Write, Read)

First of all we need to do a bit of planning. We need to define the addresses of the data that we are going to
store in the EEPROM. Think of it as a hotel with a lot of rooms. The hotel guests are data bytes. We need to be
sure that we send parties of guests to the right suite of rooms and that the rooms are large enough to
accommodate the number of guests in each party. So the first question is “How many guests can we
accommodate?” The Arduino headers include ’<your program
path>\Arduino\hardware\tools\avr\avr\include\avr\io.h’ that defines symbols for each board. This file is
actually more like an index that points to the appropriate file for the specific microprocessor.

 For our CPU in the Nano is says to include the file ‘io328p.h’. If we look at that file then we find the symbol
‘E2END’.

Page: 58

FLASHEND: The last byte address in the Flash program space.
RAMEND: The last on-chip RAM address.
E2END: The last EEPROM address.

Here is a simple program to try but the results may surprise you.

void () { setup
 Serial (9600); .begin
 Serial ("FLASHEND: "); .print

 Serial (FLASHEND); .println
 Serial ("RAMEND: "); .print

 Serial (RAMEND); .println
 Serial ("E2END: "); .print
 Serial (E2END); .println
}
void () {} // do nothing loop

Page: 59

If you are sharp then you are asking “Hey! Should not the number for RAMEND be 2047 or 2048 ???”

Well yes and no. The address space that the SRAM lives in is also used for CPU registers and IO mapping. So the
first 255 addresses are ‘reserved’: 2303-255=2047. Let’s try something a little different. This program will use
two files. Open up the Arduino IDE and created new sketch named “AVR_MEMORY_SIZE” and save it. Then
create a second file named “ChipNames.h”. Enter this code in the new window and then save the file. It will be
saved in the same directory as your sketch.

What we are doing here is to take advantage of some more of the information that is stored in the system
header files. In this case we are setting a constant for a proper name for our processor. Statements beginning
with the pound sign “#” (I am American. If I had been British I would have used the word “hash”) are directives to
a special program called the pre-compiler. It runs before the compiler and sets our constant value at compile-
time. We could have done this in the main code using if or case statements. In that case the proper name would
be determined at “runtime” (when the program executes). However each compile is targeted for a particular

Page: 60

processor so we can determine the proper value at compile time. This is more efficient because in theory the
program code runs many times but the final compile only has to run once. We will take advantage of a few more
defines below. Now go back to the first windows and enter this program code.

/* get the size of the AVR RAM areas */

#include "ChipNames.h" // include our other file.

float TempVal = 0;

void () { setup
 Serial.begin (9600);

 /* print chip name */
 Serial. ("Microprocessor type: "); //---- Put proper designation in here ----- print
 Serial. (ChipName); println

 /* speed code taken from http://playground.arduino.cc/Main/ShowInfo */
 Serial (("Speed = ")); .print F
 Serial (F_CPU / 1000000,DEC); .print
 Serial ((" MHz")); .println F

 /* get Flash RAM size */
 TempVal= FLASHEND;
 TempVal= ((TempVal+1)/1024);
 Serial ("Size of FLASH(using FLASHEND): "); .print
 Serial (TempVal); .print

 Serial ("K"); .println

 /* get SRAM size */
 TempVal= (RAMEND -255); // sram begin at 256

 TempVal= ((TempVal+1)/1024);
 Serial ("Size of SRAM (using RAMEND): "); .print
 Serial (TempVal); .print
 Serial ("K"); .println

 /* get EEPROM size */
 TempVal= (E2END);
 TempVal= ((TempVal+1)/1024);
 Serial ("Size of EEPROM(using E2END): "); .print

 Serial (TempVal); .print
 Serial ("K"); .println

 /* get free (unallocated) SRAM */

 Serial ("Free SRAM: "); .print
 Serial (freeRam()); .print
 Serial (" Bytes"); .println

}
void () {}; loop

/* http://stackoverflow.com/questions/960389/how-can-i-visualise-the-memory-sram-usage-of-an-avr-program */

int freeRam () {
 int __heap_start, *__brkval; extern
 int v;
 (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval); return
}

I ran this program on two different Arduino boards to show the what happens when one has a different AVR
chip.

Page: 61

Now that we know how many rooms we have we need to check our reservations:

 1 2 3 4 5
 123456789012345678901234567890123456789012345678901234567890

HelpStr, "E=English, F=French, S=Spanish, I=Italian, A=All", party of 48
English, "Hello World", party of 11
French, "Bonjour tout le monde", party of 21
Spanish, "Hola mundo", party of 10

Italian, "Ciao mondo", party of 10

Each of parties will also have a hotel employee to assist them: null (ASCII 0 to terminate the string). Addressing
begins with zero (0) and our rooms just happen to be sized in increments of four (4, an arbitrary choice by the
accounting department). The HelpStr is going to get the deluxe suite on the ground floor that will accommodate
52. The rest will get each get rooms less than half that size: 24. This will however be adequate room to allow the
parties to change their guest list a bit without inconveniencing the other guests. To be done properly we should
put this in a separate file that will be shared between our two programs. But for the moment we shall just
duplicate it in each sketch. So our first EEPROM program is going to be named “Hello Word 005”. All it is going to
do is check to the guests into their rooms (write the data to the EEPROM).

Page: 62

There are a lot of things to notice here. The #include line uses the <delimiters> (less than, greater than). This is
the “C” convention for a system supplied library. The convention for user files/libraries is for “delimiters”
(double quotes). The Arduino IDE may look for the files in different locations according to the delimiters used.

In the setup function we have put a “\0” at the end of each of our strings. This is an “escape sequence” that tells
the compiler we want an ASCII zero there. We cannot normally type that character because it is a non-printing
control character. You are likely to see some used in “C” code:
 \0 = Null ASCII zero (0)
 \n = New Line ASCII ten (10)
 \r = Carriage Return ASCII thirteen (13)
 \t = Tab ASCII nine (9)
 \e = Escape ASCII twenty-seven (27)
 \\ = Backslash ASCII ninety-two (92)

We created our first function in this program. Note that we are also passing it parameters and how the
parameters are declared. We also declared three variables within the function: chrcount, singlechar and addr.
These variables only exist when the function is executing. That saves us valuable SRAM space. The special
function that we used was “EEPROM.write”. This is part of a class library. The class is “EEPROM” and the
function is “write”. You should notice the period between the class and the function (remember that “C” is case
sensitive). This function writes a single byte at a time.

http://en.wikipedia.org/wiki/ASCII

Page: 63

Also notice the “while() {}” loop structure. We repeat this section of code while the conditions are true. The two
conditions are that our current character is not ASCII 0 and we have not reached the end of the allocated
address space. The “!=” (exclamation point and equal sign) is the “C” comparison operator for “not equal”. The
“&&” is the “C” logical operator for “and” (both conditions must be true). In order to enter the loop we initialize
the “singlecharacter” variable to a number other than zero. Remember that “0x01” is the “C” hex notation for
one (1). “0x0F” would be decimal fifteen (15). A bit further down “==” is the “C” comparison operator for
“equal”. We also used the escape sequence “\\” to print a backslash.

Our variables “chrcount” and “addr” are incremented by the “C” compound operator “++”. The placement of
this operator can be very important if you use it inside a function call such as “greeting(chrcount++)”. In this case
the “++” operator follows the variable so that it returns the current value before it increments the value of the
variable. When the “++”operator proceeds the variable then it increments the value before returning the value
to the function.
Thus:

singlecharacter = greeting(chrcount++);

is the same as
singlecharacter = greeting(chrcount);

chrcount = chrcount +1;

Conversely

singlecharacter = greeting(++chrcount);

is the same as
chrcount = chrcount +1;

singlecharacter = greeting(chrcount);

The biggest problem with this program is we will not know if the guests made it to their room until we write
something to read the data back from the EEPROM.

Page: 64

This is the program HelloWorld006 that checks to see if all our guests are in their proper rooms.

The special function that we use in this program is “EEPROM.read”. Just like its counterpart it reads a single byte
at a time. For that reason we used the “Serial.print” function rather than the “Serial.println” we have been
using. “Serial.print” does not print a new line so we can print a whole bunch of single bytes this way. Note also
that we used an additional parameter in “Serial.print (addr, DEC)”. This tells the function to convert the value of
address to the string representation of a decimal number before it prints it. In “Serial.print(char(value))” we use
char to convert the value that we retrieved to an ASCII character before printing it. That is called “casting”. Then
we print the ending address but we have to subtract 1 because we have just added 1 to the address in our loop.
Lastly we use Serial.print (“”) to send a new line.

Notice the structure of the loop that does the printing. This is the “other form” of the “while” loop (the one we
are not supposed to use): “do {} while();”. In this case the loop will always execute at least once before it gets to
it condition check. It is thus possible to enter the loop when an invalid condition exists. Of course it also avoids
the necessity the variable “value” to something other than zero. From my perspective if you are certain that you
want to execute the loop at least once then this from is at least acceptable (not to mention that it also has a
definitive end).

Now that you have this program (you did save it, yes?) go back and upload the “blinky” program and run it. Then
upload this program again and run it. You will see that all our guests are still in their rooms.

Page: 65

EEPROM: EEPROM_Dump, EEPROM_Erase

It would be nice to have a program to dump the contents of the EEPROM. We might be using an Arduino that
someone had used on another project and we want to see if there is anything there that should be saved before
we overwrite or erase it. For that matter we might even want to know if we need to erase it. First we need to do
a little planning about what our print out is going to look.

0 1 2 3 4 5 6

12345678901234567890123456789012345678901234567801234567890

XXXX HLHLHLHL HLHLHLHL HLHLHLHL HLHLHLHL AAAAAAAAAAAAAAAA

We know that our maximum address is decimal 1024 so we reserve the first four characters for the address
represented by XXXX. Then we add two spaces. We are going to print 16 hex values (0-FF) in groups of four
separated by a space (HL stands for High nibble, Low nibble). Follow that with two spaces and ASCII character for
each of the bytes. That is a total of 46 characters but we need a terminating null as well. So make the buffer 48
characters long. A bit of quick arithmetic should tell you that will be 64 lines. That is less than one page if you
capture and print it out. Another thing that we have to be careful of is special characters. Anything under
decimal 32 is considered to be a non-printing character. There are also the special combinations of characters
like “\t” or “\n”. We are going to take the simple approach and print a period for any value under 32 or equal to
92 or over 126 (otherwise we have to get very creative).

Page: 66

Not much new here. Run the program and see what the output looks like.

Page: 67

That is pretty much what was expected. The thing to note is that the rest of the EEPROM is filled with ones
rather than zeroes (as I had been lead to believe): FF Hex = 11111111 binary. This has been consistent across
Arduino boards that I have seen.

So now let us erase the EEPROM. This will be simple because we are not really going to erase it. We are just
going to write ones to every bit location.

First thing to note is that we require the user to confirm that they want to overwrite the data. You may recall
that earlier I said well written program check the EEPROM before overwriting it. I have looked at the low-level
assembly code in:

<app path>\Arduino\hardware\tools\avr\avr\include\avr\eeprom.h

It does not appear to perform this check. So our code does check before it overwrites location. This also reduces
the amount of time required for the operation. Lastly we report back how many bytes were actually written.

Page: 68

Going back and review the code in EEPROM_Dump. It would be convenient if we just had a function that would
format the data of 16 byte array. With a function like that our main loop would be somewhat simplified. And our
sketch would look something like this:

Page: 69

Building a Library: The easy way

For version two of our EEPROM Dump program we are going to build a library that formats various values as the
representation in Hexadecimal, Decimal or ASCII characters. The first step is to build a prototype program where
we will develop each and test each routine that we need. Along the way we are going to find out a little about:

passing parameters to a function
returning a value from a function
pointers (reference and dereference)
returning a char array from a function
multiple references (names) to a single char array
overloading a function (optional arguments)

Then we will convert those routines into a library file. Lastly we will rewrite the EEPROM Dump program.

Functions: Passing Parameters and Return Values

Open the Arduino IDE and enter the following code.
void () setup
 { Serial (9600); .begin

Serial (demoreturn(1234,10)); .println
 }

int demoreturn (int a, int b)
{

 int c;
 c = a / b;
 c; return
}

void () {} // do nothing loop

Compile, upload and run this program in the IDE’s serial monitor. It should output “123”. Notice that we did not
get a decimal value “123.4” or remainder. That is because we are using integer math. All results are in whole
numbers. We will take advantage of this later on.

The first line of the function is the declaration “int demoreturn (int a, int b)”. We have been using “void” as our
type for the previous functions. This time we use “int” to tell the compiler that we are going to return and
integer value. We also told the compiler that the function receives two integer values in the parameters section
(between the parentheses). The variables called “a” and “b” are only visible inside the function. The actual
program instructions are between the curly braces. The first thing we do is allocate space for the variable “c” in
order to have something to hold result. Then we define “c” to be equal to “a” divided by “b”. Lastly we use the
keyword “ ” to tell the compiler that the value of “c” is the value to be returned by the function. We did return

not really need the variable “c”. The function could have been written to return the result of calculation directly.
As I prefer to see single sentences on a single line I would probably write it like this:

int demoreturn (int a, int b) { (a/b);} // divide a by b and return the result return

Inside the setup function we have the call to our function “demoreturn(1234,10)”. The earlier description of
SRAM mentions that part of it was used as the “stack”. What actually happens when a function is called is that
the mpu “pushes” the values for the parameters on the stack. The function can then “pop” these values off the
stack and use them. For an “integer, word or address” value two bytes are pushed and popped. For a “byte or
char” value only one byte needs to be pushed or popped so when convenient you really want to use the smaller

Page: 70

data type. When the function has completed its program steps it can return a value in the same manner. It pops
the return address off the stack and pushes the returned value on the stack.

Using the stack in this manner imposes some limitations. The largest value that can be passed is a long or
unsigned long that is four bytes. A complex data structure is one that cannot be passed via normal stack
operations. The one that “C” supports natively is the char array or “C string” structure (other complex structures
can be defined but that is beyond the scope of this document). Complex data structures must be passed by a
different method. The simplest method is to declare these data type globally at the top of our program. We did
that in HellowWorld_001:

This method quickly use up our limited RAM because these variables “live” for the entire life of the program. A
better method is to declare these complex data structures inside of a function. That way they begin life when
the function is called and end life when the function exits. To do that we need a way to pass these complex data
structures between parts of our program. The method used in the “C” language is called “pointers”. A pointer is
like a street address that tells the program where to find the data structure: “That string lives at number 0x001A
on SRAM bus route.” The AVR is a very small computer so it only has one bus route: SRAM (EEPROM and FLASH
may be considered the suburbs --- you must take a special transfer bus to get there). Thus we only need to pass
the address which is always two bytes long. Earlier we demonstrated that “C” will accept any kind of two byte
value when it is expecting two byte value. That is NOT true in the case of pointers. This is a case where “C”
checks to see if the calling statement is sending a pointer and if the receiving function is expecting a function.
That requires a few suttle differences.

Passing a pointer such as a char array to a function is fairly simple. When you create an array “C” actually
constructs a pointer for it. So all you need to do is use the name of the char array. Creating a function that
expects a pointer is very similar. You simply add the array constructor in you declarations. We did both in the
function “printdhb” of “Bits and Bytes”.

void printdhb (char c[], word n) // function to print value as

 { byte s; // Decimal, Hexidecimal and binary

 long i;

 Serial (c); .print

 . . .

Returning a data structure such as a char array or string from a function is where it gets a bit more complicated.
You have to tell the compiler that you are returning a pointer and what kind of data structure that pointer is for.
At this point we only have one kind of data structure: the char array. The following code will NOT compile for a
number of reasons. By this time you should be able to spot some of them.

void () setup
 { Serial (9600); .begin
 Serial. (samplefunction("Hello", "World"); println
 }

Page: 71

// join two char arrays with a blank space between them, return the new array
char samplefunction(char a, char b)

 { char c[30];
 byte i,k,t; // declare internal variables

 (I=0, k=0, t=1; (t!=0 & k < c);) // initalize variables and set test condition for sizeof
 { c[k++] = a[i]; // get one character, increment array index
 t=a[++i]; // set test variable

 }
 c[k++] = ' '; // add a space and increment return array index

 (i=0, t=1; (t!=0 & k < c);) // repeat with second array for sizeof
 { c[k++]=b[i];
 t=b[++i];

 }
 c[k] = 0; // add a null
 c // return array return
 }

void () {} // do nothing loop

Let us start with the obvious typo bugs. In the “setup” function there is a missing close parentheses at the end of
the second statement. The letter “I” in the “for” statement should not be capitalized (that was compliments of
user hostile Microsoft Word automatically correcting my text for me). At the end of the last statement in the
“sample function” there is a missing semicolon.

The function returns that char array but the function is declared as a simple char type. We need to fix that.
Insert an asterisk character “*” (shift 8) before that function name to tell “C” that we are returning a pointer.
This is called the “dereference operator” operator in “C”. We have a similar problem with the parameters. We
are passing two char arrays to the function but the variables “a” and “b” are declared as simple char types. We
need to add the array designator “[]” after each one. The dereference operator could also be used. There is one
more very BIG problem. The array that we are returning will cease to exist (actually be deallocated) when the
function exits. The simple method to resolve this is to insert the keyword “static” in front of the declaration for
the char array “c[]”. This is much the same as declaring a global variable at the top of the program. The
difference is that the variable is only visible inside the function in which it is declared (unless you pass a pointer
to the variable).

The keyword “ ” is new but it is correctly used to do exactly what it says. It will return the size of the char sizeof

array “c”. In this case that would be the size we declared it to be: 30 bytes. This operator normally returns the
size of the variable or type of the operand. There is however an exception (from Wikipedia):

" To use sizeof, the keyword " " is followed by a type name or an expression (which may be sizeof

merely a variable name). If a type name is used, it must always be enclosed in parentheses,

whereas expressions can be specified with or without parentheses. When sizeof is applied to the
name of a static array (not allocated through malloc), the result is the size in bytes of the

whole array. This is one of the few exceptions to the rule that the name of an array is
converted to a pointer to the first element of the array, and is possible just because the
actual array size is fixed and known at compile time, when sizeof operator is evaluated. "

In my narrow minded opinion these exceptions make the operation of “sizeof” inconsistent but most others
consider it perfectly normal. In this function we are using the “sizeof” operator to avoid the possibility of writing
beyond the end of our char array (a condition that is also known as buffer overflow). Here is the rewritten
debugged code. Save it as “HelloWorld_007”.

void () setup

 { Serial (9600); .begin
 Serial. (samplefunction("Hello", "World")); println
 Serial. (samplefunction("Hello", "World beyond your imagination")); println
 }

http://en.wikipedia.org/wiki/Dereference_operator
http://en.wikipedia.org/wiki/Sizeof

Page: 72

// join two char arrays with a blank space between them, return the new array

char * samplefunction(char a[], char * b)
 { static char c[30];

 byte i,k,t; // declare internal variables
 (i=0, k=0, t=1; (t!=0 & k < c);) // initalize variables and set test condition for sizeof

 { c[k++] = a[i]; // get one character, increment array index
 t=a[++i]; // set test variable
 }

 c[k++] = ' '; // add a space and increment return array index

 (i=0, t=1; (t!=0 & k < (c);) // repeat with second array for sizeof
 { c[k++]=b[i];
 t=b[++i];
 }

 c[k] = 0; // add a null
 c; // return array return
 }

void () {} // do nothing loop

The problem with this program is it uses just as much SRAM as declaring the array globally in the first place. The
common method used to circumvent this problem is to pass the target array to the function from the calling
function. In that manner the array only lives as long as the calling function(s). “HelloWorld_008” demonstrates
that method. Note that the “sizeof” function MUST be used in the function where the char array is declared.

void () setup
 { Serial (9600); .begin
 demofunction("Hello", "World");

demofunction("Hello", "World beyond your imagination");

 }

void demofunction(char a[], char * b)

 { static char [30]; // this array is discarded when the function exits c
 Serial. (samplefunction(a,b,c, println c));sizeof
 }

// join two char arrays with a blank space between them, return the result

char * samplefunction(char a[], char * b, char * c, byte n)
 { byte ; // declare internal variables i,k,t

(= = = (!= & <n-1);) // initalize variables and set test condition for i 0, k 0, t 1; t 0 k
{ [++] []; // get one character, increment array index c k = a i

= [++]; // set test variable t a i

 }
[++] = ' ' // add a space and increment return array index c k ;

(= , = ; (!= & <n-1);) // repeat with second array for i 0 t 1 t 0 k

{ [++]= []; c k b i
= [++]; t b i

 }
[] = ; // add a null c k 0

; // return array return c
 }

void () {} // do nothing loop

Page: 73

Library HexDec: Developing Functions

Open the Arduino IDE and start a new project named “Develope_HexDec”. Put a comment at the top the file for
the name and enter the standard template code along with a line to initialize the serial port.

/* Program to develop HEX/DEC/ASC conversion routines for a library

 demonstrates returning a string from a function
 demonstrates multiple references to the same char array

 demonstrates overloading function to make function parameter optional

 prints a ASII table

 prints a EEPROM dump
 This code is placed in the public domain: August 2013, Lewis Balentine, Houston, Texas, USA
*/
#include <EEPROM.h>

void () setup
 { .Serial (9600); begin
 }

void () {;} // do nothing loop

Save the file and then use the “upside down triangle icon” to create two additional files for this project:
 Examples.ino (this will hold our demo/test code)
 HexDecAcs.ino (this will hold our library functions)

The IDE should now look something like this:

The first function that we are going to define is one to return a digit from the set “01234567890ABCDFE”
according to its location within the set. Rather than using a char array (as is commonly done) our function will be
based on adding an appropriate value to return the character code. This avoids taking up SRAM space for the
char array. Place the following code in the “HexDecAsc” tab.

/* --- This returns the character for a Hex Digit --- */
char hexDigit(byte n) // works for oct, decimal, bcd or hex digits

 { (n>15) // we will sell no wine before its time if
 { (63);} // or accept any digit above 15: '?' return

 (n>9) // if greater than nine need an ALPHA charater else if
 { (n + 0x37);} // Hex(10) + Hex(37)=Hex(41), Hex(41) = Decimal(65) = 'A' return
 // else we need a digit else
 { (n + 0x30);} // Hex(00) + Hex(30)=Hex(30), Hex(30) = Decimal(48) = '0' return
 }

This is fall through logic. We first test that the value provided is within the appropriate range for our function. If
it is not then we return a question mark “?”. Next we test to see if the value is greater than nine. If it is then we
return an alpha character from the set “ABBCDEF”. Otherwise we return a numeric character from the set
“0123456789”. Now enter the following code in the “Examples”.

// ------------ examples ---

void demoHexDigit()
 { Serial ("Demo/test digit conversion: "); .println
 (byte i=0; i<17; i++) for

{ Serial. (hexDigit(i)); print

Page: 74

 }

 Serial. (); print
 }

This goes into the main tab under setup:
demoHexDigit();

That will be the pattern for all the functions:

1) Write the function (in HexDecAsc.ino)
2) Create a demo/test function (in Examples.ino)
3) Call the demo/test function (in Deveope_HexDec.ino)

The next function is a simple filter for our ASCII characters (goes in the “HexDecAsc” tab).

/* --- Filter characters codes. This allows only defined ASCII characters ------------------ */
char rtnASCIIcode(byte n)

 { (n==92) { '.';} // avoid chance of escape sequence by blocking "\" if return
 (n< 32) { '.';} // non-printing control characters else if return

 (n>126) { '.';} // 8 bit characters are undefined by ASCII else if return
 { char(n);} // that leaves the all the rest else return
 }

This is the example routine.

void demoRtnASCIIcode ()
 { Serial ("Demo/test ASCII conversion: "); .println
 byte j=0;
 (byte i=0; i<255; i++) for

{ Serial. (rtnASCIIcode(i)); print
 (j++ == 31) if
 { Serial.println();
 j=0;
 }
 }

 Serial. (); println
}

Add one more line for the setup function.

demoRtnASCIIcode ();

Page: 75

The next function converts a byte to two hex digits using our formatBytesAsHex function. It returns a pointer to
a char array with the ASCII characters. Note how we are splitting the byte into nibbles.

char *formatByteAsHex(byte n, char tmp[]) // this function formats 'n' as two hex digits

 { tmp[1] = hexDigit(n & B00001111); // in the char array 'tmp' that is passed to it.

 tmp[0] = hexDigit(n >> 4); // it returns that the pointer to that char array
 tmp; // temp MUST BE at least two bytes long return
 }

The example code is a bit more complex this time. The concept here is to demonstrate that we can use the
return value of the function or use the function just to format the variable “tmp”. That makes the use of the
function very flexible.

// --- example one --- (demo use of formatByteAsHex --- returned string)

void printHexByteOne() // example using returned string with print
 { char tmp[]=" "; // in this case we send a number and string
 Serial. ("Example One: "); // the sring is returned to Serial.Print print
 (byte i=12; i<20; i++) // with hex digits for
 { Serial. (formatByteAsHex (i, tmp)); print

 }
 Serial. (""); // output: "0C 0D 0E 0F 10 11 12 13" println

 }

// --- example two --- (demo use of formatByteAsHex --- passes string)
void printHexByteTwo() // example using returned string with print
 { char tmp[]=" "; // this is nearly the same but in this case
 Serial. ("Example Two: "); // we call the format function and then print
 (byte i=12; i<20; i++) // we call the print function. The idea is to for
 { formatByteAsHex (i, tmp); // show it can be used either way.
 Serial. (tmp); print
 }
 Serial. (""); // output: "0C 0D 0E 0F 10 11 12 13" println
 }

He is the code to run the two examples.

/* --- demo/test use of formatByteAsHex --- */

 printHexByteOne(); // uses returned string, see examples
 printHexByteTwo(); // uses returned string, see examples

Now we need to do the same thing with a word size variable but we add decimal to our options as well.

char *formatWordAsHex(word w, char tmp[]) // this function formats 'n' as four hex digits

 { formatByteAsHex((w), & tmp[2]); // temp MUST BE at least four bytes long lowByte
 formatByteAsHex((w),tmp); return highByte
 }

char *formatWordAsDec(word n, char tmp[]) // this function formats 'n' as five Dec digits
 { tmp[4] = hexDigit(n %10); // Use intger math to get each digit: 54321%10=1
 tmp[3] = hexDigit((n % 100)/10); // 54321 % 100 = 21, 21/10=2

 tmp[2] = hexDigit((n % 1000)/100); // 54321 % 1000 = 321, 321/100=3
 tmp[1] = hexDigit((n % 10000)/1000); // 54321 % 10000= 4321, 4321/1000=4
 tmp[0] = hexDigit(n / 10000); // 54321/10000=5
 tmp; // temp MUST BE at least five bytes long return
 }

Page: 76

Notice the first statement of “formatWordAsHex” function. We use the “&”reference operator to get the
address of the third byte of our char array. This operator returns the address of the operand. Now we need test
routines.

// --- example three --- (demo use of formatWordAsHex --- returns string)

void printHexWordOne() // example using returned string with print
 { char tmp[]=" "; // in this case we send a number and string
 word ww = 0xD431; // sample word, this could be andress

 Serial. ("Example Three (D431): "); // the sring is returned to Serial.Print print
 Serial. (formatWordAsHex (ww, tmp)); // range of word is 65K println

 }

// --- example four --- (demo use of formatWordAsHex --- passes string)
void printHexWordTwo() // example using passed string with print
 { char tmp[]=" "; // in this case we send a number and string
 word ww = 54321; // sample word, this could be andress
 Serial. ("Example Four (54321): "); // the sring is will be passed Serial.Print print
 formatWordAsHex(ww, tmp);

 Serial. (tmp); println
 }

// --- example five --- (demo use of formatWordAsDec --- returns string)
void printDecWordOne() // example using returned string with print
 { char tmp[]=" "; // in this case we send a number and string

 word ww = 0xD431; // sample word, this could be andress
 Serial. (" Example Five (D431): "); // the sring is returned to Serial.Print print
 Serial. (formatWordAsDec (ww, tmp)); println

 }

// --- example six --- (demo use of formatWordAsDec --- passes string)
void printDecWordTwo() // example using returned string with print
 { char tmp[]=" "; // in this case we send a number and string
 word ww = 54321; // sample word, this could be andress
 Serial. (" Example Six (54321): "); // the sring is will be passed Serial.Print print
 formatWordAsDec(ww, tmp);
 Serial. (tmp); println
 }

WOW! There was a lot of button pushing and clicking to format that piece of code. There is a lot more code in
the test routines than the functions because a lot of time was previously spent optimizing the code for the
functions (the test routines were used to test those). Here is the bit to go into the main tab.

 /* --- demo/test use of formatWordAsHex --- */

 printHexWordOne(); // uses returned string, see examples
 printHexWordTwo(); // uses passed string, see examples
 Serial.println();

 /* --- demo/test use of formatWordAsDec --- */

 printDecWordOne(); // uses returned string, see examples
 printDecWordTwo(); // uses passed string, see examples
 Serial.println();

Page: 77

That brings us down to the really big function that was the target to begin with.

char *formatRamDump(char hd, word addr, char data[], char buffer[])

 // this function formats the address and data into the buffer with the ASCII
 // representation of:

 // address in Hex (hd='h' or 'H') or default as Decimal
 // data in HEX (MUST BE 16 bytes)
 // data in ASCII

 // buffer array must be at least 60 bytes

 // 0 1 2 3 4 5 6
 // 01234567890123456789012345678901234567890123456789012345678901
 // 00000 HLHLHLHL HLHLHLHL HLHLHLHL HLHLHLHL AAAAAAAAAAAAAAAA\n

 { byte i,p,s;
 buffer[60]=0; // stuff a null terminator
 (i=0; i<16; i++) // do ASCII first for
 { buffer[i+44]=rtnASCIIcode(data[i]);} // get the ASCII code
 buffer[42]=' '; // two spaces
 buffer[43]=' ';
 i=15; // do HEX next and do it backwards

 s=0; // counter for seperator

 (p=40; p>6; p=p-2) // four bytes at a time for
 { formatByteAsHex(data[i--],& buffer[p]); // get Hig/low hex characters
 (++s == 4) // if we have done 4 bytes if
 { buffer[--p]=' '; // add a space
 s=0; // and reset the counter

 } // do it again sam
 }

 buffer[5]=' '; // two spaces
 buffer[6]=' ';

 (hd == 'h' || hd == 'H') // if H or h was sent then use HEX for address if
 { formatWordAsHex(addr, buffer);
 buffer[4]='H'; // Flag as HEX format
 }
 // otherwise use decimal else
 { formatWordAsDec(addr, buffer);}
 buffer; // done, return the char array pointer return
 }

Notice that we are working from the back (buffer[60]) to the front (buffer[0]). You will see the reason for that
later. Thus it is time for the test routine.

// --- example seven --- (demo/test use of demoFormatRamDump)

void demoFormatRamDump()

 { word addr= 54321;
 char buffer[64];
 char data[16];

 (byte i=0; i<16; i++) { data[i]= i + 0x41;} // stuff the data “ABCDEFGHIJKLMNOP” for
 Serial ("Example Seven (formatRamDump):"); .println

 Serial (formatRamDump('H', addr, data, buffer)); .println
 }

The main tab gets this.

 /* --- demo/test use of formatRamDump --- */

 demoFormatRamDump();

Page: 78

Library HexDec: Overloading

We have been talking about the “C” language. The Arduino IDE uses the C++ implementation of the “gcc”
compiler. “C++” is an extension or enhancement to the “C” language. One of the things it add is something
called “overloading”. This allows one to add to the definition or complete replace the definition of an existing
operator or function. It is primarily intended to be used to extend the functionality of defined operators and
function. For example the “+” operator can be extended to be used to concatenate two strings.

Some program languages such as Basic allow for functions to be defined with optional arguments. Overloading
provides this capability in C++. We are going to define some alternates versions of our functions to reduce the
number of parameters that they require. The idea is we are going to stuff the bytes to be converted into the
char arrays before the function is called. Each of the following function should be added to the “HexDecAsc”
after the previous function definition of the same name.

char *formatByteAsHex(char tmp[]) // this function 'overloads' the previous one

 { (formatByteAsHex(byte(tmp[0]), tmp));} return

char *formatWordAsHex(char tmp[]) // this function 'overloads' the previous one

 { (formatWordAsHex(word(tmp[0],tmp[1]), tmp));} return

char *formatWordAsDec(char tmp[]) // this function 'overloads' the previous one
 { (formatWordAsDec(word(tmp[0],tmp[1]), tmp));} return

char *formatRamDump(word addr, char data[], char buffer[]) // overload for default decimal

 { formatRamDump('D', addr, data, buffer);} return
char *formatRamDump(word addr,char buffer[]) // overload decimal, data=buffer
 { formatRamDump('D', addr, & buffer[0], buffer);} return

In the first three functions we are simply extracting the byte or the word to be converted from the char array
and passing it to the previously defined function. In the last two we are proving for a default format of Decimal
rather than Hex. In the last function we also use the buffer as the data array. This is why we designed out
function to work from back to front. By the time the conversion process gets to the address all of the conversion
has taken place. That is fortunate because the original data is overwritten by the conversion.

Add these three lines at the end of the “demoFormatRamDump” function.

 Serial. ("Example Seven (formatRamDump/overloaded):"); println

 Serial. (formatRamDump(addr, buffer)); println
 Serial. (); println

Add this new function to the Example code.

// --- example eight --- (demo/test use of overloading)
void demoOverLoading()
 { Serial. ("Example Eight (overloading):"); println

 // 012345678900123456789 // cheat: to figure byte locations
 char tmp[]="A B C D E F G H "; // Sample Data
 Serial. (tmp); // print sample data println
 (byte i=7; i>0; i--) // with hex digits for
 { formatByteAsHex (& tmp[(2*i)]);} // format each byte except the first
 Serial. (formatByteAsHex(tmp)); // format and print first byte println
 tmp[4]=0; // stuff with null terminator

 tmp[5]=0; // stuff with null terminator
 tmp[0]=0xD4; // stuff high byte
 tmp[1]=0x31; // stuff low byte
 Serial. ("HEX 0xD431 as HEX: "); print
 Serial. (formatWordAsHex(tmp)); println
 tmp[0]=0xD4; // stuff high byte

http://en.wikipedia.org/wiki/GNU_Compiler_Collection

Page: 79

 tmp[1]=0x31; // stuff low byte

 Serial. ("HEX 0xD431 as DEC: "); print
 Serial. (formatWordAsDec(tmp)); println

 Serial. (); println
 }

Add this line to the setup function.

 demoOverLoading(); // uses returned string, see examples

Library HexDec: ASCII Table

We are going to test our ASCII function by printing a table of ASCII characters. We are doing this to show how to
make multiple references to the same char array using different identifiers (variable names).

/ --- ASCII Table --- (demo multiple references)

/* Of special note in this first function is there are multiple references (names) tied to
 the same char array. This was done so as to pass the array to the hex conversion function
 without copying the bytes back and forth. The array is declared, allocated and printed
 using the name "tmp". Pieces of the array are operated on using the name "OutHex".
 Two points:

 1) The second (or more) name is declared as a "pointer" using the "*"

 dereference pointer operator. Basically this tells the compiler to reserve space for
 an address.

 2) That address must be assigned using "&" reference pointer operator. Basically this
 returns the physical memory address of an object. In this case it returns the address

 of the char array member. Place the "&" in front of the array member reference:
 OutHex= & tmp[3];

 "OutHex" is now considered a char array starting with the third member of the
 character array "tmp".

 Also note that in this function the values to be converted are actually stored in the
 char array that holds the result. The values are in fact overwritten by their ASCII
 Hex charters. This is the reason that the conversion routine was written in a manner
 that starts with the Low nibble. After the High nibble is converted the original
 source data is destroyed.
 */

void printASCIItable() // print out an ASCII table with Hex codes
 // this is included because it is simple to do with the functions in hand

 { char tmp[]= "0 1 2 3 4 5 6 7 8 9 A B C D E F "; // two spaces after
 byte i,j,n,l; // each character
 char *OutHex;

 Serial. (); println

Page: 80

 Serial. ("ASCII Table:"); println

 (j=2; j<8; j++) for

 { (i=0; i<16 ; i++) // fill one row with ASCII characters for
 { n=i*3; // followed by two spaces

 l= (j * 16) +i;
 tmp[n]=char(l);
 tmp[n+1]=' ';

 }
 Serial. ("ASCII: "); // print ASCII string print
 Serial. (tmp); println
 (i=0; i<16 ; i++) // convert to HEX for
 { n=tmp[i*3]; // note that in this case the number we
 OutHex= & tmp[i*3]; // are converting is actually the first

 formatByteAsHex (n, OutHex); // byte in the string we are passing
 }
 Serial. (" HEX: "); // print HEX string print
 Serial. (tmp); println
 } // and repeat
 }

Of course the setup function gets another line as well.

// /* --- print ASCII Table --- */
 printASCIItable();

Library HexDec: EEPROMDump

When you're up to your neck in alligators,

it is easy to forget the objective was to drain the swamp.
(unknown origin)

The original objective was to simply the process of doing an EEPROM dump via a function that could be used for
other similar programs (possibly a flash or sram dump). Thus the last step before we create our library is to
verify that our function “formatRamDump” can be used in that manner.

// --- example nine --- (EEPROMDump)
void EEPROMDump()
 { char buffer[60];
 word addr=0;

Page: 81

 Serial. ("EEPROM Dump:"); println

 (addr < E2END) while
 { (byte i=0; i<16; i++) for

 { buffer[i]=EEPROM (addr++); .read
 }

 Serial. (formatRamDump(addr-16, buffer)); println
 }
 }

Well that is certainly simpler … but does it work? Guess where the following goes.

// /* --- EEPROM Dump --- */
 EEPROMDump();

Library HexDec: Creating the Library

The proper method of creating a library is to create class such as was done for the class that you are so Serial

familiar with by now. This involved several files, defining constructors and destructors, complex naming
conventions and getting the thing to compile without errors. The whole concept of the Arduino hardware and
software was to create an open platform that was simple and inexpensive. Creating a proper class library is
anything but simple. Once the library is created then using it is also more complex as one must prefix each
function call with the class name as is done in Serial. (). In the next section we will compile a proper class print

library, but in this section we want something less complicated.

There is a far simpler and more reliable approach although it violates several concepts espoused to produce
proper “C” code/programs. That is to place everything, including the functions, in a single header file. I will
admit that this is not the correct method to be used in a large or complex project but it works amazing well in a
simple small environment where one wishes to share a few functions between several programs.

Page: 82

Close the Arduino IDE. Now create a new folder named “HexDecAsc” in your library folder. Copy the file
“HexDecAsc.ino” from you project directory to the new library directory. Rename it “HexDecAsc.h”. The
directory should look something like this:

Now open the file “HexDecAsc.h” with any text editor (You can even use Microsoft Notepad.exe). We want to
add the following lines at the top of the file.

HEXDECASC ifndef

HEXDECASC define
"Arduino.h" include

char hexDigit();
char rtnASCIIcode();
char *formatByteAsHex();
char *formatWordAsHex();
char *formatWordAsDec();
char *formatRamDump();

The first three lines that begin with “#” are directives to the pre-processor/compiler/linker. The cryptic one at
the beginning means “if HEXDECASC is not defined then do the following” . The next one defines “HEXDECASC”.
These two lines keep us from accidently using the library twice in the same program. The third line says to
include the header file "Arduino.h". We need this for all libraries used with the Arduino. It defines basic things
such as the various data types and the root operators.

The next six lines are forward declarations for our functions. Note that we have NOT include the parameter
information.

Now add this line to the end of the file.

endif

This is the end of our “ifndef” directive. Now save the file and you are done creating the library.

Page: 83

Library HexDec: Testing the Library

Now go back to the sketch directory. Rename the function file “HexDecConvert.ino” to something funky like
“HexDecConvert.xyz”. Open the main file with the Arduino IDE (you should be able to double click on it). Note
that you only have two tabs now.

Use the top menu and select “Sketch”, “Import Library”, “HexDecAsc”. If the library does not show up then use
“Sketch”, “Import Library”, “Add Library” and browse to the directory where the library is located.

Page: 84

The Arduino IDE adds a single line to the top of your main sketch file. Personally I like to move that line down
below the line for the EEPROM library but that is purely a matter of personal preference.

All the demo/test code should now work as before but you can use these functions in other programs as well by
simply importing the library. You should also be able to go back and rewrite the EEPROMDump program using
the library (hint the code was included at the end of the previous section).

Page: 85

AVR Internal Temperature Sensor

The AVR MPUs have built in temperature sensors. The bad news is for our purposes there are a few problems
with them:

1) The readings are in degrees Kelvin
2) They are not very accurate (+/- 10°C)
3) They measure the internal temperature of the MPU rather than the surrounding atmosphere
4) They are difficult to read

The good news is most of these problems can be diminished. They also have the distinct advantages that they
are already paid for and wired into our circuit (thus requiring no additional hardware). There are several on line
references that are useful:

Most people with experienced in using microcontrollers and the AVR line in particular are of the opinion that
the only practical use for the internal temperature sensor is to determine if there is a problem that is causing
your system to overheat. Unfortunately I am a complete novice and assume nothing. Thus before I accept that
the internal sensor cannot be used for a practical application I will travel down that path until I find a point of no
return.

References:

Arduino Playground, Internal Temperature Sensor (arduino.cc)
 AVR122: Calibration of the AVR's internal temperature reference (Atmel)
 AVR121: Enhancing ADC resolution by oversampling (Atmel)
 Arduino / AVR internal temperature sensor interface (avdweb)
 ANALOG INPUTS (ANALOG TO DIGITAL CONVERTER) (QEEWiki)
 Analogue to Digital Conversion on an ATmega168 (protostack)
 Advanced Arduino ADC – Faster analogRead (Marulaberry Projects)

Using the ChipTemp Library

The internal temperature sensor cannot be read via the standard “analogread” function of the Arduino
language. To read the internal AVR sensor one must go a bit deeper and deal directly on the AVR hardware. I
started with the sample code from Arduino playground. The problem with this code is it makes the assumption
that whoever is looking at is familiar with a bunch a strange looking terms like “ADMUX, REFS1, REFS0, MUX3,
ADCSRA, ADEN, ADCSRA, ADSC” thus it is pretty much unreadable to the novice. As it turns out these are
references to the internal registers of the MPU as defined in the Arduino header files. There is a full description
of the applicable resisters in the Appendix: AVR ADC Sensor Registers.

The code by Albert van Dalen at avdweb is a bit less confusing because it encapsulates the temperature reads in
the form of a library:

http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html

Mr. van Dalen references the code provided by “SpikedCola” and “marcello.romani”. That code was presented in

the Arduino forum thread “Using the Internal Temperature Sensor”. Here is a copy of the code that he posted
(with the comments moved to make it more readable).

// http://forum.arduino.cc/index.php/topic,8140.0.html

void setup()

{

 Serial.begin(9600);

 ADMUX = 0xC8; // turn on internal reference,

 // right-shift ADC buffer,

http://playground.arduino.cc/Main/InternalTemperatureSensor
http://www.atmel.com/Images/doc8108.pdf
http://www.atmel.com/images/doc8003.pdf
http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html
https://sites.google.com/site/qeewiki/books/avr-guide/analog-input
http://www.protostack.com/blog/2011/02/analogue-to-digital-conversion-on-an-atmega168/
http://www.marulaberry.co.za/index.php/tutorials/code/arduino-adc/
http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html
http://forum.arduino.cc/index.php/topic,8140.0.html

Page: 86

 // ADC channel = internal temp sensor

 delay(10); // wait a sec for the analog reference to stabilize

}

void loop()

{

 Serial.println(averageTemperature()); // so we can debug

 delay(500); // just to slow things down a bit

}

int readTemperature()

{

 ADCSRA |= _BV(ADSC); // start the conversion

 while (bit_is_set(ADCSRA, ADSC)); // ADSC is cleared when the conversion finishes

 return (ADCL | (ADCH << 8)) - 342; // combine bytes & correct for temp offset

(approximate)}

}

float averageTemperature()

{

 readTemperature(); // discard first sample (never hurts to be safe)

 float averageTemp; // create a float to hold running average

 for (int i = 1; i < 1000; i++) // start at 1 so we dont divide by 0

 // get next sample, calculate running average

 averageTemp += ((readTemperature() - averageTemp)/(float)i);

 return averageTemp; // return average temperature reading

}

To keep things simple we are going to start with use Mr. van Dalen’s code but we have to create a library (a
proper C++ class library) to do that. I have made some minor changes (shown below in bold) to Mr. van Dalen’s
code. Save these two files in a new library folder named “ChipTemp”:

// <user home>\Arduino\libraries\ChipTemp\ChipTemp.h

// http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html

//--

#ifndef ChipTemp_H

#define ChipTemp_H

//--

// #include <WProgram.h>

// this is a small change to Mr. van Dalen’s code.

// “WProgram.h” was used by the earlier versions of the Arduino IDE

// “Arduino.h” is used by the current version (1.0.5)

//--

#include "Arduino.h"

// ATmega328 temperature sensor interface

// Rev 1.0 Albert van Dalen

// Based on "InternalTemp"

// Requires 166 ... 204 bytes program memory

// Resolution 0.1 degree

// Calibration values, set in decimals

//static const float offset = 335.2; // change this!

static const float offset = 329.0; // sainsmart Nano number one

static const float gain = 1.06154;

static const int samples = 1000; // must be >= 1000, else the gain setting has no effect

// Compile time calculations

static const long offsetFactor = offset * samples;

static const int divideFactor = gain * samples/10; // deci = 1/10

class ChipTemp

{

public:

 ChipTemp();

 int deciCelsius();

 int celsius();

 int deciFahrenheit();

 int fahrenheit();

private:

Page: 87

 inline void initialize();

 inline int readAdc();

};

#endif

// <user home>\Arduino\libraries\ChipTemp\ChipTemp.cpp

// http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html

//--

#include "ChipTemp.h"

// #include <WProgram.h>

ChipTemp::ChipTemp()

{

}

inline void ChipTemp::initialize()

{ ADMUX = 0xC8; // select reference, select temp sensor

 delay(10); // wait for the analog reference to stabilize

 readAdc(); // discard first sample (never hurts to be safe)

}

inline int ChipTemp::readAdc()

{ ADCSRA |= _BV(ADSC); // start the conversion

 while (bit_is_set(ADCSRA, ADSC)); // ADSC is cleared when the conversion finishes

 return (ADCL | (ADCH << 8)); // combine bytes

}

int ChipTemp::deciCelsius()

{ long averageTemp=0;

 initialize(); // must be done everytime

 for (int i=0; i<samples; i++) averageTemp += readAdc();

 averageTemp -= offsetFactor;

 return averageTemp / divideFactor; // return deci degree Celsius

}

int ChipTemp::celsius()

{ return deciCelsius()/10;

}

int ChipTemp::deciFahrenheit()

{ return (9 * deciCelsius()+1600) / 5;

}

int ChipTemp::fahrenheit()

{ return (9 * deciCelsius()+1600) / 50; // do not use deciFahrenheit()/10;

}

Mr. van Dalen also provides some code to test the library functions. Create a new sketch directory named
“ChipTempDemo” and create this file in it.
(Special note: The Arduino IDE is VERY particular. The extension “.ino” MUST be lower case!)

// <user home>\Documents\Arduino\sketches\ChipTempDemo\ChipTempDemo.ino

// http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html

//--

// #include <avr/pgmspace.h> // Not needed in current version

#include <ChipTemp.h>

ChipTemp chipTemp;

void setup()

{ Serial.begin(9600);

 Serial.println("Celsius decimalCelsius Fahrenheit decimalFahrenheit");

}

void loop()

{ delay(500);

 Serial.print(chipTemp.celsius());

 Serial.print(" ");

 Serial.print(chipTemp.deciCelsius());

Page: 88

 Serial.print(" ");

 Serial.print(chipTemp.fahrenheit());

 Serial.print(" ");

 Serial.println(chipTemp.deciFahrenheit());

}

Now open the file in the Arduino IDE by double clicking on it. Compile and upload the file. Then open the serial
monitor. You should see something like this. The first two numbers represent degrees Celsius. The second two
numbers represent degrees Fahrenheit.

To be honest I was a bit surprised that the library compiled after one minor problem was fixed (I have not had
much joy compiling class libraries). My Nano had been unplugged for some time before I upload the program to
it. It took about 30 minutes for the output to stabilize at: “24 244 75 759”. This is the effect of the chip heating
up and dissipating power as it runs.

The problem is the thermometer that I had sitting beside it was reading just over 88 degrees Fahrenheit.
Looking at the library code there are two constants that are used to adjust the returned values: gain and offset.
I added the following line (and commented out the one it replaced) in the header file. Then I get a much closer
temperature reading.

static const float offset = 329.0; // sainsmart Nano number one

The “offset” is an adjustment between what the temperature values inside the chip are and the temperature
value for the outside real world. The other adjustment “gain” is a linear correction factor applied to the
temperature scale. These two factors are different for each Arduino board due to variations in the
manufacturing, chip enclosure, chip mounting, voltage regulation, current power use and high noon position of
the large asteroid known as Pluto. Well maybe Pluto is not involved. The point is I would prefer to have these
factors stored in the EEPROM for each board rather than having to change the library for each board (not
mention having to keep track of which board gets which set of factors).

Page: 89

Develop Avr Temperature Functions

We are going to build our own library (the simple kind) that has a function that returns the raw data from the
ARV. That will allow us to apply an appropriate “offset” and “gain” factor without having to change any of the
library code. We will also make provisions for the function accept a parameter to determine the number of
samples to be read. Let us create a new Arduino project and call it “AvrTemperatureSensor”. Add an extra file to
hold our functions “AvrTemperatureSensorFunctions.ino”. Put the standard setup and loop functions in the
main window. The only parts we are going to use from the previous code examples are those to initialize and
read the AVR temperature sensor.

The techniques of “Oversampling” and “Decimation” are documented in the Atmel AVR121.pdf document.

 “Decimation” is used to increase the resolution of the ADC. This technique requires that there be noise on the
input signal with a mean (average) value of zero. As we are dealing with an internal sensor and an internal
voltage reference it is extremely difficult to add any other circuitry to provide the required noise … unless that
noise just happens to exist au naturel. Much to my surprise some testing has revealed there is probably
sufficient evenly dispersed noise to increase the resolution of the ADC via “Decimation”.

“The extra samples, m, achieved by oversampling the signal are added, just as in normal averaging, but the results
are not divided by m as in normal averaging. Instead the result is right shifted by n, where n is the desired extra bit
of resolution, to scale the answer correctly. Right shifting a binary number once is equal to dividing the binary
number by a factor of 2. As seen from Equation 3-1, increasing the resolution from 10-bits to 12-bits requires the
summation of 16 10-bit values. A sum of 16 10-bit values generates a 14-bit result where the last two bits are not
expected to hold valuable information. To get ‘back’ to 12-bit it is necessary to scale the result.”

Translation:

Add 16 consecutive 10 bit ADC reading together and right shift the result 2 places.
This yields a virtual 12 bit ADC with a range of 0 to 4096 (rather than 0-1024)

The temperature sensor is calibrated in degrees Kelvin. As we are adding two virtual bits to the ADC this changes
the virtual calibration from 1 degree to ¼ degree Kelvin.

Both of the previous mentioned routines take 1000 sequential readings and average. In the case of ChipTemp it
is done with a “normal average”. SpikedCola uses a “moving average”. Averaging data from an ADC
measurement is equivalent to a low-pass filter and has the advantage of attenuating signal fluctuation or noise,
and flatten out peaks in the input signal. I tried number alternative filtering algorithms. In the end I concluded
that oversampling was far simpler and in most cases more reliable. Here is the test code that I came up with.

/* Project to develop functions for AVR internal temperature sensor */

unsigned long Time;

float save;
void () setup

 { Serial (9600); .begin
 }

void () loop
 { word raw;
 float temp;
 byte i;
 raw = avrRawTemp(512); // 512 is the numbers of samples

 temp= ((((float(raw))/4)-331.5)*1.8)+32;
 // conversion:
 // float to convert to floating point number
 // divide to scale from 1/4 degree increnments to 1 degree increnments
 // subtract 273 to convert from kelvin to celcius

Page: 90

 // subtract 58.5 (offset varries by board) for external temperature

 // multiply by 1.8, add 32 for degrees fahrenheit
 // --- accuracy can be increased by using two point calibration ---

 Serial. (raw); // raw reading returned by function print
 Serial. (", "); print

 Serial. (temp); // converted to degrees Fahrenheit print
 Serial. (", "); print
 Serial. (Time); // benchmark time to do reading print

 (raw<save) if Serial. (" <<<"); // temperature decrease print
 (raw>save) if Serial. (" >>>"); // temperature increase print
 Serial. (); println
 save=raw; // save current temperature
}

There is one thing to note in the code. The level of parenthesis is in the conversion to Fahrenheit is important.
The conversion from a word value to a floating point value must be done at the very inside of the conversion.
Here is the code for function that returns the averaged raw values of the AVR temperature sensor.

word avrRawTemp(word samples)

 { /* samples: the number of samples to average */
 /* this number will be reduced to a power of 2! */

 /* return: degrees Kelvin * 1/4, range 0 to 4096 */
 /* each sample has 16 ADC reads for the 12 bit virtual ADC */
 /* REF: Atmel document number AVR121.pdf */
 //---//

 /* on 16Mhz ATmega328 512 samples requires just under 1 second */
 /* 16 samples (16*16=256) gives fairly consistent results */
 /* on a steady-state system in under 40K microseconds */

 //---//

 unsigned long RawSum=0; // used to sum samples for averaging
 word RawTemp=0; // used to accumalate 10 bit ADC readings
 word test=0; // used to count samples
 byte exp=0; // samples = 2 to the exp power,
 // used as shift operand
 byte k=0; // counter for ADC reads
 unsigned long Start= (); // this was used for benchmark timeing micros
 // turn on internal reference,
 // right-shift ADC buffer,

 = 0xC8; // ADC channel = internal temp sensor ADMUX
 (10); // wait for the analog reference to stabilize delay

 // as "C" and “C++” lack an basic expodential or power function (or operator)
 // we must resort to loops to calculate the binary exponent

 (samples>1) { samples /=2; exp++;} // calculate exponent for power of 2 while
 samples=1; // make sure samples = 1 (not 0)
 (test++ < exp) { samples *=2;} // set samples value to power of two while

 test=0; // reset test because we have abused it

 while (test++ < samples) // oversampling loop (for averaging)

 { (k=0; k<16; k++) // virtual ADC loop, 16 readings for
 { |= _BV(); // start the conversion ADCSRA ADSC

 (bit_is_set(,)); // ADSC cleared when the conversion finishes while ADCSRA ADSC
 RawTemp += (| (<< 8)); // accumalate the reading (low byte first) ADCL ADCH
 }
 RawSum += (RawTemp >>2); // accumalate virtual 12 bit ADC value
 RawTemp=0; // zero ADC accumalator for the next sequence
 }
 Time= ()-Start; // record benchmark time micros
 ((RawSum)>>exp); // averag by shifting bit position, LSBs lost return
 }

The portions highlighted in yellow were shamelessly copied from the code by “SpikedCola”. I have formatted the
terms “ and ” as keywords but I believe that they are actually constants ADMUX, ADCSRA, ADSC, ADCSRA, ADCL ADCH

Page: 91

that are defined the Arduino header files. I believe that “_BV” and “bit_is_set” are low level macros defined
within the back end tool chain used by the Arduino IDE.

The function “micros()” returns the number of microseconds since the Arduino board began running the current
program. This function is called at the beginning and end to determine how long it takes to gather the requested
number of samples. The global variable “Time” is used to return this information to the main loop. The two lines
that have these calls as well as the declaration for the variable “Start” should be commented out of the final
version of the function. The variable “RawSum” is 32 bit (four bytes) unsigned long integer. It can hold over a
million samples from our virtual 12 bit ADC. If we had used word variable (2 Bytes) we would have been limited
to sixteen samples.

I was surprised to find out that “C” and “C++” have not a function or operator for exponential operations (well
there probably is one in a math library somewhere but not in the basic language itself--- EDIT NOTE: see Arduino
reference for the function pow()). I restricted all the variables in this function to integers because integer math is
inherently faster and more accurate than floating point. For that reason I want to be able to use a shift
instruction to do the averaging. This also has the advantage of discarding the remainder that is beyond the
significant digits of our calculations. This is a fairly simple calculation. We simply keep dividing the variable
“samples” by two until it is less than two. We increment the variable “exp” with each division. Then we have set
the value to “samples” by going through a multiplication loop “exp” times. This also insure that whatever
requested number of was given the function it will always use the next lowest power of two. Thus if you call for
five samples you are only going to get four.

Here is a sample of the output using 512 samples per function call.

Page: 92

Page: 93

Storing Calibration Constants (EEPROM)

Now that we have gone to all the trouble to get our calibration data we need to put the results in the EEPROM.
Then we can create that uses that data to report the temperature. First we must determine exactly what we are
going to store and where we are going to store it. We want the program to report the actual raw reading that it
gets from the sensor as well as the temperature in degrees Fahrenheit Celsius and degrees Fahrenheit. By
definition the reference point is going to be 72 degrees Fahrenheit (22.22 degrees Celsius) so the first piece of
data we want is raw sensor data reading for that point. That will be stored as our offset point in a two byte
word.

Assume for a moment that the correct sensor reading for 72 degrees Fahrenheit is 1485 and that we have a
sensor reading of 1500. That will give us a positive difference of 15 units. Those units are actually one quarter of
one degree Kelvin. Thus the nominal conversion factor for Celsius is 0.2500. The ration of degrees Fahrenheit to
Degrees Celsius is 1.8. Thus the nominal conversion factor for Fahrenheit is 0.2500 * 1.8000 = 0.4500.
Thus the formulas to report the correct temperatures will be:

 Temperature in Celsius = 22.22 + ((Current Reading-Offset) * (Conversion Factor for Celsius))
 Temperature in Fahrenheit = 72.00 + ((Current Reading-Offset) * (Conversion Factor for Fahrenheit))

We are going to store the Celsius number as a two byte word. To convert that number to a word value we
multiply it by 65532. To convert the word value back floating point we divide it by 65532. We are also going to
store an ID string to identify the specific sensor if we happen to have more than one connected to our
computer. That will be 16 bytes long without a null terminator. We also need to store flag that controls how the
report data is written and how often it written.

We will call this program “EEPROM_TempSensor_Calibration_Constants”. It is rather long because we are going
to validate our data after it is stored.

/* EEPROM_TempSensor_Calibration_Constants */
/* Stores internal temperature sensor Calibration Constants in EEPROM

 Uses first 32 bytes of EEPROM for working storage
 Uses last 32 bytes of EEPROM for backup storage */

#include <EEPROM.h>
//===
//== replace these with the actual values to be used for this specific Arduino board ==//
//===

word CovrtOffsetR = 1387; // Observed Reading for 72 degrees Fahrenheit
float Covrt2Celsius = 0.25; // calibrated conversion factor for celsius
char IdString[17]="Your string here"; // fill in your ID string here

//........................1234567890123456 // 16 charateres max
//===

// EEPROM addresses constants

const word EEmask = 0; // 1 byte location of EEPROM storage mode mask
const word EEflag = 1; // 1 byte location of EEPROM storage mode flag
const word EEoffsetR= 2; // 2 byte location of CovrtOffset
const word EEcelsius= 4; // 2 byte location of Covrt2Celsius
const word EEminutes= 6; // 2 byte location of Report Target Minutes
const word EEunused0= 8; // 2 byte location -- unused --
const word EEunused1= 10; // 2 byte location -- unused --
const word EEunused2= 12; // 2 byte location -- unused --
const word EEunused3= 14; // 2 byte location -- unused --
const word EEidtring= 16; // ID string w/o termiantion size (16)

const word EEidsize = 16; // 24 byte location of IdString
const word EEwdsize = EEidtring+EEidsize; // Working data storage size (32)
//--

// you may notice some extra space allocated ... these may be used in a later program
//--
const word StorageWorking=EEmask; // EEPROM start for working copy of constants

Page: 94

// EEPROM start for backup copy of constants

// note we have to add 1 to the value
// Becasue addresses begin with zero not one

const word StorageBackup =((-(EEwdsize))+1); E2END
const word CovrtFactor = 65532; // The higher this number is the better

//---
void () setup

 { char WorkStr[EEwdsize+4]; // used to build array to write
 // this array is a bit long so that we can stuff an extra zero byte at the end

 float tempflt=0; // used to convert celsius & fahrenheit factors
 word tempwrd=0; // used to save celsius & fahrenheit factors
 float saveflt; // used to save conversion factor
 word i=0; // index into work array

 word j=0; // counter
 word k=0; // marker
 char c; // one character

 Serial. (9600); // so we can report progress begin
 // build array to store -------------------------

 // EEmask and EEflag ---------------
 WorkStr[i++]=0xFF; // stuff hex FF in array
 WorkStr[i++]=0xFF; // stuff hex FF in array
 // CovrtOffset ----------------------------------
 WorkStr[i++]= (CovrtOffsetR); // stuff CovrtOffset in array highByte

 WorkStr[i++]= (CovrtOffsetR); lowByte
 // Celsius ------------------------------------

 tempwrd = (Covrt2Celsius*CovrtFactor); // mutiply and drop decimals word
 Serial. (print ("Celcius factor = ")); F
 Serial. (Covrt2Celsius, 5); println
 Serial. (print ("multiplied by ")); F
 Serial. (CovrtFactor); print
 Serial. (print (" = ")); F
 Serial. (Covrt2Celsius * CovrtFactor, 5); println
 Serial. (print ("Celcius factor stored as Word= ")); F
 Serial. (tempwrd, print); DEC
 Serial. (print ("(HEX: ")); F
 Serial. (tempwrd, print); HEX
 Serial. (println (")")); F
 WorkStr[i++]= (tempwrd); // stuff Celcius factor in array highByte

 WorkStr[i++]= (tempwrd); lowByte
 Serial. (); println

 Serial. (); flush

 // Minutes between report lines ----------------

 WorkStr[i++]=0x00; // stuff hex 00 in array
 WorkStr[i++]=0x01; // stuff hex 01 in array

 // Extra space we may use later ----------------
 (i<EEidtring) {WorkStr[i++]=0xFF;} // stuff hex 00 in array while

 // ID String -------------------------------------
 IdString[17]=0; // make sure we have a null terminator
 Serial. (print ("ID String: ")); F

 // Serial.println (IdString); // we are not going to print the
 j=0;c=1; k=i; // ID string until we filter it
 (c!=0) // stuff id string in array while
 { c=IdString[j++];
 (c<32)c=0; // filter non-printing characters if
 WorkStr[i++]=c;

 }
 (j++ <EEidsize) { WorkStr[i++]=0xFF;} // fill in the rest with ones while
 Serial. (& WorkStr[k]); // now print it println
 Serial (); .flush

Page: 95

 // EEPROM Write ---------------------------------
 // erase the the entire the EEPROM

 (i=0 ;i< ; i++) for E2END
 { (if EEPROM. (i) != 0xFF) read

 EEPROM (i, 0xFF); .write
 }

 // copy the array to EEPROM (working copy)
 (i=0 ;i<EEwdsize; i++) for
 { (if EEPROM. (StorageWorking+i) != WorkStr[i]) read
 EEPROM. (StorageWorking+i, WorkStr[i]); write
 }
 // copy the array to EEPROM (backup copy)

 (i=0 ;i<EEwdsize; i++) for
 { (if EEPROM. (StorageBackup +i) != WorkStr[i]) read
 EEPROM. (StorageBackup +i, WorkStr[i]); write
 }
 Serial. (); println
 Serial. (println ("===")); F

 Serial. (); println
 Serial. (); flush
 //---
 // now read it all back
 //---

 i=EEidtring;j=0; c=1;
 (c!=0,j< EEidsize) while

 {c=EEPROM. (i++); // read the ID string read
 WorkStr[j++]=c;
 }

 WorkStr[EEidsize]=0; // just in case
 Serial. (F("ID String read from EEPROM: ")); print
 Serial.println (WorkStr); // print it
 Serial. (); flush

 // Get the Offset; ------------------------------
 tempwrd= EEPROM.read(EEoffsetR)<<8;
 tempwrd= tempwrd + EEPROM.read(EEoffsetR + 1);
 Serial. (print ("Offset read from EEPROM: ")); F
 Serial. (tempwrd, DEC); // print it println

 Serial. (); flush

 // Get the celsius factor; ----------------------
 tempwrd= EEPROM. (EEcelsius)<<8; read
 tempwrd= tempwrd + EEPROM. (EEcelsius + 1); read

 Serial. (print ("Celsius factor read from EEPROM: ")); F
 Serial. (tempwrd, println); // print it DEC

 // now we need to convert it
 tempflt= (tempwrd)/ CovrtFactor; float
 Serial. (print ("Celsius factor converted back to floating point: ")); F
 Serial. (tempflt, 5); // print it println
 Serial. (); flush

 Serial. (); println

 Serial. (println ("Th-th-th-th-th- ... that's all folks!")); F
 Serial. (); flush
 // http://www.youtube.com/watch?v=-_kwXNVCaxY
 // http://en.wikipedia.org/wiki/Porky_Pig

// //---//---//----//----

// Serial.print (F("--Got Here, i= "));
// Serial.println (i, DEC);
// Serial.println (j, DEC);
// Serial.flush();
// while(true); // debugging, stops program

Page: 96

// //---//---//----//----

}

void () {} // do nothing loop

There is nothing that you have not already seen in this program except for Serial. . That is a member of the flush

serial library that sends all the waiting characters out the serial port before returning to the program. Normally
the serial library operates in the background but in this case I had some bugs where the program would lockup
before the previous Serial. statement got all of its characters to my terminal. That made it difficult to print

identify the line where the problem occurred. So I added a bunch of flush statements.

Note that we are only storing the Celsius conversion factor. The Fahrenheit conversion factor will be derived
directly from the Celsius conversion factor by multiplying by 1.8. So of the extra allocated space comes from
having completely rewritten the program several times during the development. The 36 byte number worked
out well for so the extra bytes are left in there for future use.

No effort was made to optimize or reduce the size of the program because it is well under the Flash size and in
theory it should only be needed to be run once. The output should look like this (be sure you replace the
variables with your own values).

Page: 97

Note how handily this puts the ID string into the last 16 bytes of the EEPROM.

Page: 98

Thermometer Program

Reporting Protocol

Now that we know how to read the internal temperature sensor and we have our calibrated constants we are
almost ready to create the actual program to report the temperature from the Arduino back to the computer.
We must first do a little planning. We need to define sort of temperature reporting protocol. It would probably
be useful if that protocol provided for two way communications as well.

Linear Calibrated Temperature Sensor(s) Reporting Protocol
Established: September 2013 by Lewis Balentine
This Protocol is designated to be Public Domain

A. Default communications will be via RS232 protocol at 9600 Baud
B. All communications will be done in ASCII 7 bit characters
C. The device will monitor the serial port for commands as specified below
D. All commands will be Two Characters of which the first must be an Alpha character
E. Command terminations/separators may be either a carriage return (ASCII 13) character or a new

line (ASCII 10) character or null character (ASCII 0) or a tab character (ASCII 9) or a space character
(ASCII 32) or any combination of the these characters

F. Only one command is accepted at a time but additional data may be sent as required by the
command. This data shall be delimited from the command by a command terminations/separator.
When that data is an ASCII string then the space character (ASCII 32) is excluded from the list of valid
terminations/separators within the length of the string.

G. The following two character commands will be considered valid
1. ID Output sensor/location ID string(s)

For multiple sensors each ID string will be proceeded by
a designation digit/character, a colon and a space

2. ST Output Status (as applicable to implementation)
a. Reporting mode, true or false
b. Debug mode active, true or false
c. Report Raw reading, true or false
d. Report Fahrenheit temperature, true or false
e. Report Celsius temperature, true or false
f. Internal Temperature, true or false
g. Minutes between readings
h. Reference voltage
i. Sensor Parameters

Repeat the ID, Offset, Fahrenheit, Celsius constants as applicable for each sensor.
For multiple sensors each ID string will be preceded by a designation numeral, a
colon and a space.

l. If any current in memory constants have not been written to storage then include
line that to that effect.

m. Report storage Mode flag set if it is set
3. RT Raw True = include raw reading from temperature sensor
4. RF Raw False = do not include raw reading from temperature sensor
5. RV New reference voltage
6. CT Celsius True = include degrees Celsius
7. CF Celsius False = do not include degrees Celsius
8. C= Celsius input. Recalculate raw reading offset based on input temperature.

Page: 99

Device with multiple sensors must be placed in “Single Sensor” mode.
9. FT Fahrenheit True = include degrees Fahrenheit
10. FF Fahrenheit True = do not include degrees Fahrenheit
11. F= Fahrenheit input. Recalculate raw reading offset based on input temperature.

Device with multiple sensors must be placed in “Single Sensor” mode.
12. T# Sets time between report lines where # is one of the following

a. 1 Report reading every 01 minute
b. 2 Report reading every 02 minutes
c. 3 Report reading every 03 minutes
d. 4 Report reading every 04 minutes
e. 5 Report reading every 05 minutes
f. 6 Report reading every 10 minutes
g. 7 Report reading every 15 minutes
h. 8 Report reading every 20 minutes
i. 9 Report reading every 30 minutes
j. 0 Report reading every 60 minutes
k. A Report reading every 2 hours
l. B Report reading every 4 hours
m. C Report reading every 6 hours
n. D Report reading every 8 hours
o. E Report reading every 12 hours
p. F Report reading every 24 hours

(it is intended that the data is the average temperature for the given period)
13. TT Followed by data (units, number) for other reporting period (not implemented)
14. PF Stop printing report lines and accept commands only (report printing mode/state)
15. PT Resume printing report lines (report printing mode/state)
16. DB Toggle debug mode for extended reporting

a. Average time for each read cycle
b. Number of reads cycles for each report line
c. Actual time for each report Line
d. Other information according to implementation

17. DO New Degree offset for minor adjustment to temperature scale
18. DF New Degree offset for minor adjustment to temperature scale (Faherenheit)
19. DC New Degree offset for minor adjustment to temperature scale (Celsius)
20. S: plus command separator plus sensor designator. This command is ONLY used for

devices with multiple sensors. The designator shall be a single alpha or digit character
as determined by the implementation. This command selects the sensor for all following
sensor specific commands until another “S:” command is received. This command
essentially places the device in “single sensor” mode. To exit this mode enter the “S:”
command without a designator.

21. L: plus command separator plus new ID/Location string
22. O: plus command separator plus new Raw reading offset (capital O colon)
23. C: plus command separator plus new Celsius scale factor
24. F: plus command separator plus new Fahrenheit scale factor
25. A: Extended protocol (zero, colon).

These commands are specific to a given specific implementation.
26. WW Write new constants to device storage

“WW” MUST be upper case!
This command (WW:) shall only update the working copy of the constant data

27. W+ Overwrite backup constant data with working constant data. “W” MUST be upper case!

Page: 100

28. W- Overwrite working constant data with backup constant data. “W” MUST be upper case!
29. E+ This is a special mode that writes the readings to EEPROM rather than to the serial port

(This will of course require an alternate power source)
a. Set device storage flag
b. On the next “Reset” or “Startup”

1. Clear device storage flag
2. Read and store RawReading to device storage until space is exhausted
3. Shutdown, Sleep or Resume normal operation as available in implementation

30. E- Clears Flag for EEPROM mode
31. ED Dumps data from device storage according to current conversion constants

 (debug mode ignored and all three values are output)
32. EC Clears device storage area (if EEPROM writes 0xFF to all locations)
33. AA Extended protocol .

These commands are specific to a given specific implementation.
34. M? Undefined, reserved for future use by this protocol specification.
35. N? Undefined, reserved for future use by this protocol specification.
36. U? Undefined, reserved for future use by this protocol specification.
37. X? Undefined, reserved for future use by this protocol specification.
38. Y? Device specific command(s) (implementation specific).
39. Z? Device specific command(s) (implementation specific).
40. LL Output list of device implemented commands

Each line shall be prefixed with semicolon and space
The first line shall include device Identification and/or serial number
The required output is the 2 character commands
Optionally each line may include a short description

41. ?? Same as LL
42. SS Shutdown or Sleep (implementation specific).

This command MUST have two consecutive calls.
The device will respond with “; SHUTDOWN” or “; SLEEPING” as applicable.

43. 00 Turn rounding on or off (implementation dependent)
44. !! Reset or reboot device (that is two exclamation marks)

This command MUST have two consecutive calls.
The device will respond with “; RESETTING” (implementation limited)

H. The device/application may implement any set or subset of the commands that include the
following commands: ST, CT, CF, FF, FT, T1, T2, T3, T4, T5, ??

I. Any response line from the device that is NOT a report line shall be prefixed with a semicolon “;”
and a space.

J. Valid commands that do not otherwise generate responses shall respond with the two character
command plus space plus “OK”.

K. If the device receives a command it does not recognize then it will respond with “??”.
L. If the device receives a command it recognizes but is not implemented then it may respond with

either “XX” or “??” but “XX” is preferred.
M. Commands with a terminating colon may be used for multiple sensors by replacing the colon with a

numeral to identify the sensor number.
N. Report lines from the device shall consist of the designated data fields separated by a tab character

(ASCII 09) in the following order:
1. Raw reading
2. Calibration corrected Celsius temperature
3. Calibration corrected Fahrenheit temperature
4. Extended debugging data as defined above

Page: 101

That should be enough to confuse the issue. Our device currently only has one sensor but the protocol makes
provisions for multiple sensors (Engineering is the art of “Planning and Forethought”). Tab characters (ASCII 09)
are one of the commonly used delimiters for text files. This makes it easy to import the data file into a
spreadsheet program or database for charting and/or analysis. The semicolons prefixed to the devices responses
may it easy to strip out those lines from the data file or signal the receiver application that this is NOT a normal
reporting line. If the PC application includes device commands in its output stream and/or log then it should
prefix these with a semicolon and a space as well. Although the protocol specifies all upper case characters for
command characters it is recommended that the device application accepts either upper or lower case or a

combination of both with the exception “W” commands. The reset command “!!” (that is two exclamation
marks) is intended to be used for “If all else fails then abort and start over”. The reset command may also be
used as an entry point to update the device software (depending on the reset characteristics of the device).

The commands “A:”, “A?”, “X?” and “Z?” (the “?” is wild card that is to be interpreted as any character) are
intended to be used to extend the protocol as may be required for a specific senor(s) while keeping the
functionality of the basic protocol in place. This allows for a standard reporting application to use sensor(s) with
extended capabilities. However an extended reporting application specific to the implementation may be
created to take advantage of the additional features (for example “wet” and “dry” bulbs or a humidity sensor).
Any command beginning with the letter “M”, “N”, “U” or “X” is defined to be undefined and reserved for future
use by this specification.

Page: 102

Thermometer Program, Plan “A”

READ BEFORE YOU PROCEED !!!
Plan “A” to use the internal temperature was a dismal failure.
The program code does however provide the Basis for Plan “B” which is a total success.

This section we will discuss the structure of the program, the variable usage and specific details of the
Implementation. It will also list all the functions and describe their use. The program code is divided into two
files. The first “ThermometerOne.ino” has the declarations, setup function, loop function, command processor
function and those functions directly related to parsing commands codes. The second file named
“ThermometerOneFunctions.ino” contains the code to implement the various sections of the protocol. The two
source files together are a bit over 50 Kbytes. They are fully included in the

Page: 103

Appendix: Thermometer One Program Code. Note that much of the “debugging code” has been left in place but
commented out to provide examples of the debugging methods used (these lines should be obvious).

Main File Functions

Global Declarations

Includes
The first items listed are the “#include”s. In order to implement the sleep/shutdown function we need the
resources provide by avr/sleep.h. EEPROM.h is included so that we can read and write to the EEPROM. Our own
library “HexDecAsc.h” is included to implement a device specific function that dumps the EEPROM contents to
the serial port. This was needed for debugging purposes.

EEPROM address
The first group of these is the constants that identify specific locations where conversion constants and
operational parameters are to be stored. There are two complete 36 byte copies of this data: one at the start of
the EEPROM and one at the end. The first is designated as the working copy. The last is designated as the backup
copy. If the first section should ever “wears out” (as in more than 10,000 writes) then the two sections can be
swapped by redefining their locations.

The second group is a set of four word variables used by the application to delineate the beginning and ends of
the sections of the EEPROM where reading are to be written to or read from during storage mode operation.
The implementation uses these in such a way as to spread the writes out across the entire range. This is referred
to as “wear leveling”. With an ATmega329P this results in 952 bytes of data storage [1024-2*(36) = 952]. In a
best case scenario this is adequate for 7,600 readings or to put it another way: one reading every 5 minutes for
26 days. A more reasonable estimate would be somewhere around 15 days.

Conversion Factors/Calibraton Data
These variables are used to store the factors needed to convert from raw readings of the virtual 12 bit ADC to
actual temperatures in degrees Celsius and Fahrenheit. It also includes a variable used to determine if any of
these have been changed in the current session. Two constants are also defined for the temperatures at the raw
reading offset.

Global operational mode Variables
A number of modes (or machine states) are defined. These Boolean variables are used to indicate if a given
mode is active. In some cases multiple modes may be active at the same time.

Global work Variables
These are global static working variables that are available to all functions. For the most part they deal with
timings and command handling. The variables “LastRead”, “Consecutive” and “gap” are defined in this section in
order to preserve their values between calls to the functions that use them.

Setup() Function

The setup function does exactly what it is intended to do: configure the hardware and operational parameters.
The parameters are read from the EEPROM and default timing numbers and operation modes are established.
Then if the device is NOT in EESTORAGE mode the operational status is sent to the serial port before the main
loop begins.

Loop() Function

The loop function continually cycles through three tasks. The first task is to determine if there is a possibility of a
command waiting in the serial buffers. If there is then it calls a function to read the command and sends any
valid result to the command processor.

Page: 104

The second task is to collect temperature data. The variable “gap” is used in this take to regulate how often this
task is performed.

The last task is to determine if it is time to report or record data. A delay of up to 120 milliseconds has been
incorporated in this task in order to make the reports as periodic as possible. In most cases there is less that plus
or minus 1 millisecond error however if there has been any command processing then all bets are off. Things like
changing the report timing in mid-stream completely negate the precision of the report trigger for the current
report cycle.

CmdProcessor() Function

This is the main control function to implement the protocol. It accepts a two character command and redirects
the application to the appropriate function. If the “debug mode” is active then the two letter command is
reported to the serial port as well. This feature is intended to be used in the development process of an
application for the receiving end. Examples of non-implemented commands are also included.

At the bottom of this function there are four application specific commands defined.”Z1” and “Z2” insert sample
data into the EEPROM. Although these were written and used for debugging purposes they can also be used to
initialize a virgin device. The “ZZ” command changes the number of seconds per minute to 10 in order to reduce
the reporting period. It also sets all the modes so that only raw readings are reported. This is intended to be
used to collect data for a two point calibration.

The “ZD” command uses the “HexDecAsc” library to dump the entire contents of the EEPROM to the serial port.
This was used extensively in debugging the EEPROM writes and reads.

HelpMe() Function

This is the companion to the CmdProccessor function. It dumps a list of all implemented commands to the serial
port. It was placed directly below the CmdProccessor function in order to make it easier to keep the two in sync.
Notice the extensive use of the F() macro in this function. Without it the program had a tendency to lock up and
crash during the development. The use of this macro has definite benefits.

PrintSeperatorLine() Function

Some of the list functions such as the HelpMe function above print a line of dashes at the beginning and end of
their output. The function provides a way to accomplish that without having to insert a line of dashes in those
functions thus conserving program space.

ReadTwoCharacters ()Function

This is the main input function. It retrieves characters from the serial port, strips off command terminators and
capitalizes the alpha characters (with the exception of ‘w’). It also saves the previous command and incorporates
a time limit. If a complete command is not received within 250 milliseconds then it aborts and program control
returns to the loop() function. Under more ideal condition the function only requires on the order of 15-20
milliseconds. If it does detect a valid command then it drains the serial stream of any remaining terminator
characters. In order to provide for the maximum input flexibility the definition of terminating characters is
extremely liberal. In either case it returns a Boolean value to indicate if a valid command has been received.

Note: There is a separate input handler for the ID string that does not use a space as a command terminator.

DrainCmdTermiantors() Function

This function is used the drain the serial stream of any remaining command termination characters.

Page: 105

DebugPrintCharacters() Function

This was the principle debugging method used for the ReadTwoCharacters function. The function has been
overloaded so that it could be used to print CMDs received by other functions such as the main reporting
function. The CmdProcessor used this function in debugmode.

Thermometer Functions File

EnableADC() Function

This function is called by the setup routine to configure the ADC unit. It is probably not required because it
essentially replicates the default settings. This insures that something (i.e. an unusual boot loader or previous
program) has not redefined those parameters. The required defines are include just above the function
definition.

Read_Calibration_Data() Function

This function is called by the setup routine to retrieve operational parameters and calibration data from the
EEPROM. It is also called when some of those parameters are written to the EEPROM (the exception being the
EEMODE flag).

Write_Calibration_Data() Function

This writes operational parameters and calibration data from memory back to the EEPROM working data
storage. It only writes those parameters that are flagged as being new. Note that it also clears the EEMODE flag.
This command must be called manually using the “WW” command and the “WW” must be upper case (most
commands may be upper or lower case).

ClearStorage() Function

This function is used to clear the EEPROM storage area between the working and backup copies of the
parameter data. It does a read before write to avoid excessive wear on the EEPROM. It is called by the
Check_EEPROM setup function but it may also be called using the “EC” command. Each read requires 4 machine
cycles. Each write requires 2 machine cycles. Thus a single byte may require 6-8 cycles to process.

EEmodeFlagSet() Function

This function is used to set the EEMODE Flag so that at the next reset or restart the application will write to the
EEPROM rather than report its data to the serial port. This was originally written as simple set to non-zero value.
That could have caused to excessive to the low order bit if the device is frequently used in EEPROM mode. The
nature of way the EEPROM work dictate that it is “erasing a zero bit” that cause wear.

http://electronics.stackexchange.com/questions/21232/100k-eeprom-writes-per-bit-or-as-a-whole

It's not just write cycles that's specified, but erase/write cycles. On the AVR EEPROM can be

erased by byte. Erasing sets all bits to 1, writing selectively clears bits. You can't program a

1, just 0s. If you want to set at least one bit to 1 you have to erase that byte.

Erasing removes the charges from the FET's floating gate, but on each erase cycle some of the

charge remains on the floating gate, which won't be removed through the quantum tunneling. This

charges accumulates and after a number of cycles there's so much charge left on the floating gate

that the bit still will read 0 after erasure. That's what determines EEPROM life, it's erasure

rather than writing. So you can safely write additional 0s, as long as you don't erase.

So the function was rewritten to compare two bytes a mask and a flag byte. A zero bit is rotated through the bit
positions of the flag byte to set the EEPROM flag. To clear the EEPROM flag the mask is set even to the flag. Thus
there is only one write to each byte for each EEPROM mode cycle and zero erase are evenly spread across both
bytes. In theory this may increase the life of the EEPROM flag (100,000 E/W cycles) by a factor of 16 . It will at
the very least double the life. This function must be manually called by the “E+” command.

http://electronics.stackexchange.com/questions/21232/100k-eeprom-writes-per-bit-or-as-a-whole

Page: 106

EEmodeFlagClear() Function

This the compliment to the EEmodeSetFlag function. It is automatically called in the Check_EEPROM setup
function and may be manually called by the “E-“ command.

EEmodeFlagTF() Function

This function is used to check the EEMODE flag and returns true or false.

Check_EEPROM() Function

This function is called by the main Setup function to check if the current run is designated to go to the EEPROM.
If the EEMODE flag is set then the EEPROM mode is set true and the Report and Debug modes are set to false.
The function then determines the End of the last EEPROM session. It then uses ClearStorage to erase the entire
storage area. A marker of two 0 bytes is written to the EEPROM to indicate the start of the current session. The
storage variables are set and the function exits.

 Print_IdString() Function

This function Outputs the current “ID/Location” string to the serial port. This function is called by is called by the
Status function or it may be called manually by the “ID” command.

PrintTrueFalse() Function

This function Outputs the “True” or “False” to the serial port. It is only used by the Status function.

ReportStatus() Function

This function Outputs the current operation status and parameters to the serial port. It is called by the main
setup function and may be manually called using the “ST” command.

avrRawTemp() Function

This is the function called by the main loop to read the internal temperature sensor. It is a clone of the similar
function presented in the previous sections that uses 16 consecutive 10 bit ADC reads to produce a virtual 12 bit
reading. . The main difference is a fixed number of 64 reads using in line constants. These changes help reduce
the cycle time for the function.

This is the function that would need to be rewritten if this application is used for a different temperature sensor
or for multiple sensors.

Convert()Function

This function is called by the reporting functions to convert Raw Readings the Celsius and Fahrenheit. It rounds
these numbers to the nearest ¼ degree for Celsius and ½ degree for Fahrenheit.

Report() Function

This is the function called by the main loop to send output to the serial port or the EEPROM. It first calculates
the average temperature for the report period. Then if the EEPROM mode is active then it calls the secondary
function Report2EEPROM otherwise it write to the serial port. If debug mode is active it also reports the cycle
time and number of readings. This feature was used to derive some of the timing constants.

QuickBlink() Function

This function blinks the LED on digital pin 13 for 2 milliseconds. It is used in EEPROM mode to indicate report
cycles, writes and shutdown.

Report2EEPROM() Function

This is the function that is used to store data in the EEPROM. It implements both wear leveling and data
reduction. The wear leveling is done by beginning each new session where the old session ended. This is
controlled by the Check_EEprom function. The data reduction is based on the concept that there are typically a

Page: 107

number of consecutive readings that are the equal. The function counts up to 16 consecutive readings and
stores the count in the high nibble of the word that it writes to the EEPROM. This increases the amount of data
that can be stored and reduces the number of writes thus increasing the life of the EEPROM as well. It is
important to note that the range of readings recorded will never exceed 2047. This insures that there will always
be a high order zero in the reading and thus no word written to the EEPROM storage will ever be all ones. That is
important because areas with all ones are considered to be unused. When the function reaches the end of the
available storage it wraps around to the beginning (this has NOT been extensively tested due to the extended
time periods required). When it reaches the beginning mark the sleep/shutdown function is called.

DumpStorage() Function

This is the compliment to the Report2EEPROM function. It locates the beginning of the last recorded session by
searching for the two zero bytes marker. It then decodes the data and dumps it to the serial port using the
current reporting constants. It dumps all three temperatures: Raw, Celsius and Fahrenheit separated by tab
characters. Lastly it reports the number of readings and the amount of storage used. This function must be
called manually using the “ED” command. There are a lot of example debugging lines in this function that are
commented out.

PrintOKStr() Function

This function prints the current two letter command followed by “ OK” to the serial port. Various command
function use this function to acknowledge the command was accepted and executed.

PrintNotRecognized()Function

This function prints the current two letter command followed by “ ??” to the serial port. Various command
function use this function to indicate that the command was not recognized.

PrintNotImplemented() Function

This function prints the current two letter command followed by “ XX” to the serial port. Various command
function use this function to indicate that the command is not implemented.

ShutDown() Function

This command is used to cease execution of the program. It disables interrupts, disables the ADC and places the
ATmega328 into “sleep power down” mode. This is as close to shut down as we can come. This mode still uses
nearly 10 milliamps of power due to the inefficient 5 volt voltage regulator.

http://playground.arduino.cc/Learning/arduinoSleepCode

Sleep is commonly used to save power on Arduino boards. For some Arduino variants, however, there

is not much benefit. For example, the Arduino serial and USB boards use a 7805 type of power

regulator, which needs 10mA when the Atmega IC is in idle mode. Putting these boards to sleep

will cut a few mA off the total power consumption however it will still be high.

An application specific designed device could greatly reduce the power usage but in that case one might also
want to revisit the data collection and command processor routines to reduce power between those as well.
Power reduction was not considered in the software design as this application is primarily intended to be used
with the device connected to computer. This function may be manually called using the “SS” command.

software_Reset() Function

This function may be called to restart the application from the beginning. The implementation method uses a
simple assembly call to the zero vector. This does NOT reboot the device. A better implementation would be to
use the vector to the boot loader however the boot loader would need to be checked for compatibility. It is
expected that the “OptiBoot” would work well in this manner. However for this application the failsafe approach
was chosen. This function may be manually called using the “!!” command.

http://playground.arduino.cc/Learning/arduinoSleepCode

Page: 108

This function is intended to be used in the case “If all else fails”. As such it should be rewritten using some kind of
interrupt handling so that one may recover from an infinite loop. This may require modifying the Serial library.

SetRawReadMode() Function

This function sets the raw reading report mode to true or false. This function may be manually called using the
“RT” or “RF” commands. Default is true.

SetFahrenheitMode() Function

This function sets the Fahrenheit report mode to true or false. This function may be manually called using the
“FT” or “FF” commands. Default is true.

SetCelsiusMode() Function

This function sets the Celsius report mode to true or false. This function may be manually called using the “CT”
or “CF” commands. Default is true.

SetReportMode() Function

This function sets the report mode to true or false. This function may be manually called using the “RT” or “RF”
commands. Default is true.

ToggleDebugMode() Function

This function sets the toggles the debug reporting mode between true and false. This function must be manually
called using the “DB” command. Default is false.

NewReportTime() Function

This function is used to change the time between report lines. Note that only the times specified in the protocol
are implemented (i.e. TT is not implemented). This function may be manually called using the “T#” command
where “#” is in the set “1,2,3,4,5,6,7,8,9,0,A,B,C,D,E,F”. Default is “1”.

Report_Reset() Function

This function reset the report line variables and report timing variables. It is normally called by the
NewReportTime function but may be called by other functions as well (i.e. when new parameters are written to
EEPROM or restore from backup).

NewIdString() Function

This function reads an ID/Location string from the serial port and stores in active memory. The function
incorporates a 5 second timeout to read the value. Failure to provide the data in a timely manner will abort the
command. This command includes internal code to read data from the Serial port. It does not capitalize the
string or terminate when a space is received. It will terminate if more than 24 printable ASCII characters are
received. If a value is received and recorded then the new data flag is set as well. Command terminators are
drained from the serial stream in either case. This function must be called manually using the “L:” command.

As I am reviewing the code for this function it seems that I neglected to include code to drain any extra printable
characters from the serial stream. That oversight will be corrected.

NewOffset() Function

This function reads a new raw reading offset from the serial port and stores in active memory. The function
waits 2 seconds for the data to enter the serial stream before attempting to read the value. Failure to provide
the data in a timely manner will abort the command. If a value is received and recorded then the new data flag
is set as well. Command terminators are drained from the serial stream in either case. This function must be
called manually using the “O:” command.

Page: 109

CelsiusEquals() Function

FahrenheitEquals() Function

These two functions are the primary way a user will calibrate the device. They take the user’s input to
recalculate the raw reading offset for 20 degrees Celsius (68 degrees Fahrenheit). This is accomplished by
multiplying the difference between the input temperature and the offset temperature by the temperature
conversion factor. The result is subtracted from the current raw reading to produce a new raw reading offset.

NewCelsius() Function

This function reads a Celsius conversion factor from the serial port and stores in active memory. The function
waits 2 seconds for the data to enter the serial stream before attempting to read the value. Failure to provide
the data in a timely manner will abort the command. If a value is received and recorded then the new data flag
is set as well. Command terminators are drained from the serial stream in either case. This function must be
called manually using the “C:” command.

NewFahrenheit() Function

This function reads a Fahrenheit conversion factor from the serial port and stores in active memory. The
function waits 2 seconds for the data to enter the serial stream before attempting to read the value. Failure to
provide the data in a timely manner will abort the command. If a value is received and recorded then the new
data flag is set as well. Command terminators are drained from the serial stream in either case. This function
must be called manually using the “F:” command.

The three functions above use commends included in the Serial library to read floating point or integer values. At
some point that code should be replaced to incorporate a timeout and insure that any extra characters are
properly dealt with.

RestoreFromBackup() Function

This overwrites the working parameter storage with data that has been saved in the backup copy. This function
must be called manually using the “W-” command and the “W” must be upper case (most commands may be
upper or lower case).

OverwriteBackup() Function

This is the compliment to the RestoreFromBackup function. This overwrites the backup copy with data from the
working parameter storage. This function must be called manually using the “W+” command and the “W” must
be upper case (most commands may be upper or lower case).

TestData1() Function

TestData2() Function

These two functions replace data in the working EEPROM storage a set defined within the function. These two
functions were originally written to test the Backup and Restore functions. They can however be used to
initialize a virgin device as well. These functions must be called manually using the “Z1” or “Z2” commands.

CalibrationMode() Function

This function is used to gather information for new calibration constants using the three point calibration
method. It disables all reporting except for raw readings and set the time period to 1 minute. Then it lies to the
AVR by telling it the each minute is only ten seconds long. The result is a raw reading every 10 seconds. The
“newflg” is set to zero so that none of these parameters are accidently written to the EEPROM. This function
must be called manually using the “ZZ” command.

Page: 110

void EepromDumpAll() Function

This function dumps the entire EEPROM to the serial port 16 bytes at a time in Hex and ASCII. It uses a set of
library functions that was presented previously in this document. The only difference is that it prefixes each line
with a semicolon and a space”; “. This function must be called manually using the “ZD” command.

-------and that ladies and gentlemen concludes our presentation for this evening-------------

Temperature Calibration Theory

The internal temperature sensor is designed to generate a linear output. That is to say that for each 1 degree
increase in temperature the sensor outputs an equal increase in voltage regardless of the temperature. That
ratio is approximately 1 mV (millivolt = 1volt/1000) per degree Kelvin. However, due to the process variation in
manufacturing the temperature sensor output voltage varies from one chip to another. The sensor was
intended to be used to determine if there was a problem that caused the MPU to overheat. Thus lack of
accuracy and the variation between devices is acceptable for its intended use.

There are several additional factors that may affect the reading that is returned by the internal sensor. The
three principle ones are:

1) Variations in the power supply
2) Variation in the amount of current the MPU is using
3) The ability of the MPU to dissipate the internally produced heat to the environment around it

In this application the power supply will always be the USB port from the computer that the Nano is attached to.
Thus the power supply should be well regulated and constant (unless the computer goes to sleep). The task of
the MPU will be limited to reading temperature sensors and reporting back to the computer at regular intervals.
Thus the amount work the MPU is doing and the amount of current that it is using should be constant as well.
The case would be much different if the same device was being used to do something such as control a group
stepper motors via its PWM facility.

That leaves the ability of the MPU to dissipate heat. The MPU’s heat is absorbed by the environment around it
via radiation and conduction. An increase in the environment temperature makes it more difficult to dissipate
that heat and in turn causes an increase in the internal temperature of the device. It is this cause and effect
relationship that we are attempting to exploit. Assuming there are no other outside factors (i.e such as being in
a location that alternates between bright sunlight and shadow) then for any given air temperature there should
be a given MPU temperature. The difference between these two temperatures what we are calling “offset”.

The question becomes is this offset equal for all temperatures. Clearly the answer is no. Consider the extreme
case if the Arduino was placed inside a high temperature furnace. Rather than dissipating heat it would absorb
heat and eventually melt (the melting point of silicon is 2,577 degrees Fahrenheit or 1,414 degrees Celsius). We
are hoping that over the relative small range of interest that the two lines are approximately linear and closely
parallel. The only way to establish the exact offset at any temperature is to make a physical observation. It is
impractical to do this for every possible temperature. Thus we will choose three convenient observation points.

Page: 111

The observation points must be within the fairly wide operating temperature range of the MPU: -55 degrees
Celsius to 125 degrees Celsius (-67 degrees to 257 degrees Fahrenheit). Observation point 1 should be as close to
0 degrees Celsius (32 degrees Fahrenheit) as possible. The second observation be close to 20 degrees Celsius
(68 degrees Fahrenheit). The third observation needs to be over 38 degrees Celsius (100.4 degrees Fahrenheit).
A “gain” factor can then be produced from the readings at observation points 1 and 3:

Gain = (T3-T1) / (V3-V1)
Where:

T3 = the temperature at Observation point 3
T2 = the temperature at Observation point 2
T1 = the temperature at Observation point 1

 V3 = the sensor voltage reading at Observation point 3 (0 to 4096) – raw reading

 V2 = the sensor voltage reading at Observation point 2 (0 to 4096) – raw reading

 V1 = the sensor voltage reading at Observation point 1 (0 to 4096) – raw reading

From those new observations we will come up with a new simple formula for calculating the
temperature scale factor:

 Scale Factor = (T3-T1) / (V3-V1)

Temperature Calibration Procedure

I have six addition thermometers at my disposal:
1) Honeywell Electronic HVAC thermostat (unknown)
2) Six inch Taylor “Confortmeter” spirit bulb wall thermometer (-35 to 55 Celsius)
3) Taylor pocket bi-metal stem one inch dial thermometer (0-220 Fahrenheit)
4) Omega SST armored twelve inch fractional calibrated partial immersion photographic spirit bulb

thermometer (5 to 55 Celsius)
5) BCR six inch full immersion mercury bulb thermometer (-50 to 50 Celsius)
6) Mastech MS826T Multimeter with Type K sensor (-20 to 400 Celsius)

Page: 112

No two of the above register closer than two degrees across their effective range. The Fractional Omega (the
most expensive of the lot) is the worst in that it consistently reads at least ten degrees lower than any of the
rest. The Mastech, with its probe frozen in a block ice, reports between 5 and 6 degrees Celsius. It was this
inconsistency that instigated this project.

Ultimately I had to choose one as a point of reference. The BCR was only one that I had any confidence in. In
addition I determined that the Mastech about a 2.5 degree error at 25 degrees Celsius but otherwise was
consistent with the BCR mercury thermometer at ambient temperatures.

Temperature Calibration Procedure: Observation Point 1

"This porridge is too cold," she said.
Ideally one would use shaved ice made from distilled water to pack both the Nano and the thermometer. I just
be used a bag of ICE that was acquired at a local grocery store. I placed this in a plastic dishpan of water along
with a full immersion 6 inch BCR mercury bulb thermometer. The Nano was placed inside two plastic bags and
immersed in the water along with the thermometer. Both were isolated from the bag of ice. After the reading
has stabilized both the temperature and the raw reading was recorded. I note there was a lot of condensation
inside of the first plastic bag. The inner bag was an anti-static bag and did not show any condensation problems
(much smaller volume as well).

Raw reading = 1343
Temperature = 6.75 degrees Celsius

Temperature Calibration Procedure: Observation Point 3

"This porridge is too hot!" she exclaimed.
This was a little more difficult. For this I used a small cardboard box (6.5 x 4 x 1 inches). The Nano and the 6 inch
BCR mercury bulb thermometer were mounted in the box. The box was place in an Oven (standard electric
cooking range) that had been preheated to above 50 degrees Celsius and allowed to cool down to 50 degrees
Celsius (because that is the top of the range of the BCR thermometer). The Thermometer One program was
placed in “Calibration mode”. The oven door was closed and the system was allowed to reach equilibrium. A
reading was recorded from the program then the door was opened and the thermometer read very quickly. This
was done several times to insure consistency.

Raw reading = 1511
Temperature = 44 degrees Celsius

Now we can calculate the scale factor:

 Scale Factor = (T3-T1) / (V3-V1)

Scale Factor = (44-6.75) / (1511-1343) = 37.25 / 168 = 0.2217

That is slightly less than the theoretical 0.2500 scale factor.

Temperature Calibration Procedure: Observation Point 2

“Ahhh, this porridge is just right," she said happily and she ate it all up.
For this point the HVAC system was set to bring the temperature down to 20 degrees Celsius. The “C:” command
was used to plug in the new scale factor and the “C=” was used to set the offset.

http://en.wikipedia.org/wiki/The_Story_of_the_Three_Bears

Page: 113

So the final question is: “How accurate is it?” Not off by at least 5 degrees at 30 degrees Celsius.

Plan “A”, Evaluation and Summary

1) A number of Arduino boards were successful programed with an application to report the temperature
back to the computer at periodic intervals. That item is rated as a “success”.

2) The Arduino application(s) that were developed have the desired level of capabilities for two way
communications, adjustments, storage and reporting. That is rated as a “success”.

3) The applications has been designed and implemented without any modifications or additions to any of
the Arduino board. That is item rated as a “success”.

4) The design of the application and protocol are such that modification of the application to use a
different temperature sensor should only require changing one function and the calibration factors. That
item is rated as a “success”.

5) The design of the application and protocol are such that modification of the application to support
multiple temperature sensors is possible. This would require implementing “Single Senor” selection
protocol as well as changes to the reporting functions. Until these actions have been attempted and
completed successfully that is rated as “questionable”.

6) The ability to extend the range of the ADC from 10 bits to 12 bits via “Oversampling” and “Decimation”
have been demonstrated and confirmed. While the limitations of having “appropriate” noise available is
a limiting factor it does provide an interesting alternative. That item is rated as a “success”.

7) While the linearity of the internal temperature sensor may be without question what we are actually
attempting in this application is to quantity the Arduino’s ability to dissipate its internally generated
heat. The linearity of that function and its relationship to the function of the internal temperature
sensor remain questionable. The methods used in the application were not able to exploit this
relationship. Accuracy could not be obtained. That item is rated as a “failure”.

To say plan “A” is a dismal failure is being kind. Plan “A” is a loser!

Page: 114

Thermometer Program, Plan “B”

In order to proceed with this project I had to give up the concept that no external parts or hardware
modifications would be required. If the internal temperature sensor cannot be utilized for this purpose then an
external one must be used. Several alternatives exist:

K Type thermocouple
SMBus/I2 temperature sensor
Analog devices AMD590 2 wire variable current output temperature sensor
Maxim DS18S20 1-Wire Digital Thermometer
10K Ohm at 25º C 1% thermistor and 10K 1% resistor (look for these on Ebay.com)
National Semiconductor LM34 Analog Temperature Sensor

The last two of these are probably the more practical approaches. The thermistor approach is probably the least
expensive but it would require a table driven conversion routine. The Maxim or SMBus is probably the simplest
if one can obtain the part in a suitable package. I chose the last one.

We will need to dump all the scale and offset stuff that was done previously and replace it with a more
traditional ADC voltage conversion. That will entail changing some of Global variables as well. As we will still be
using the internal 1.1 Voltage references we can still reference the internal Temperature sensor as well. An
additional 40 bytes of the EEPROM will also be set aside for a future table based conversion routine. That could
be useful for using a thermistor as a temperature sensor. At the same time we are going to do a little work on
reducing the size of the program. Most of the program remains the same so in this section we are only going to
cover the additional hardware, EEPROM locations, Global Variables and functions changes. The full program
code is in the Appendix: Thermometer One Program Code (Plan “B”).

Page: 115

External Temperature Sensor: LM34

I had several of these on hand for another future project acquired via Amazon.com for US$6.00 each. The
specific part number I have is:

 National Semiconductor LM34CZ Analog Temperature Sensor

The picture below shows the part sitting on top of a common 16mm dice like one might find in a board game or
on the dice tables in at casino. As it is shown in the picture the lead on the left is for power (5 Volts DC). The lead
on the right is the ground connection. The center lead is for the analog output signal.

Power << Signal >> Ground

Page: 116

A LM34DZ would work also (and it is the least expensive part in the series). Those may also be acquired from
Avnet, Arrow, DigiKey, Newark Electronics, Jaemco , other electronic supply houses as well as EBAY. At
electronic supplies they typically cost between US$2.00 to US$2.50. I have seen them on EBAY for less than
US$2.00. You can also pay more than US$15 for parts in this series (LM34CAH). The difference is in the
Temperature scale, accuracy and the packaging. The datasheet (see appendix) covers the various options but
here is the simplified version:

Part Number Scale Low High Accuracy Typical

LM34 Fahrenheit -50 300 2 Degree 0.8

LM34A Fahrenheit -50 300 1 Degree 0.4

LM34C Fahrenheit -40 230 3 Degree 1.6

LM34CA Fahrenheit -40 230 1 Degree 0.4

LM34D Fahrenheit 32 212 3 Degree 1.2

Add a one letter suffix for the packaging:

Suffix Package

H TO-46 Hermetic Sealed Metal Can, 3 through hole leads

M SO-8 Small Outline Surface Mount, 8 legs

Z TO-92 Plastic Transistor Package, 3 through hole leads

The nice thing about these devices is that they are Linear Analog Temperature very similar to the AVR internal
sensor. The big difference is that they report 10 millivolts per degree Fahrenheit and they are guaranteed to be
within 1 degree of accuracy at 77 degrees Fahrenheit. They typically expect better than1/2 degree accuracy. As
they are so similar to the internal sensor only minor differences will be needed in the software to switch
between the internal temperature sensor and the external temperature sensor.

The most practical package for our use is the plastic TO-92. The most limiting factor is that the main conduit of
heat to the sensor is the three wires it uses for leads. With the TO-46 metal can the main conduit is the can
itself. It also offers the advantage that it can be soldered or cemented to a heat sink or other heat conducting
medium. It is however the most expensive packaging.

Note: A similar series of parts exist for the Celsius scale. That is the LM35 series.

Page: 117

I used a 175 tie point breadboard. I cheated a bit by mounting the Nano such that one set of pins are not in the
breadboard. That is not a problem in this case because we are not going to use those pins in this application.
That left three rows of tie points at the other end which all we need for the sensor. Here is the layout.

Atmel also recommends putting a capacitor on the Analog Reference pin (REF) to reduce noise. As an option you
can run a wire from the REF pin around to the other side and stick a small disk capacitor in the middle. I used a
22 Pico farad ceramic disk capacitor (because that is what I had available). I cannot tell that it has made any
difference.

Page: 118

EEPROM Layout

Starting from the top lets first look at the new EEPROM layout:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mask flag ref volts offset minutes unused unused unused unused

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ID String 16 Bytes long w/o termination

 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Reserved space for future Table

 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Reserved space for future Table

 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Reserved space for future Table

 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

Reserved space for future Table

 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

Reserved space for future Table

 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Begin EEPROM Mode Data Storage area

 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991

 EEPROM Mode Data Storage area End

 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

mask flag offset ref volts minutes unused unused unused unused

 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

ID String 16 Bytes long w/o termination

This device will support a special “EEPROM mode” that writes the raw reading data to the EEPROM rather than
the computer. This is for use with an external power supply such as a battery in a remote location (i.e an
outbuilding such as a green house or an enclosed area such as a refrigerator). The two bytes “EEmask” and
“EEflag” (bytes 0&1) are used together to control this mode.

With our new sensor we are measuring voltage directly as compared to our reference voltage. The quantity that
is unknown is the reference voltage. While that value is supposed to be 1.1 volts that is not entirely accurate. A
reading of the reference pin on my Nano showed 1.067 volts … but how close is my VOM meter to being
accurate? A global variable named “RefVoltage” is used so that value may be adjusted as needed. It is stored as
a two byte word at the location “EErefvolt” (bytes 2&3). Once that has been calibrated it should not need to be
reset. However you might want the Arduino to reflect the temperature relative to your favorite thermometer or

Page: 119

the electronic thermostat on you HVAC system. For that purpose the global variable “DegreeOffset” has been
established to move the scale up or down. It is stored as a two byte word at the location “EEoffset” (bytes 4&5).
The global variable “MinuteTarget” is used to control how often that report data is generated. It is stored as a
two byte word at the location “EEoffset” (bytes 6&7).

After the report parameters we have space for 4 words of data that have not been used (bytes 8 through 15).
That is followed by our 16 character ID/Location string (bytes 16 through 31). All of the proceeding is called our
“working data”. That 32 byte segment has a duplicate backup copy at the end of EEPROM which conveniently
places our ID/Location string in the last 16 bytes. Following the working data are 40 words reserved for use by a
table based conversion routine (bytes 32 through 111). The rest of the EEPROM is used for data storage during
the EEMPROM mode (440 words: bytes 112 through 991 on an ATmega328).

Global Variables and Constants

Now let’s take a closer look at the global variables and constants.
const word EEwdsize = EEidtring+EEidsize;

const word StorageWorking=EEmask;
const word StorageBackup =((E2END-(EEwdsize))+1);

The constant “EEwdsize” defines the size of our EEPROM working data block. The two constants
“StorageWorking “ and “StorageBackup” are used to define the start address of working data storage and its
back up copy. These three values are used routines that backup and restore the data blocks.

word StorageBegin =StorageWorking+EEwdsize+EEtbsize;
word StorageMark =StorageBegin;
word StorageEnd =StorageBackup;
word StorageIndex =StorageBegin;

These variables are used by the routines that write, read and erase the EEPROM mode data storage. The
“StorageMark” and “StorageIndex” were added so that wear leveling could be implemented.

float RefVoltage;

const float CovrtFactorV= 8192;
float DegreeOffset;
const float CovrtFactorO= 1024;
word MinuteTarget = 1;
char IdString[EEidsize+1];
byte newflg=0;

The first two variables were previous discussed. The two constants are used to convert them from floating point
variables to words so that they can be written to and recalled from the EEPROM. The variable “MinuteTarget”
controls the time between generated reports. The variable “IDString” is used to hold a copy of the ID/Location
string in ram. The variable “newflg” is used as a bit level flag to indicate that when any of the above variables
have been changed and not written to EEPROM.

float Celsius;

float Fahrenheit;
float AvrCelsius;

float AVRFahrenheit;

These variables hold the current temperature values in their respective scales.
boolean ReportMode = true;

boolean RtnRawRead = true;
boolean RtnCelsius = true;
boolean RtnFahrenh = true;
boolean DeBug = false;
boolean RtnAvrRead = false;
boolean EepromMode = false;
boolean RoundMode = true;

These variables control the operational modes of the device and establish the default operation.
ReportMode Turns printing of report lines on or off
RtnRawRead When true sensor reading is included as the first value of a report line
RtnCelsius When true sensor Celsius is included as the next value of a report line

Page: 120

RtnFahrenh When true sensor Fahrenheit is included as the next value of a report line
DeBug When true debug data is included as last values of a report line
RtnAvrRead When true AVR temperature data is included as an appended report line
EepromMode When true all other modes are set to false and sensor readings are written to EEPROM
RoundMode When true Celsius is rounded to nearest quarter and Fahrenheit is rounded to

nearest half.
word SecondsMinute = 60000;
unsigned long SecondsTarget = 0;

unsigned long RptTrigger = 0;

byte gap = 0;
unsigned long RptStartTime = 0;
unsigned long CycleStart = 0;
unsigned long CycleTime = 0;

This group of variable is used to control the operational timing. The variable “SecondsMinute” is used to convert
“MinuteTarget” to “SecondsTarget” which is the number of seconds between report lines. The variable
“RptTrigger” holds the time that the next report is to be generated. The variable “gap” is used to control the
ratio of data reads to serial port reads or to put it another way the gap between data reads. The last three
variables are used in Debug mode to calculate actual times between report lines and the time required for a
data read cycle.

unsigned long Accumalator = 0; // Accumalate temperature reads

unsigned long CycleCount = 0; // Cycles per Report line

The variable “Accumalator” hold the sum of all data reads for the current report cycle (Note that each data read
is actually the truncated average of 1024 sensor reads). The variable “CycleCount” holds the number data reads
in the current report cycle.

char cmd[] = {0,0,0};

char prevcmd[] = {0,0,0};

These two variables hold the current and previous two character command strings read from the serial port. The
zero terminator is only used by the Debug mode to print the current command to the serial port.

word LastRead = 0;

byte Consecutive = 0;

These two variables are used to implement a simple form of data reduction for the EEPROM recording mode.
They are defined as global variables in order to provide with a pre-allocated static RAM memory location so that
the values are retained between calls to EEPROM recording function.

Page: 121

Main Program File Functions

setup() Function

There are not really any changes here. This function configures the hardware, reads the parameters from the
EEPROM and set the initial operational modes and timings factors.

loop()Function

This function still has the same three basic tasks:
1) Check the serial port for commands
2) Collect data
3) Report/Record data

The only change is the name of the function to collect the data is now “ReadRawTempA1()”.

cmdProcessor() function

Functionally the same but the commands were put in alphabetical order. Several commands deleted. New
commands added for Degree Offset and Reference Voltage.

HelpMe() function

Tabs were added between the command and description. The list was edited to match the command processor.
That made it much easier to extract the Table shown below.

Arduino AtMega328 Temperature Sensor 1.0

ID Output ID string

ST Output Status

RT Raw=True

RF Raw=False

FT Fahrenheit=True

FF Fahrenheit=False

F= Enter Current Fahrenheit

CT Celsius=True

CF Celsius=False

IT AVR Internal Temperature=True

IF AVR Internal Temperature=False

DO New Degree Offset (Fahrenheit)

DF Same as DO

RV New Reference Voltage

T1 Report time = 01 minutes

T2 Report time = 02 minutes

T3 Report time = 03 minutes

T4 Report time = 04 minutes

T5 Report time = 05 minutes

T6 Report time = 10 minutes

T7 Report time = 15 minutes

T8 Report time = 20 minutes

T9 Report time = 30 minutes

T0 Report time = 60 minutes

TA Report time = 02 hours

TB Report time = 04 hours

Page: 122

TC Report time = 06 hours

TD Report time = 08 hours

TE Report time = 12 hours

TF Report time = 24 hours

PF Print mode = False

PT Print mode = True

DB Debug mode toggle

L: New Location

WW Write Calibration data to EEPROM

W+ Overwrite Backup Calibration data

W- Restore from Backup Calibration data

E+ Set Flag to send next run to EEPROM

E- Clear Flag to send next run to EEPROM

EC Clear EEPROM Storage

ED Dump data stored in EEPROM

LL List implemented commands

?? List implemented commands

SS Shutdown (send twice)

!! Reset (send twice)

Z1 Write test data 1

Z2 Write test data 2

ZZ 5 Second reporting for calibration

ZD Dump ALLL EEPROM to serial

Response 'XX' = not implemented

Response '??' = not recognized

PrintSeperatorLine() function

ReadTwoCharacters() function

This was rewritten to save a few bytes. The long string of dashes was replaced with “for” loop that prints the
dashes. It also has the advantage that the length of the line can be adjusted easily.

DrainCmdTermiantors() function

DebugPrintCharacters () function

These functions had no changes.

Page: 123

Thermometer Functions File

The following functions were deleted or replaced in their entirety:
CelsiusEquals() deleted
FahrenheitEquals() replaced in its entirety
NewOffsetR() deleted
NewCelsius() deleted
NewFahrenheit() deleted
avrRawTemp() replaced in its entirety
Convert() replaced in its entirety

Read_Calibration_Data() function

Write_Calibration_Data() function

These functions were rewritten to read and write the new parameters. Note that provisions have been made for
the degree offset to positive or negative. If the word stored in EEPROM has the high bit set then the value is
negative. A separate divisor is used for the degree offset and voltage reference to allow for different ranges.

ClearStorage() function

EEmodeFlagSet() function

EEmodeFlagClear() function

EEmodeFlagTF() function

These functions had no changes.

Check_EEPROM() function

A line was added to blink the LED 30 times when entering EEPROM recording mode. This is intended to give the
user a visual indication that the device is in the proper mode.

Print_IdString() function

PrintTrueFalse() function

These functions had no changes.

ReportStatus() Function

This function was rewritten to delete the old parameters and add the new ones. Tab characters were added
between the description and the parameter. The ID string and degree offset are now the only parameters that
are specific to given sensor. The strings labels were edited to shorten the lengths saving a few more bytes.

AvrTemperature() function

This function replaces the avrRawTemp() function for the internal sensor. A 12 bit synthetic reading is no longer
generated. It now uses the reference voltage to convert the ADC reading to a raw voltage. Conversion of the
voltage to Celsius and Fahrenheit is now done with in the function as well as printing a separate report line.

ReadRawTempA1() function

This function replaces the avrRawTemp() function for the external sensor. The first part is essentially the same
as the AvrTemperature() function except for the ADMUX setting. Note that we also initialize the pin (A1) at every
pass. That is because I am paranoid.

Convert(word RawReading) Function

This function was totally replaced. It is now much simpler consisting of only three lines. Rounding to nearest half
or quarter is optional was made optional and calls subroutines for that pupose.

Page: 124

nearestquater () function

This function was removed from the Convert() function. It rounds the incoming floating point value to the
nearest quarter (0.25) and returns that value. Provisions have been added to accommodate negative numbers
as well.

nearesthalf () function

This function was removed from the Convert() function. It rounds the incoming floating point value to the
nearest quarter (0.50) and returns that value. Provisions have been added to accommodate negative numbers
as well.

Report() function

This function was modified to add a call to the AvrTemperature() function if the AVR Temperature mode is
active. Otherwise there is no change.

QuickBlink() function

Report2EEPROM() function

These functions had no changes.

DumpStorage() function

The strings that were used to print the header line were combined into a single string with imbedded tab
characters. A similar was made to the bottom of the report for the quantity labels. The wording was also
changed to delete a few characters. Deleting the extra Serial.print() statements saved a few additional bytes.

Response() function

This function was added to handle the output of the next three functions: PrintOKStr(), PrintNotReconized() and
PrintNotImplemented(). This saved several more bytes.

PrintOKStr () function

Rewritten to call Response() function.

PrintNotRecognized() function

Rewritten to call Response() function.

PrintNotImplemented() function

Rewritten to call Response() function.

ShutDown() function

software_Reset() function

SetRawReadMode() function

SetCelsiusMode() function

SetFahrenheitdMode() function

SetReportMode() function

ToggleDebugMode() function

These functions had no changes.

SetAvrInternalMode() function

This function was added. It is used to change the AVR temperature reporting mode by changing the values if the
global variable “RtnAvrRead” to true or false. Default is “false”. It must be called using the command “IT” or “IF”.

ToggleRoundMode() function

This function was added to toggle the rounding mode of the Convert() function.

Page: 125

NewReportTime() function

Report_Reset() function

These functions had no changes.

NewIdString() function

One line was added to this function to fix a bug. If a shorter string was entered then the end characters form the
previous string were not deleted. The line “ (n<EEidsize) IdString[n++]=0;“ was added to resolved this while

problem.

PrintDegreeOffsetEffect() function

This function was added to allow show the user the effect of adjusting the degree offset. It prints the
temperature as read and then as adjusted by the offset (in both Celsius and Fahrenheit). This function is called
by NewDegreeOffset() and CalculateDegreeOffset().

ValueNotAccepted() function

This function was added to handle response with an input parameter was not accepted either due to timeout or
invalid characters. It can be called by: NewDegreeOffset() , FahrenheitEquals(),CelsiusEquals() or NewRefVolt().
This saved a few more bytes.

NewDegreeOffset() function

This function was added to allow the user to manually adjust the degree offset. This function must be manually
called with the command “F=”.

CalculateDegreeOffset() function

This function was added. Used by FahrenheitEquals() and CelsiusEquals() to adjust the current degree offset.
Print output was added to inform the user of the effect of the change.

FahrenheitEquals() function

This function was completely rewritten. It now calls the function CalculateDegreeOffset(). This function must be
manually called with the command “F=”.

CelsiusEquals() function

This function was completely rewritten. It now calls the function CalculateDegreeOffset(). This function must be
manually called with the command “C=”.

NewRefVolt() function

This function was added to allow the user to manually adjust the value for the reference voltage. This function
must be manually called with the command “RV”.

RestoreFromBackup() function

OverwriteBackup() function

These functions had no changes.

TestData1() function

TestData2() function

These two functions were rewritten to change the parameters. These function load default data into the
EEPROM and then call Read_Calibration_Data() to read that data. These functions must be manually called with
the command “Z1” or “Z2”.

Page: 126

CalibrationMode() function

This function was modified such that it now toggles the 5 second calibration mode on or off. This function must
be manually called with the command “ZZ”.

EepromDumpAll()function

This function had no changes

Page: 127

Page: 128

Temperature Sensor Calibration

Calibration Theory

The external temperature sensor is designed to generate a linear output in Degrees Fahrenheit. That is to say
that for each 1 degree increase in temperature the sensor outputs an equal increase in voltage regardless of the
temperature. That ratio is 10 mV (millivolt = 1volt/1000) per degree Fahrenheit. There are several additional
factors that may affect the reading that is returned by the external sensor:

1) Resistance in the path between the sensor and Analog pin
2) Capacitance in the path between the sensor and Analog pin
3) The accuracy of the reference voltage

For items 1 & 2 TI recommends a 2K Ohm decoupling resistor in line with the output of the LM34 for long
distances. The major variable in this implementation is the is the 1.1 reference voltage produced internally by
the AVR . One obvious solution is to use a very accurate high impedance Voltmeter to read the reference
voltage at the AREF pin. This may not always be possible (i.e. the user may not have such a meter available). The
practical alternative is to place the temperature sensor in an environment with a known temperature and adjust
the voltage reference as need to obtain the correct output. This also resolves the first problem.

Calibration Method 1

Obtain the use of a known good thermometer. Place the thermometer and the device in a container of some
sort that allows the user to view the thermometer but protects both items from hot or cold airflows or direct
sunlight. A common corrugated cardboard box is simple and effective container. Wait for the temperature to
stabilize on both the sensor and the thermometer. Adjust the value for the reference voltage until both devices
show the same temperature.

Calibration Method 2

This requires a bit more work but makes for a very accurate calibration. Remove the sensor from the bread
board. Attach the sensor to one end of cable of suitable length with at least 3 conductors (common Ethernet
LAN cable is appropriate). Enclose the sensor end of the cable in a small plastic bag. Wrap the bag around the
sensor and the cable to form a tight bundle. Use short pieces of tape the secure the bundle and the seal the top.
Place the bundled end of the sensor end of the cable into a small contained (i.e. a one pint plastic milk bottle)
leaving the top of the bundle above the top of the container. Fill the container with water but leave some space
for expansion. Place the container and the cable in a plastic bag (i.e. a grocery bag). Place this package in a
freezer and allow the water to freeze into a solid block.

Remove the package from the freezer and properly discard the outside plastic bag. Unbundle the cable and
attach the end where the sensor was mounted to the bread board (be careful to insure that you maintain the
correct polarity). Wait for the ice in the container to begin to melt. Adjust the value for the reference voltage
until both device reports 32 degrees Fahrenheit. You are done.

Temperature Sensor Extension Cable

It would be helpful if we had a simple way to move the sensor from the board to a remote location. For that we
need a common connector and some kind of standard easily obtained extension cable. Consider the use of a
3.5mm Stereo cable (i.e. like those used for the iPhone, iPod, Ipad, Android and various mp3 players). All you
need to do is replace the sensor on the breadboard with a 3.5mm stereo female jack and then mount the sensor
in a 3.5mm male plug (consider including the 22K ohm resistor). Then you can use any 3.55mm stereo cable that
is available …. and those are CHEAP! (hint: look at http://www.monoprice.com).

http://www.monoprice.com/

Page: 129

The pink thing on the left of this illustration is the bottom of a 5 pin 3.5mm PC board stereo jack. On the right we
have a standard 3.5mm phone plug. Connect the ground to “Common”, power (5 volts) to “Right” and signal to
“Left”. Ignore the switched pins on the jack (they are switched “out” when there is a plug in place).

Page: 130

Plan “B”, Evaluation and Summary

1) A number of Arduino boards were successful programed with an application to report the temperature
back to the computer at periodic intervals. That item is rated as a “success”.

2) The Arduino application(s) that were developed have the desired level of capabilities for two way
communications, adjustments, storage and reporting. That is rated as a “success”.

3) The applications has been designed and implemented without any modifications or additions to any of
the Arduino board. That is item rated as a “success”.

4) The design of the application and protocol are such that modification of the application to use a
different temperature sensor should only require changing one function and the calibration factors. In
plan “B” these changes were implemented and the code further modified to make additional changes in
the future even simpler. That item is rated as a “success”.

5) The design of the application and protocol are such that modification of the application to support
multiple temperature sensors is possible. This would require implementing “Single Senor” selection
protocol as well as changes to the reporting functions. Until these actions have been attempted and
completed successfully that is rated as “questionable”.

6) Calibration, testing and comparison have verified the repeatability of the readings from the device as
well as tracking well with the reference instruments. That item is rated as a “success” (finally!).

7) The one detractor at this point is that the size of the binary hex code that is downloaded to the Arduino
is over 17 K bytes. It would be desirable to get this down to a size that could be loaded into a
ATmega168. That is likely to require deleting some of the functionality.

Plan “B” is a winner !

Page: 131

Thermometer Program, ATMEGA168

The reason for having gone to the additional trouble of reducing the size of the program was because it had
grown to 18KB for the binary image. I really wanted a version that would be able to run on the ATMega168
because I happen to have a couple of these that I purchased before I found out that they do not have internal
temperature sensors. However in order to reduce it sufficiently some functionality must be sacrificed. The first
thing to go of course is the Internal Temperature Sensor function. The next major change was to reduce the
Help system to a very short list of commands without descriptions.

Next to go was the function that dumped a list of the EEPROM in Hex and ASCII. It was still a bit too plump so
one set of test data was removed as well as the report times over one hour. The debugging code was also
removed (even though it was commented out). Then it compiled with just over 200 bytes to spare. Full EEPROM
recording mode and the EEPROM data dump feature is include all be it a somewhat smaller storage area. The
full program code is included in the Appendix: Thermometer ATMega168.

… now the question is what to do with that extra 200 bytes of flash memory ……

Page: 132

Arduino Debugging

The most glaring weakness of the Arduino system is the lack of a good run time debugger or any debugger for
that matter. Atmel does support a hardware level debugger in their development package but that is not
commonly available and the Arduino “reset” design interferes with it. There are a few simulators but nothing
that seems to be well recommended. Thus we are reduced to the oldest, most basic debugging methods.

Debugging Methods:

1) Review your code for syntax errors.
2) Put in lots of print statements.

Use these to isolate the area with the problem.
Until you have a finished project you may want to comment these out so you can reuse them.

3) Reduce you code to the most basic pieces.

Common errors to look for:

1) Each “C” stamen must end with a semicolon --- look for missing semicolons.
2) “C” is case sensitive --- look for improperly capitalized keywords.

This applies to user defined functions, variables and constants as well.
3) Improperly nested delimiters {([])} --- look for miss matched delimiters.

This is also commonly known as “Lost In Stupid Parenthesis” (reference to LISP programing language).
4) The entire world interprets leading zeroes as zero except “C” – leading zeroes signify OCTAL numbers.

debug.ino:117:46: error: invalid digit "9" in octal constant
5) Binary notation will only accept 8 digits --- count your digits.

Temporary placing a space in the middle sometimes helps: B0000 0000.
6) Improperly nested quotes (double and single) ---
7) Buffer overflow: “C” does not limit string writes like higher level languages such as Basic.

Insure that you are not writing beyond the end of allocated space.
8) Be sure that you use commas inside of the parameters clause of a “while” statement.
9) Be sure that you use semicolons inside of the parameters clause of a “for” statement.
10) Be sure “if equal” uses two equal signs “==” not one “=”.
11) The dreaded “off by one” syndrome … you will be amazed at what a difference there can in having a one

where you should have had a zero.
12) Lower case “i” looks a lot like lower case “l” that looks a lot like “1”. “0” also looks a lot like “O”.

Other Hints:

1) Years ago one of my college instructors told me that when Einstein was asked how to solve a particularly
difficult physics problem that he responded: “Simplify, Simplify, Simplify.”
I would imagine that this applies to electronics and software as well as advanced physics.

2) Include lots of comments --- your logic may be sound and obvious today but totally incomprehensible
tomorrow.

3) When you get something that works make a backup copy. You can clean it up later.
4) Reduce your function sizes so that you can view the entire function on a single screen.
5) Group functions that call each other together.
6) Define functions before they are called.
7) Write and debug small pieces code separately.
8) Use the statement: Serial.println ("Got here");

Start at the beginning and move the line through the code until it does not print.
9) There is no “stop” or “end” statement. Use the statement: while (true);

This should stop a runaway program.

Page: 133

10) Do not take the error messages at face value --- look at the statements ahead of the referenced line.
11) Temporarily comment out code sections (use the edit menu functions).
12) Do you Serial.print() a lot of strings in your code? Use the F() to reduce RAM usage (it works).
13) Close the IDE and reload the program --- sometime the IDE sometimes gets confused.
14) Copy the program to a new folder and rename it.

Strip out the pieces until you have the most basic template.
 (I have a sketch folder called “debug” for this purpose)
Use a text editor to open the original program files.
Copy pieces one at a time from the Editor to the debug application in the IDE.

15) Have someone else look at you code --- you can get help on the Arduino user forum.
16) Shutdown the IDE and CLEAN your personal temp and build directories.

The Arduino IDE does NOT clean up after itself.
In the Temp directory look for folders named:

console*.tmp,
build*.tmp
scoped_dir*
untitled*.tmp

17) Do not use Microsoft Word as a code editor --- in that mode it is a royal pain in the southern most
regions. On the other hand “Notepad ++” is an excellent code editor.

18) Remove or disable the ‘CAPS LOCK’ key from your keyboard (perhaps not practical but very desirable)
19) If all else fails --- get some rest. Fresh eyes see mistakes much better.

Received

void () setup
 { Serial. (9600); begin
 }

void () loop
 { byte i;
 // this program is intended to demonstrate stoping a run-away program
 // by using the while() statement
 Serial. ("Got here"); println
 // uncomment the next line ----

 // (); while true
 Serial. ("Got here as well"); println

 // the error here is that i is declared as a byte.
 // its max value is limited to 255, after that it rolls back to 0
 // thus the program will rapidly repeat the print statement

 // until the end of time and you will most likely never see
 // the previous print statements flash by

 (i=0; i<300; i++) for
 { Serial. (i, println); DEC
 // uncomment the next line ----

 // (i==255) (); if while true
 }
 }

Page: 134

RS232 Serial Monitor

Now that we have a Arduino program to report the temperature back to the PC we need something on the PC
side to read that data (other than using the serial terminal in the Arduino IDE).

FreeBasic Compiler

FreeBasic is a modern multi-platform implementation of the basic language. It is an open source compiler that
can generate standalone executable programs (no runtime distribution package required), libraries or object files
for Windows or Linux operating systems. It can produce either CUI (console/ character user interface) or GUI
(Graphical User Interface) programs. Like the Arduino IDE it uses GCC and/or GAS in the background to build the
executable. It comes with its own small debugger and but you can also use the GDB/INSIGHT debugger. All of
these are open source tools.

FreeBasic was originally written as a replacement for GWBasic that came with the early generation Microsoft
operating systems. Microsoft has a tendency to ‘upgrade’ all of their software on a regular basis in a manner
such that the new version is incompatible with the older versions. They do this in order to ‘encourage’ their
customers to purchase the new version. Without the built in obsolescence Microsoft’s profit margins would
quickly start to plummet. Unfortunately it also appears that Microsoft is intentionally trying to eliminate all
console based applications (see ……..)

 These marketing strategies made Bill Gates a billionaire at the considerable expense of the rest of the world.

Although FreeBasic can be used to produce GUI apps there is not a good GUI IDE for developing these kinds of
applications. The ones that I tried were some combination of unintuitive, poorly documented or just downright
flaky. On the other hand FreeBasic is EXCELLENT for console applications. There are several IDEs available for
FreeBasic that work well for console based applications. The one I chose to use was FBIDE.

FreeBasic Web Site: http://www.freebasic.net/
FreeBasic Download: http://sourceforge.net/projects/fbc/
Free Basic Forum: http://www.freebasic.net/forum/

FBIde Web Site: http://fbide.freebasic.net/
FBIDE: http://fbide.freebasic.net/download

You can download and install both packages on your computer but it highly recomended that you do NOT use
the default Installation directory: C:\Program Files\FreeBASIC. FreeBasic and FBIDE both default to storing
projects and working directories under the Free Basic installation directory. The directory C:\Program Files\ and
all of its subdirectories are “protected” directories. This will cause you numerous problems. I have created a
“c:\bin” on my computer where I install such software (in fairness to FreeBasic this was a common practice in
the days of MS-DOS, Windows 3.1, Windows 95 and Windows NT even for programs produced by Microsoft). This
also provides someplace to install various linux/unix utilities that I sometimes find useful.

http://www.freebasic.net/
http://sourceforge.net/projects/fbc/
http://www.freebasic.net/forum/
http://fbide.freebasic.net/
http://fbide.freebasic.net/download

Page: 135

The FBIDE Program comes as a Zip file (no installation). Most current Operating Systems can open a Zip file
without any additional software. Open the Zip file and drag the contents of the folder “FBIde0.4.6r4” to a
location under FreeBasic. Your installation should look something like this.

The selections shown with the dark blue background are the ones added by FBIDE. Double click on the fbide.exe
file. It will open and immediately assume the entire screen. Click on the double Box icon in the upper right
corner. It will then be much better behaved.

Page: 136

Select “File”, “Open” from the top menu. Navigate to the directory “C:\bin\FreeBASIC\examples\GUI\win32”.
Open the file “Hello.bas”.

I am not about to try and explain the complexities of the code for this program. Thankfully that is not required
because all we are trying to do is determine that the software works. From the top menu select “Run”, “Compile
& run”.

That should open a rather large GUI window with the words “Hello, World!” in the middle.

I would say that the Window for a bit oversized for the task but the good news is that you now have another
compiler and IDE installed on your computer. With this one you can produce programs that run under any

Page: 137

version of Microsoft Windows (and in theory Linux). Close this window as well as the program file in the FDIDE
editor. Let’s take a quick look at the directory where the source file was located.

That “.EXE” file that you see there is the executable program. You do not need any runtime packages, “DLL”
files, libraries or installation programs. You can copy that file by itself to any computer running Microsoft
Windows and the program can be run.

Serial Port Monitor Program

Navigate back up the directory tree and create a directory called Projects under the “FreeBasic” directory.
Create another directory under it called “Serial Monitor”. In FBIDE select “File”, “New”. This will open a new
editor Window. Now select “File”, ”Save As” and navigate to the new project folder. Save the file with the name
“Serial Monitor.bas”. Answer “YES” to the dialog box that pops up (it does not seem to make any difference if
you answer yes or no).

Page: 138

Now copy the sample code below and paste it into the editor Window. Then select “File”, “Save”.

/' This is my first FreeBasic program. I thought it would be easy because
 I was sure that I would snatch some sample code and proceed on. Wrong!

 Extensive searches revealed a bit here and a bit there but always just
 a bit missing: and that bit always seemed to be enough to foil my efforts.

 Sitting on the other end of my serial cable is an Auduino Nano
 microprocessor board. It is sitting there printing "Hello World!" once
 every second. All this program does is read the input from the com port

 and print it to the screen. Pressing any key will cause the program to
 close the com port and exit. It is amazing how much time I wasted on this.

 It is implimented as a straight fall through process and one loop.
 Not overly efficent as its wastes lots of CPU time sitting in the loop
 polling for a character to come through. However it does have the advantage

 that it does work fairly reliably.

'/

 "string.bi" ' needed for format function #include
 LineCount As LongInt ' just so we can see how many lines are read Dim
 chrcount as Long Dim
 C As Byte ' this is our incoming byte of data Dim
 InBuffer As String ' this is our buffer to collect the bytes Dim
 PortStr as String Dim

InBuffer=""
LineCount=0

chrcount=0

/' Any of these strings except the last will work

 but the first is more reliable
 Port = Com12
 Parity = none
 Data Bits = 8
 Stop bits = 1
 Carrier Detect Duration = 0

Page: 139

 Clear to Send duration = 0

 Data Set Ready duration = 0
 Open Timeout = 0

 Bin = Binary communications

 PortStr = "COM12:9600,N,8,1,CD,CS,DS,OP,BIN"
 PortStr = "COM12:9600,N,8,1,CD,CS,DS,OP,ASC,FE,TB0,RB0"
 PortStr = "COM12:9600,N,8,1,CD,CS,DS,OP"

 PortStr = "COM12:9600,N,8,1,CD,CS,DS"
 PortStr = "COM12:9600,N,8,1,CD,CS" /' does not work for Arduino '/

 // Open Com ("COM12:9600,N,8,1,CD,CS,DS,OP,BIN") as #2 //
'/

PortStr = "COM12:9600,N,8,1,CD,CS,DS,OP,BIN"

(PortStr) 2 Open Com AS #
' loop untill there is a keypress ... any keypress

= "" While InKey
 ' This first line is one of the bits that was missing.
 ' It checks to see if there is anything waiting in the Serial buffer
 ' Without it you are subject to reading a bunch of garbage

 ((2)) If Not EOF then
 ' get a single byte from the serial port
 2,0,C,1 Get #
 ' characters below ASCII 32 are 'non-printing characters
 ' characters above ASCII 126 are not define (by ASCII)

 ' append any printable character to the string
 (C > 31) (C < 127) If and Then

 InBuffer = InBuffer + (C) Chr
 ' chrcount is not really needed. I added it while trying
 ' to figure out why I was getting garbage ... before the

 ' EOF() check was added.
 chrcount=chrcount+1
 else
 ' ignore this character
 End If
 ' Linux/Unix terminate strings with a line feed (ASCII 10)
 ' MACs terminate lines with a carriage return (ASCII 13)
 ' Microsoft and Arduino use carriage return/linefeed (ASCII 13,10)
 ' If we get any of the above then increment the line count and
 ' print the string but only if we have something to print.

 ((C=13) (C=10)) (chrcount >0) If Or And Then
 LineCount = LineCount + 1

 (LineCount,"000000") +" ("+ (chrcount,"000") + "): " + Inbuffer Print Format Format
 ' clear the buffer so that we can do it again
 InBuffer=""

 chrcount=0
 End If

 End If
 ' Call Sleep with 25ms or less to release time-slice when waiting
 ' for user input or looping inside a thread.This will prevent the program

 ' from unnecessarily hogging the CPU.
 25 Sleep
Wend ' inkey =""

' we opend it, we close it
2 Close #

' you'all come back, ya hear?
End

Like “C” FreeBasic has two conventions for comments. Single line comments are delimited by the single quote
character. Multiple line comments are delimited by forward-slash plus single quote and a matching single quote
plus forward-slash. As you look at this you might notice that there is very little actual program code. The

Page: 140

comments give a fairly complete explanation of the program. What you will want to pay attention to is the com
port string: "COM12:9600,N,8,1,CD,CS,DS,OP,BIN". You will most likely need to change this according to the
Arduino and Computer that you are using. If you compile and run this then you should have a program that
prints out any ASCII strings it receives on the serial port to the display.

Now if you look in your project directory you will find a copy of the compiled program.

You can run the AVR Temperature program on you Arduino and receive the data on your computer via the
“serial monitor.exe” program. Because this program is printing to Standard Out you can redirect its output to a
file via the command line:

 “serial monitor.exe” >> mylogfile.txt

Still it does have a number of limitations most particularly the need to recompile it when you change the
computers or the Arduino. See the “Appendix: Arduino Receiver” for a much more capable program. It uses an

Page: 141

INI file so that that it does not need to be recompiled when you change the COM port. You can also modify the
program code to suite you own needs and/or preferences. It is compiled with the FreeBasic compiler.

PC Alternatives: Microsoft

There are several alternatives that you might wish to consider for producing PC based programs for you Arduino.
Without question that list would have to contain Microsoft Visual Studio that provides Visual Basic, C#, J# and
C++ variants. The current version is Visual Studio 2012 and is a very expensive option. However there is an
“Express” version of the Visual Studio 2010 that is free (requires registration). When this document was being
written it was available at the URL:

 http://www.microsoft.com/visualstudio/eng/downloads#d-2010-express

The 200 MB download does not include any help or documentation. That must be added on after the fact and
from my experience is of limited value (unlike the help system that came with Visual Basic 5 or 6). I should also
mention that the language elements (at least Visual Basic) bear no resemblance to the classical programing
languages. Numerous keywords are completely missing with no equivalent. Where there is an equivalent it is
likely buried somewhere deeply within a “.net” class library and in some cases requires a completely different
syntax. One of these reasons for these changes was in order to use a single compiler for all of the languages.
Another was that someone has decided that any program that is written should be written with managed object
orienteered class libraries and conform to modern “C++” standards. That is all well and good for professionals
that spend their life writing code for large, complex projects but it completely ignores the existence of the rest
of us. Having used the BASIC programing language since the days of CPM, Atari, Apple II and Commodore Vic 20
computers I am personally offended by the effort Microsoft has put forth to destroy the Basic programing
language.

To be fair I must mention that Microsoft has some lesser products available such as “Power Shell” and “Small
Basic”. Power shell is a Microsoft proprietary scripting utility. It is dependent on run time environment and has
no interactive debugger. However it is quite powerful, extendable and used in a number of organizations for
network management. “Small Basic” is very limited, short on documentation (i.e. there is no keyword
reference), uses “C” type arrays and “.net” syntax. It has no resemblance to Basic. (also not this is not the
SmallBasic originally written for the Palm OS).

If you happen to have a legal copy of Visual Basic 5 or Visual Basic 6 hang on to it. These are by far and without
question the very best implementations of the Basic language. They are still viable for all versions of Microsoft
Windows.

PC Alternatives: Non-Microsoft

The first scripting language that must be mentioned is BASH as used on the Linux and Unix systems. It is far older
than and arguably as powerful as PowerShell as well as being multi-platform. It does not have the Microsoft
Network management extensions that PowerShell has although I am almost certain that this is a limitation that
could be addressed. I have Bash shell scripts that I use on both Windows and Linux platforms without any
modifications.

Another popular Windows scripting implementation is AutoIt. I will use their description:

AutoIt v3 is a freeware BASIC-like scripting language designed for automating the Windows GUI and general
scripting. It uses a combination of simulated keystrokes, mouse movement and window/control manipulation in
order to automate tasks in a way not possible or reliable with other languages (e.g. VBScript and SendKeys).
AutoIt is also very small, self-contained and will run on all versions of Windows out-of-the-box with no annoying
"runtimes" required!
• Easy to learn BASIC-like syntax

http://www.microsoft.com/visualstudio/eng/downloads#d-2010-express

Page: 142

• Simulate keystrokes and mouse movements
• Manipulate windows and processes
• Interact with all standard windows controls
• Scripts can be compiled into standalone executables
• Create Graphical User Interfaces (GUIs)
• COM support
• Regular expressions
• Directly call external DLL and Windows API functions
• Scriptable RunAs functions
• Detailed helpfile and large community-based support forums
• Compatible with Windows 2000 / XP / 2003 / Vista / 2008 / 7
• Unicode and x64 support
• Digitally signed for peace of mind
• Works with Windows Vista's User Account Control (UAC)
AutoIt has been designed to be as small as possible and stand-alone with no external .dll files or registry entries
required making it safe to use on Servers. Scripts can be compiled into stand-alone executables.

The problem with AutoIt is it has no native RS-232 support. There is an add but the source is not available and
long term support depends on a single individual updating the software. Autoit can be downloaded at the URL:
 http://www.autoitscript.com/site/autoit/

Sharp Develop is an Open Source Development Environment for .NET. That being said it is dependent on
Microsoft. It has the same advantages and disadvantages as Microsoft Visual Studio. In fact the help system
must be downloaded from Microsoft. The two major advantages it has are open source and price: it is free. The
Sharp Develop web site URL is:
 http://www.icsharpcode.net/OpenSource/SD/Default.aspx

PowerBasic is commercial compiler that uses classical Basic language. It was written in assembler bas in the days
of MS-DOS and Windows 3.1. It was an excellent product. They eventually produced a Windows based IDE and
Windows console compiler. The IDE never could never compete with the “point and shoot” type IDE that
Microsoft had in the Visual Basic line. In addition and perhaps more importantly the Visual Basic IDE had a fully
integrated line by line debugger that allowed one in many cases to change the code without recompiling.
However Microsoft has since abandoned classical Basic language. Thus PowerBasic may deserve a fresh look.
One advantage they do have over FreeBasic is an effective integrated debugger.

Why FreeBasic

First I should mention that I have access to all of the products mentioned above including Microsoft Visual
Studio 2012 Professional. I have used both Visual Studio 2012 and Microsoft Visual Basic 6 in a professional
setting during previous employment. I chose not to use either of these products for this project because of cost.
For this project I wanted something that was free to anyone with an internet connection.

I also wanted something that was available on multiple platforms (i.e. Windows, Linux and Mac). That
eliminated anything based on “.net”. There is a multi-platform implementation of “.net” called “mono” but it
has a bit of a reputation for being an immature product.

FreeBasic turned out to be the only free true compiler with a simple IDE that I could find that would operate on
both the Linux and Windows environments (unfortunately this leaves the MAC OS out). It also has the advantage
that it uses a single source file to produce a single executable file without any need for any run time libraries or
”DLL” files (until you get into the advance graphic functions, external databases, etc.). It uses a classic
implementation of the BASIC language and has extremely good help system that is integrated into the FBIDE
environment. The debugger on the other hand leaves something to be desired.

http://www.autoitscript.com/site/autoit/
http://www.icsharpcode.net/OpenSource/SD/Default.aspx

Page: 143

ArduinoThermometer.exe

ArduinoThermometer is actually a set of programs written in FreeBasic to run in a console window under
Windows or Linux and capture the data from the Arduino Thermometer application. Full source for both
programs is included in the Appendix: Thermometer.exe. The main program is a customized version of the
Arduino Receiver program mentioned in the previous section. The program supports all the standard options for
the Receiver program plus it has been modified so that a number of single character keystroke can be used to
control the Arduino:

Keys '1' to '0' set report Times

Key 'A' toggles AVR mode

Key 'B' Restore from Backup
Key 'C' toggles Celsius mode

Key 'D' toggles Debug mode
Key 'E' toggles EEPROM mode

Key 'F' toggles Fahrenheit mode

Key 'L' lists AVR commands
Key 'M' turns on Minimal mode (Fahrenheit only)

Key 'Q' prints AVR storage

Key 'R' toggles Rounding mode
Key 'S' prints AVR Status

Key 'V' toggles Raw Reading mode

Key '>' increase Degree Offset by 0.25 Fahrenheit
Key '<' decrease Degree Offset by 0.25 Fahrenheit

Noticeably missing are any commands to change the calibration or write new parameters to the EEPROM. That
was intentional because this program is intended to be used to capture the data not to calibrate the device.
However there is a way around that. The program allows the user to define five “user” strings via the “.ini” file.
These commands are sent by pressing the “U” key followed immediately by a numeric key “1”, “2”, “3”, “4” or
“5”. There is a one second timeout for the second key. As provide the first three of these are defined as follows:

Key 'U1' INI defined string: "Z1", write test data set 1 to EEPROM

Key 'U2' INI defined string: "Z2", write test data set 2 to EEPROM
Key 'U3' INI defined string: "ZD", Hex/ASCII dump of EEPROM

Because the Thermometer application allows the use of a space as a delimiter a series of commands may be
included in a single user defined string. That is the way that the ‘M’ keystroke works. It sends the command
string "RF CF IF FT ST".

Page: 144

Page: 145

Strip Semicolon Lines Utility

The main program writes everything it receives from the device to a tab demitted text file specified in the “.ini”
file. Every line that Arduino application sends that is not an actual report line is prefixed with a semicolon.
StripSemicolonLines.exe is a utility used to separate or extract the report lines. It was written with a number of
options including the ability to mark a point in the input file where it last processed the lines. Running the
program with a “?” as the parameter will print out the options.

Syntax: StripSemicolonLines.exe file1 file2 file3 [options]

 file1 = input filename

 file2 = output filename
 file3 = output filename with stripped lines (optional)

Options:

 /O = Overwrite any existing output file
 /A = Append to any existing output file (overrides /O)

 /D = Delete input file
 /R = Retain blank lines

 /S = Split lines at semicolon and delete trailing portion

 /X = Deletes all lines with semicolon regardless of location
 /M = Mark end of file with ";;--PROCESSED--;;"

 /E = Execute program with output file

 /V = Verbose prints statistics before exiting
 /? = display help and exit

The “file1” is the input file that was produced by the main program. “file2” is the output file where you want the
report lines written. Both of these file names are required and may include a full or relative path specification.
“file3” is optional. If included the lines that are stripped from the input file will be written to this file. The
“overwrite” or “append” option tells the program what to do if you specify a filename for a file that already
exists. If you do not specify an option and the file exists then the program aborts. If the “append” open is
specified then the “overwrite” option is ignored. The “delete” option can be used to delete the original file after
it is processed. Normally the program skips all blank lines however you can use the “Retain” option to keep
them (why you want to I have no idea). The “Split” option divides any lines that have a semicolon somewhere
other than the first character. It writes the first part to “file2” and the full line to “file3”. The “X” option has the
opposite effect. It deletes any lines with semicolons anywhere in the line. The “Mark” option writes the line “;;--
PROCESSED--;;” to the end of the input file after it has processed it. When the program is run with the “Mark” it
reads the entire input file looking for the last occurrence of this line. It then begins processing at the next line. If
the line is not found then it begins processing at the beginning of the file. This is useful for extracting data from
an active log file. The “Execute” will pass the output file to a program such as a spreadsheet or charting
program. The program name must include the full path and should be enclosed in quotes (due to spaces in the
path or file name). The “Verbose” option prints the number of input lines, output lines, blank lines and
semicolon lines before the program exits.

Although all the options are shown with forward slashes “/” the dash “-“ can be used as well. The options may
be in in order or case. These are some examples of valid command lines.

StripSemicolonLines.exe Thermometer.LOG work.txt

StripSemicolonLines.exe Thermometer.LOG work.txt dump.txt

StripSemicolonLines.exe Thermometer.LOG work.txt dump.txt /X /O /D /V

StripSemicolonLines.exe Thermometer.LOG work.txt dump.txt -o -D -X –V
StripSemicolonLines.exe Thermometer.LOG work.txt -O /x –V /M /d

StripSemicolonLines.exe Thermometer.LOG work.txt /E:”c:\program Files\suite\sheet.exe”

Page: 146

Page: 147

Receiver Modifications:

The changes to this program are NOT sophisticated. Rather the structure of the program is designed to allow
someone to add new functionality fairly simply. The file “Ardunio_Thermometer_Globals.Bas” had several global
variables added to support the new features. Those variables also have their default values set in this file.

Dim Shared DebugMode as Byte ' False=0, True<>0;

Dim Shared CelsiusMode as Byte ' False=0, True<>0;

Dim Shared FahrenheitMode as Byte ' False=0, True<>0;
Dim Shared AvrMode as Byte ' False=0, True<>0;
Dim Shared EEMode as Byte ' False=0, True<>0;
Dim Shared RawMode as Byte ' False=0, True<>0;
Dim Shared RoundMode as Byte ' False=0, True<>0;
Dim Shared UserStr1 as String ' user defined string in INI file
Dim Shared UserStr2 as String ' user defined string in INI file
Dim Shared UserStr3 as String ' user defined string in INI file
Dim Shared UserStr4 as String ' user defined string in INI file
Dim Shared UserStr5 as String ' user defined string in INI file

Dim Shared OffsetVal as Single ' used to store current degree offset

‘......
' These are the default modes
DebugMode=False
CelsiusMode=True

FahrenheitMode=True
AvrMode=False
EEMode=False
RawMode=True

RoundMode=True
UserStr1 ="Z1"
UserStr2 ="Z2"
UserStr3 ="ZD"
UserStr4 =""

UserStr5 =""
OffsetVal=0

The additions to the “Ardunio_Thermometer_Functions.Bas” are a bit more involved but not difficult to follow.
First there were changes to read the new user strings from the “.ini” file in the function ReadIniFile ():

 Case "USERSTR1"

 If Lcase(ValStr)<>"" then UserStr1=Trim(ValStr)
 Case "USERSTR2"
 If Lcase(ValStr)<>"" then UserStr2=Trim(ValStr)

 Case "USERSTR3"
 If Lcase(ValStr)<>"" then UserStr3=Trim(ValStr)

 Case "USERSTR4"
 If Lcase(ValStr)<>"" then UserStr4=Trim(ValStr)

 Case "USERSTR5"

 If Lcase(ValStr)<>"" then UserStr5=Trim(ValStr)

Next the new functions were added to the status string in the function BuildStatusStr():

 '---
 ' Add Aplication help here
 Status = Status & EOL
 Status = Status & " Keys '1' to '0' set report Times" & EOL
 Status = Status & " Key 'A' toggles AVR mode" & EOL

 Status = Status & " Key 'B' Restore from Backup" & EOL

 Status = Status & " Key 'C' toggles Celsius mode" & EOL
 Status = Status & " Key 'D' toggles Debug mode" & EOL
 Status = Status & " Key 'E' toggles EEPROM mode" & EOL
 Status = Status & " Key 'F' toggles Fahrenheit mode" & EOL
 Status = Status & " Key 'L' lists AVR commands" & EOL
 Status = Status & " Key 'M' turns on Minimal mode (Fahrenheit only)" & EOL

Page: 148

 Status = Status & " Key 'Q' prints AVR storage" & EOL

 Status = Status & " Key 'R' toggles Rounding mode" & EOL
 Status = Status & " Key 'S' prints AVR Status" & EOL

 Status = Status & " Key 'V' toggles Raw Reading mode" & EOL
 Status = Status & " Key '>' increase Degree Offset by 0.25 Fahrenheit" & EOL

 Status = Status & " Key '<' decrease Degree Offset by 0.25 Fahrenheit" & EOL
 if (UserStr1<>"") then Status = Status & " Key 'U1' INI defined string: " &_
 chr(34) & UserStr1 & chr(34) & EOL

 if (UserStr2<>"") then Status = Status & " Key 'U2' INI defined string: " &_
 chr(34) & UserStr2 & chr(34) & EOL

 if (UserStr3<>"") then Status = Status & " Key 'U3' INI defined string: " &_
 chr(34) & UserStr3 & chr(34) & EOL
 if (UserStr4<>"") then Status = Status & " Key 'U4' INI defined string: " &_
 chr(34) & UserStr4 & chr(34) & EOL

 if (UserStr5<>"") then Status = Status & " Key 'U5' INI defined string: " &_
 chr(34) & UserStr5 & chr(34) & EOL

The most extensive changes were to the Communications() function where the key handling had to be added.

 ' application key inserted here----------------------

 Case 49 ' numeric key "1"

 Print #2, "T1" ' set timing to 1 minute
 Print "Report Time set to 1 minute"
 Case 50 ' numeric key "2"
 Print #2, "T2" ' set timing to 2 minutes
 Print "Report Time set to 2 minutes"

 Case 51 ' numeric key "3"
 Print #2, "T3" ' set timing to 3 minutes

 Print "Report Time set to 3 minutes"
 Case 52 ' numeric key "4"

 Print #2, "T4" ' set timing to 4 minutes
 Print "Report Time set to 4 minutes"
 Case 53 ' numeric key "5"
 Print #2, "T5" ' set timing to 5 minutes
 Print "Report Time set to 5 minutes"
 Case 54 ' numeric key "6"
 Print #2, "T6" ' set timing to 10 minutes
 Print "Report Time set to 10 minutes"
 Case 55 ' numeric key "7"
 Print #2, "T7" ' set timing to 15 minutes

 Print "Report Time set to 15 minutes"
 Case 55 ' numeric key "8"
 Print #2, "T8" ' set timing to 20 minutes

 Print "Report Time set to 20 minutes"
 Case 55 ' numeric key "9"
 Print #2, "T9" ' set timing to 30 minutes

 Print "Report Time set to 30 minutes"
 Case 55 ' numeric key "0"

 Print #2, "T0" ' set timing to 60 minutes
 Print "Report Time set to 60 minutes"

 Case 68,100 ' Alpha Key "D" or "d"
 Print #2, "DB" ' set debug mode
 if (DebugMode=False) then

 DebugMode=True
 Print "Turn Debug mode on"
 else
 DebugMode=False
 Print "Turn Debug mode off"
 End if
 Case 70,102 ' Alpha Key "F" or "f"

 if (FahrenheitMode=False) then
 FahrenheitMode=True
 Print "Turn Fahrenheit Mode on"
 Print #2, "FT"
 else

Page: 149

 FahrenheitMode=False

 Print "Turn Fahrenheit Mode off"
 Print #2, "FF"

 End if
 Case 67,99 ' Alpha Key "C" or "c"

 if (CelsiusMode=False) then
 CelsiusMode=True
 Print "Turn Celsius Mode on"

 Print #2, "CT"
 else

 CelsiusMode=False
 Print "Turn Celsius Mode off"
 Print #2, "CF"
 End if

 Case 65,97 ' Alpha Key "A" or "A"
 if (AVRMode=False) then
 AVRMode=True
 Print "Turn Avr Internal Mode on"
 Print #2, "IT"
 else

 AVRMode=False
 Print "Turn AVR Internal Mode off"
 Print #2, "IF"
 End if
 Case 69,101 ' Alpha Key "E" or "e"

 if (EEMode=False) then
 EEMode=True

 Print "Turn EEMode Mode on, ***NEXT AVR RESTART***"
 Print #2, "E+"
 else

 EEMode=False
 Print "Turn EEMode Mode off, ***NEXT AVR RESTART***"
 Print #2, "E-"
 End if
 Case 82,114 ' Alpha Key "R" or "r"
 Print #2, "00"
 if (RoundMode=False) then
 RoundMode=True
 Print "Turn Rounding Mode on"
 else

 RoundMode=False
 Print "Turn Rounding Mode off"

 End if
 Case 86,118 ' Alpha Key "V" or "v"
 if (RawMode=False) then

 RawMode=True
 Print "Turn Raw Reading Mode on"

 Print #2, "RT"
 else
 RawMode=False

 Print "Turn Raw Reading Mode off"
 Print #2, "RF"
 End if

 Case 77,109 ' Alpha Key "M" or "m"
 Print "Setting minimal mode (Fahrenheit only)"
 if (DebugMode=True) then Print #2, "DB"
 DebugMode=False
 if (RoundMode=False) then Print #2, "00"
 DebugMode=True

 Print #2, "RF CF IF FT ST" ' Set minimal mode
 RawMode=False
 CelsiusMode=False
 AvrMode=False
 FahrenheitMode=True

Page: 150

 Case 66,98 ' Alpha Key "B" or "b"

 Print #2, "W-" ' restore from backup
 Case 83,115 ' Alpha Key "S" or "s"

 Print #2, "ST" ' print Status
 Case 81,113 ' Alpha Key "Q" or "q"

 Print #2, "ED" ' Dump EEPROM Storage
 Case 76,108 ' Alpha Key "L" or "l"
 Print #2, "??" ' print AVR help

 Case 85,117,26,122 ' Alpha Key "U" or "u"
 ' Send user defined String, String is defined in INI file

 ' This violates the 'Keep it shut' rule
 ' but this application only sends data once a minute
 Sleep (1000) ' allow up to one second second keypress
 K=ASC(InKey)

 if (K=49) and UserStr1<>"" then print #2, UserStr1
 if (K=50) and UserStr2<>"" then print #2, UserStr2
 if (K=51) and UserStr3<>"" then print #2, UserStr3
 if (K=52) and UserStr4<>"" then print #2, UserStr4
 if (K=53) and UserStr5<>"" then print #2, UserStr5
 case 60,44 ' keys '<' and ','

 OffsetVal=OffsetVal-0.25
 if OffsetVal=0 then OffsetVal=0.0001
 Print #2, "DO " & OffsetVal
 case 62,46 ' keys '>' and '.'
 OffsetVal=OffsetVal+0.25

 if OffsetVal=0 then OffsetVal=0.0001
 Print #2, "DO " & OffsetVal

The most challenging changes were to the ProcessData() function. In this case we needed to do two things. First
we need to capture the “Degree Offset” value when it is sent from the Arduino as part of the startup or when
the user requests the Status to be printed. Two variables were added to the function to support this effort.

 ' added for Thermometer Application
 Dim C as String ' used for first character of string
 Dim P as Byte = 0 ‘ index to location in string

‘
 '--- added for thermometer application --------

 ' check to see if this is a non-report line

 ' we do not want to add date and time to non-report lines
 ' secondly we want to capture the degree offset if we can
 C=Left(Buffer,1)
 if C=";" then ' we have a non-report line

 if instr(Buffer,"Offset:")>0 then ' check for Degree Offset
 P=Instr(Buffer, chr(9)) ' find TAB character
 OffsetVal=Val(trim(Mid(Buffer,P+1))) ' capture and convert value

 end if
 end if

Secondly we need to AVOID printing the data and time for non-report lines. The previously defined variable “C”
was added as a condition to the control statements.

 '------------ display write ------

 ' If (AddDateTime) then
 If ((AddDateTime) and (C <>";")) then

‘ . . .

 '------------ file write ------

 If SendToFile<>0 then
 ' setup for file flush
 LogFileHandle=cast(FILE Ptr,Fileattr(3,fbFileAttrHandle))
 ' If (AddDateTime) then

 If ((AddDateTime) and (C <>";")) then

Page: 151

Note:
During testing two bugs were found in the original Receiver program. These were corrected and the changes
were rolled back into the original code.

Page: 152

Conclusion

It has taken a lot more time than I thought --- months instead of days. In the end I believe that I have succeeded
in creating the device that I was desired. It will require some of amount of time and observation to verify that. It
is however something that can be built upon and enhanced.

Possible Enhancements

Temperature Accuracy

Increasing the accuracy is obvious. That comes down to three variables. The first is the sensor. The good news is
that if one has implemented the sensor extension via the 3.5mm audio jack then replacing the sensor is very
simple. If one shops carefully one might be able to obtain the more accurate versions at a discount. In the end I
found a supplier with the LM34CAH deeply discounted.

The second variable is the voltage reference. The internal reference that we are using is convenient but not very
accurate. Atmel’s specifications give it a variance of 10%. Replacing the Reference voltage source with a
precision external IC such as the LT1004-1.2 would yield a much more predictable output as well as raising the
top of the temperature range to 120 degrees Fahrenheit. This would require some additional capacitors and a
bit more wiring.

The last variable is the accuracy/quality of our temperature calibration source. The more accurate our reference
thermometer is the more accurate our calibration can be. An alternative is shaved ice bath calibration but that
only gives us one point of reference. NIST certified fractionally calibrated laboratory thermometers may
sometimes be acquired used from sources such as EBAY.com. These retail new in the range of US$300 to
US$600.

EEPROM Storage Mode

An alternate power source is needed for this mode. A convenient solution is a compatible iPhone charge or
battery pack. The Nano has 13 digital pins. The use of a resistor and a two position switch on one of these pins
might be a more convenient method of controlling the EEPROM storage mode. A more sophisticated storage
algorithm could be developed to increase the amount of data stored in this mode (especially in the case of the
ATMega168). One might want to incorporate a SD Card for massive data storage.

Number of sensors

 The Nano has 8 analog pins. It can support up to eight sensors. This would require a number of changes in the
software but the underlying structure is provided in both the code and protocol. A larger breadboard or shield
would be needed or perhaps even a dedicated purpose built circuit board.

Remote Data Collection

There are numerous wireless and Ethernet based modules available for the Arduino line. One of the more
interesting ones is called the Electric IMP. One of these might be used to allow collecting data from the Nano in
remote locations.

LCD Display

There are several LCD displays available and an Arduino library as well. The application could be converted to a
standalone application with its own power supply and display. In this case you might want to consider using a
UNO instead of a Nano.

GUI Interface

We have defined a protocol for communicating with the Arduino Temperature device. That protocol could be
used to develop a GUI (Graphic User Interface) program to control the device. Unfortunately at this time the

http://cds.linear.com/docs/en/datasheet/1004fb.pdf
http://www.gravitech.us/teadforarna.html
https://www.sparkfun.com/products/11401

Page: 153

availability of a stable cross platform GUI API may limit this to a single OS. That is the principle reason that the
program developed in this document targeted used a CUI (Character User Interface) environment.

Page: 154

Photo Gallery

These are some random pictures of the hardware used during the development.

This is an 305mm Omega -50 to 50 Degree Celsius full immersion spirit thermometer (Part number: GT-736620)
frozen in ice to check the calibration at zero degrees. It looks close enough (there is a different background
because I had to move it to get a close up). It was purchased from Omega but it is actually manufactured by Sper
Scientific in Taiwan. This is a new acquisition. I have not had the opportunity yet to compare it the Arduino but I
did compare it the BCR and the two seem to coincide with each other (for a change).

http://www.sperdirect.com/
http://www.sperdirect.com/

Page: 155

This was my first attempt to make a plug-in sensor that could have an extension. I tried to attach use CAT 6 LAN
cable with pieces of an 8 pin DIP socket. The cable was way too stiff even when striped down to two pair. Trying
to solder the wires to the tiny pins also proved to be a challenge. That is when I came up with the idea of using
the stereo cables. The missing pin was so that the sensor could not be plugged in backwards. Note that the
matching hole is filled with solder.

Page: 156

This was the primary development/testing platform. The cardboard box served two purposes. One was to
minimize the effects of any stray air currents. The other and more important was to hold the mercury bulb
thermometer in close proximity where I could read it.

Page: 157

This is a close up of the Nano on the breadboard in the cardboard box. The heat sink was added to the top of the
MPU to try and bring it closer to the air temperature (did not work). That is the LM34 temperature sensor in the
lower right corner.

BCR mercury bulb thermometer acquired via EBAY. As far as I can tell it is fairly accurate. It is a bit difficult to
read (due to the small size and my less than perfect 6 decade old eyes).

Page: 158

Appendix: Atmel MPU Table

These two tables list some of the common Atmel AVR MPU’s that you may encounter.

Atmel MPU
Sig Byte
0X000

Sig Byte
0X001

Sig Byte
0X002

FLASH
(bytes)

EEPROM
(bytes)

SRAM
(bytes)

Boot
Loader

I/O
Pins PWM ADC

ADC
Chns

USAR
T

Voltage
(range)

Speed
(max) USB Serial #

ATmega1280 0x1E 0x97 0x03 131,072 4,096 8,192 Yes 86 12 10 bits 16 4 2.7-5.5 16Mhz No No

ATmega1280V 0x1E 0x97 0x03 131,072 4,096 8,192 Yes 86 12 10 bits 16 4 1.8-5.5 8Mhz No No

ATmega1281 0x1E 0x97 0x04 131,072 4,096 8,192 Yes 54 6 10 bits 8 2 2.7-5.5 16Mhz No No

ATmega1281V 0x1E 0x97 0x04 131,072 4,096 8,192 Yes 54 6 10 bits 8 2 1.8-5.5 8Mhz No No

ATmega168 *** 0x1E 0x94 0x06 16,384 512 1,024 Yes 23 6 10 bits 6 or 8 1 2.7-5.5 20MHz No No

ATmega168A 0x1E 0x94 0x06 16,384 512 1,024 Yes 23 6 10 bits 6 or 8 ☑ 1 1.8-5.5 20MHz No No

ATmega168P 0x1E 0x92 0x0B 16,384 512 1,024 Yes 23 6 10 bits 6 or 8 ☑ 1 2.7-5.5 20MHz No No

ATmega168PA 0x1E 0x94 0x0B 16,384 512 1,024 Yes 23 6 10 bits 6 or 8 ☑ 1 1.8-5.5 20MHz No No

ATmega168PV 0x1E 0x92 0x0B 16,384 512 1,024 Yes 23 6 10 bits 6 or 8 ☑ 1 1.8-5.5 10MHz No No

ATmega16U2 0x1E 0x94 0x89 16,384 512 512 Yes 22 2 No No 1 2.7-5.5 16Mhz Yes Yes

ATmega16U4 0x1E 0x94 0x88 16,384 512 1280 Yes 26 8 10 bits 12 ☑ 1 2.7-5.5 16Mhz Yes Yes

ATmega2560 0x1E 0x98 0x01 262,144 4,096 8,192 Yes 86 12 10 bits 16 4 4.5-5.5 16Mhz No No

ATmega2560V 0x1E 0x98 0x01 262,144 4,096 8,192 Yes 86 12 10 bits 16 4 1.8-5.5 8Mhz No No

ATmega2561 0x1E 0x98 0x02 262,144 4,096 8,192 Yes 54 6 10 bits 8 2 4.5-5.5 16Mhz No No

ATmega2561V 0x1E 0x98 0x02 262,144 4,096 8,192 Yes 54 6 10 bits 8 2 1.8-5.5 8Mhz No No

ATmega328 0x1E 0x95 0x14 32,768 1,024 2,048 Yes 23 6 10 bits 6 or 8 ☑ 1 1.8-5.5 20MHz No No

ATmega328P *** 0x1E 0x95 0x0F 32,768 1,024 2,048 Yes 23 6 10 bits 6 or 8 ☑ 1 1.8-5.5 20MHz No No

ATmega32U2 0x1E 0x95 0x8A 32,768 1,024 1,024 Yes 22 2 No No 1 2.7-5.5 16Mhz Yes Yes

ATmega32U4 *** 0x1E 0x95 0x87 32,768 1,024 2560 Yes 26 8 10 bits 12 ☑ 1 2.7-5.5 16Mhz Yes Yes

ATmega48P 0x1E 0x92 0x0A 4,096 256 512 No 23 6 10 bits 6 or 8 1 2.7-5.5 20MHz No No

ATmega48PA 0x1E 0x92 0x0A 4,096 256 512 No 23 6 10 bits 6 or 8 1 1.8-5.5 20MHz No No

ATmega48PV 0x1E 0x92 0x0A 4,096 256 512 No 23 6 10 bits 6 or 8 1 1.8-5.5 10MHz No No

ATmega640 0x1E 0x96 0x08 64,096 4,096 8,192 Yes 86 12 10 bits 16 4 2.7-5.5 16Mhz No No

ATmega640V 0x1E 0x96 0x08 64,096 4,096 8,192 Yes 86 12 10 bits 16 4 1.8-5.5 8Mhz No No

Page: 159

Atmel MPU
Sig Byte
0X000

Sig Byte
0X001

Sig Byte
0X002

FLASH
(bytes)

EEPROM
(bytes)

SRAM
(bytes)

Boot
Loader

I/O
Pins PWM ADC

ADC
Chns

USAR
T

Voltage
(max)

Speed
(max) USB Serial #

ATmega88A 0x1E 0x93 0x0A 8,192 512 1,024 Yes 23 6 10 bits 6 or 8 1 1.8-5.5 20MHz No No

ATmega88P 0x1E 0x92 0x0F 8,192 512 1,024 Yes 23 6 10 bits 6 or 8 1 2.7-5.5 20MHz No No

ATmega88PA 0x1E 0x93 0x0F 8,192 512 1,024 Yes 23 6 10 bits 6 or 8 1 1.8-5.5 20MHz No No

ATmega88PV 0x1E 0x92 0x0F 8,192 512 1,024 Yes 23 6 10 bits 6 or 8 1 1.8-5.5 10MHz No No

ATmega8U2 0x1E 0x93 0x89 8,192 512 512 Yes 22 2 No No 1 2.7-5.5 16Mhz Yes Yes

ATtiny10 0x1E 0x90 0x03 1,024 No 32 No 4 2 8 bits 4 No 1.8-5.5 12MHz No No

ATtiny25 0x1E 0x91 0x08 2,048 128 128 Yes 6 2 10 bits 4 No 2.7-5.5 20MHz No No

ATtiny25V 0x1E 0x91 0x08 2,048 128 128 Yes 6 2 10 bits 4 No 1.8-5.5 10MHz No No

ATtiny4 0x1E 0x8F 0x0A 512 No 32 No 4 2 No No No 1.8-5.5 12MHz No No

ATtiny45 0x1E 0x92 0x06 4,096 256 256 Yes 6 2 10 bits 4 No 2.7-5.5 20MHz No No

ATtiny45V 0x1E 0x92 0x06 4,096 256 256 Yes 6 2 10 bits 4 No 1.8-5.5 10MHz No No

ATtiny5 0x1E 0x8F 0x09 512 No 32 No 4 2 8 bits 4 No 1.8-5.5 12MHz No No

ATtiny85 0x1E 0x93 0x08 8,192 512 512 Yes 6 2 10 bits 4 No 2.7-5.5 20MHz No No

ATtiny85V 0x1E 0x93 0x08 8,192 512 512 Yes 6 2 10 bits 4 No 1.8-5.5 16Mhz No No

ATtiny9 0x1E 0x90 0x08 1,024 No 32 No 4 2 No No No 1.8-5.5 12MHz No No

*** These chips are known to have been used in boards sold as Arduino Nano or labeled Arduino Nano compatible

☑ in the “ADC chns” column means that an internal temperature sensor is also included (I have not verified the rest).

These values were taken directly from the Atmel datasheets. Any inaccuracies are the results (particularly in the Speed and voltage columns) of
deciphering the sometimes confusing layout of those datasheets. Actual operating speed and voltage are directly linked.

 All Atmel microcontrollers have a three-byte signature code which identifies the device. Those are identified in this table as: Sig Byte. These are NOT
unique identifiers as several MPUs share the same signature bytes.

Depending on the MPU package the number of available ADC channels may vary.

USART is the acronym for “Universal asynchronous receiver/transmitter”. In this table it is used to indicate the number of hardware based TTL serial
communication channels supported.

http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter

Page: 160

Appendix: Arduino Check Speed

What if you have gotten an Arduino from a source off the internet that claimed it was a 16 Mhz device but you
think it might be somewhat slower. You look at the crystal first but it turns out that the speed is not listed or
illegible. Is there a way to verify the speed?

Yes there is. The Arduino IDE allows you to imbed assembly instructions. The one of interest he is called “nop”
and means no operation. It takes does nothing but requires exactly one machine cycle. Well how long does a
machine cycle take ?

At 20 MHS one cycle = 1/20,000,000 = 0.0000000500 seconds

At 16 MHS one cycle = 1/16,000,000 = 0.0000000625 seconds

At 12 MHS one cycle = 1/12,000,000 = 0.0000000833 seconds

At 8 MHS one cycle = 1/08,000,000 = 0.0000001250 seconds

At 6 MHS one cycle = 1/06,000,000 = 0.0000001667 seconds

At 4 MHS one cycle = 1/04,000,000 = 0.0000002500 seconds

The concept of this program is first check the internal clock of the Arduino by comparing a delay (10000)
instruction to an external clock. Then we execute 1,000 “nop” instructions and compare the time to what we
expect the value to be. Both numbers should be close. If not then you need to dig a bit further.

(The font size had to be reduced to get this in to MS word).

/* CheckSpeed */

/* what speed is the Arduino running at and how can it be verified ?

http://playground.arduino.cc/Main/AVR
"For shorter delays use assembly language call 'nop' (no operation).

 Each 'nop' statement executes in one machine cycle
 (at 16 MHz) yielding a 62.5 ns (nanosecond) delay. "

 one nano second = 1 second /1,000,000,000
 At 20 MHS one cycle = 1/20,000,000 = 0.0000000500

 At 16 MHS one cycle = 1/16,000,000 = 0.0000000625
 At 12 MHS one cycle = 1/12,000,000 = 0.0000000833
 At 8 MHS one cycle = 1/08,000,000 = 0.0000001250

 At 6 MHS one cycle = 1/06,000,000 = 0.0000001667
 At 4 MHS one cycle = 1/04,000,000 = 0.0000002500
*/

Page: 161

byte junk = 0; /* incoming serial byte */
unsigned long Time;

unsigned long Start;

void setup()

 {
 // First verify the timer is correct by check the number of seconds against an external clock

 Serial.begin (9600);
 Serial.println ("First test the internal clock.");
 Serial.println ("This will be a delay (10000).");

 Serial.println ("Compare to external clock for 10 seconds.");
 Serial.println ("The number printed shoud be:~10000008");

 Serial.print ("Send any key to begin: ");
 while (Serial.available() == 0); // wait for key from user
 while (Serial.available() > 0) {junk = Serial.read();} // collect and discard user input

 Start=micros();
 delay (10000);

 Time=micros()-Start;
 // Serial.println("Check Time 10 seconds: ");
 Serial.println (Time);

 Serial.println ();
 Serial.println ("Second test the machine cycles.");
 Serial.println ("This will be 1000 nop instructions.");

 Serial.println ("The number should be close to 50 for a 20 Mhz mpu.");
 Serial.println ("The number should be close to 60 for a 16 Mhz mpu.");

 Serial.println ("The number should be close to 80 for a 12 Mhz mpu.");
 Serial.println ("The number should be close to 120 for a 08 Mhz mpu.");
 Serial.println ("The number should be close to 250 for a 04 Mhz mpu.");

 Serial.print ("Send any key to begin: ");
 while (Serial.available() == 0); // wait for key from user

 while (Serial.available() > 0) {junk = Serial.read();} // collect and discard user input

 Start=micros();

 // each line is 10 nop instructions
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 //----1

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 //----2

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 //----3
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

Page: 162

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 //----4

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 //----5
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 //----6
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 //----7

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 //----8
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 //----9
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");

 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t");
 //----10

 Time=micros()-Start;
 Serial.println (Time);

 }

void loop ()

{;} // do nothing

Page: 163

Appendix: AVR ADC Sensor Registers

ADC Links:
http://www.marulaberry.co.za/index.php/tutorials/code/arduino-adc/ (Marulaberry Projects)
Arduino Playground, Internal Temperature Sensor (arduino.cc)

 AVR122: Calibration of the AVR's internal temperature reference (Atmel)
 Arduino / AVR internal temperature sensor interface (avdweb)
 ANALOG INPUTS (ANALOG TO DIGITAL CONVERTER) (QEEWiki)
 Analogue to Digital Conversion on an ATmega168 (protostack)

ADMUX, ADCH, ADCL are AVR eight bit registers (a “register” is special dedicated memory location in the heart of
the processor). The ADMUX register holds the operational settings for the Analog to Digital converter. ADSCRA is
the Control and Status register for the Analog to Digital converter. ADCH (high byte) and ADCL (low byte) are
used to store the result from the conversion.

Register bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

ADMUX REFS1 REFS0 ADLAR - MUX3 MUX2 MUX1 MUX0

ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

The top two bits of ADMUX (REFS1 and REFS0) control the source of the reference voltage.

REFS1 REFS0 Source Reference Voltage Source

0 0 External AREF Pin, Internal voltage reference turned off, Nano Pin number 18

0 1 Default AVcc with external capacitor on AREF pin

1 0 n/a Reserved

1 1 Internal*** Internal, 1.1 volts for ATmega168/328 or 2.56 for the ATMega8

*** The external AREF pin is directly connected to the ADC, and the reference voltage can be made more
immune to noise by connecting a capacitor between the AREF pin and ground. VREF can also be measured at the
AREF pin with a high impedance voltmeter.

The bottom four bits of ADMUX (MUX3, MUX2, MUX1 and MUX0) control the source of the voltage to be read.
The ADC is optimized for analog signals with an output impedance of approximately 10 k ohms or less.

MUX 3,2,1,0 (binary) Input Voltage Source

0000 ADC0, analog pin 0, Nano pin number 19, (A0)

0001 ADC1, analog pin 1, Nano pin number 20, (A1)

0010 ADC2, analog pin 2, Nano pin number 21, (A2)

0011 ADC3, analog pin 3, Nano pin number 22, (A3)

0100 ADC4, analog pin 4, Nano pin number 23, (A4)

0101 ADC5, analog pin 5, Nano pin number 24, (A5)

0110 ADC6, analog pin 5, Nano pin number 24, (A6)

0111 ADC7, analog pin 6, Nano pin number 25, (A7)

1000 ADC8, analog pin 7, Nano pin number 26, (Internal Temperature Sensor)

1001 – 1101 (reserved)

1110 1.1 volt (internal reference voltage)

1111 0 volts (ground)

ADALAR controls how the Analog to Digital converter stores the result in the two registers ADCH and ADCL. One
must be careful when reading these two storage registers. Reading ADCH causes the ADC to update. So always
read ADHL first. The second mode is useful if you only want an 8 bit AD conversion and read ADHC. You might
use this if you are trying to build a really fast routine where speed is more important than range (perhaps a
software Oscilloscope).

http://www.marulaberry.co.za/index.php/tutorials/code/arduino-adc/
http://playground.arduino.cc/Main/InternalTemperatureSensor
http://www.atmel.com/Images/doc8108.pdf
http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html
https://sites.google.com/site/qeewiki/books/avr-guide/analog-input
http://www.protostack.com/blog/2011/02/analogue-to-digital-conversion-on-an-atmega168/

Page: 164

ADALAR Register bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 ADCH - - - - - - ADC9 ADC8

0 ADCL ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0

1 ADCH ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2

1 ADCL ADC1 ADC0 - - - - - -

Now about the ADSCSRB register … I found this one a bit confusing.

Register bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

ADEN (Analog to Digital Enable) enables the AD converter subsystem. This bit needs to be set before any
conversion takes place.
ADSC (Analog to Digital Start) is set to 1 when you want to start an AD conversion process. When the conversion
is finished, the value reverts back to 0.
ADATE (Analog to Digital Auto Trigger Enable) is used to set the mode of operation. The default is 0 for single
read. The alternative is a “triggered” operation (see ADCSRB below).
ADIF (Analog to Digital Interrupt Finished)
ADIE (Analog to Digital Interrupt Enable)
ADPS, ADPS1 and ADPS0 are used to specify a system clock division factor for ADC speed.

ADPS 2,1,0 (binary) Division Factor

000 2

001 2

010 4

011 8

100 16

101 32

110 64

111 128

The ADC has a recommended maximum ADC clock speed of 200 kHz. “However, frequencies up to 1 MHz
(50,000 samples per second) do not reduce the ADC resolution significantly”. The default division factor is 128:

At 16 Mhz: 16,000,000/128 = 125,000 (or 125 kHz or approximately 8,621 samples per second)

The ATmega168 and ATmega328 have an additional ADC control register ADSCRB to use with “Free Running”
mode. We will not be using it but for the sake of completeness the description is included.

Register bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

ADCSRB - ACME - - - ADTS2 ADTS1 ADTS0

ACME (Analog Comparator Multiplexer Enable) must be set to 1 to use the ADC multiplexer.
The bottom three bits of ADCSRB (ADTS2, ADTS1 and ADTS0) set the trigger source to begin an ADC conversion.

ADTS 2,1,0 (binary) ADC Trigger Source

000 Free Running. When a ADC conversion is done another begins
This is the same as as ATMega. (note: a conversion takes ~ 13.5 clock cycles)

001 Analog Comparator (compares

010 External Interrupt request 0

011 Timer/Counter0 Compare Match A

100 Timer/Counter0 Overflow

101 Timer/Counter1 Compare Match B

110 Timer/Counter1 Overflow

111 Timer/Counter1 Capture Event

Page: 165

Appendix: ADC Function test

I have some “Iduino Nano version 3.0” boards with Atmega168 mpu chips. I was perplexed that I was getting
strange readings from the internal temperature sensor. So I wrote this program to test the operation of the ADC
using the internal references. Then I found out that the ATmega168 does NOT have an internal temperature
sensor. Still maybe the program will be useful.

Main Program Code:

/* Program to test Internal function ADC using internal references */
unsigned long Time;
float save;

void setup()
 { word raw;

 Serial.begin(9600);
 // put arduino board description here
 Serial.println("Board Description ----------------------------");

 Serial.println();

 raw = avrRawTemp(1024);

 Serial.println("Read Internal Temp Sensor (1.1V internal ref).");
 Serial.print("This reading should be on the order of 325-400: ");

 Serial.println(raw);
 Serial.println();

 raw = avrBandGap1(1024);
 Serial.println("Read Internal BandGap (1.1V internal ref).");

 Serial.print("This reading shoud be 1023: ");
 Serial.println(raw);
 Serial.println();

 raw = avrBandGap2(1024);
 Serial.println("Read Internal BandGap (Default 5V ref).");
 Serial.print("This reading should be on the order of 220-225: ");
 Serial.println(raw);
 Serial.println();

Page: 166

 raw = avrGround1(1024);
 Serial.println("Read Internal Ground (1.1V internal ref).");

 Serial.print("This reading should be zero (0): ");
 Serial.println(raw);

 Serial.println();

 raw = avrGround2(1024);

 Serial.println("Read Internal Ground (Default 5V ref): ");
 Serial.print("This reading should be zero (0): ");

 Serial.println(raw);
 Serial.println();
 }

void loop() {

}

Function Code:

// cbi and sbi are standard (AVR) methods for setting,

// or clearing, bits in PORT (and other) variables.
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

//--

word avrRawTemp(word samples)
 { // gets raw reading in the range 0 to 1023 from internal temperature sensor
 // using internal volt 1.1 voltage ref
 // Should return ~325-400 for normal enviroment temperatures
 unsigned long RawSum=0; // used to sum samples for averaging
 word RawTemp=0; // used to accumalate 10 bit ADC readings
 word test=0; // used to count samples
 byte exp=0; // samples = 2 to the exp power, used as
shift operand
 unsigned long Start=micros(); // this was used for benchmark timeing

 // set system clock devisor to 128
 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.

 sbi(ADCSRA, ADPS2); // bit 2 of ADCSRA, system clock devisor
 sbi(ADCSRA, ADPS1); // bit 1 of ADCSRA, system clock devisor
 sbi(ADCSRA, ADPS0); // bit 0 of ADCSRA, system clock devisor

 cbi(ADCSRA, ADATE); // bit 5 of ADCSRA, disable auto trigger mode
 sbi(ADCSRA, ADEN); // bit 7 of ADCSRA, enable ADC

 // turn on internal reference, right-shift ADC buffer,ADC channel = internal temp sensor

 ADMUX = B11001000; // High Nibble: 1100 = internal 1.1 Vref
 // Low Nibble: 1000 = ADC chn 8 Temp sensor
 delay(10); // wait a bit for the analog reference to stabilize

 // as "C" lacks an expodential or power function (or operator)
 // we must use a resort to loops to calculate the binary exponent
 while (samples>1) { samples /=2; exp++;} // calculate power of 2
 samples=1; // make sure samples = 1 (not 0)
 while (test++ < exp) { samples *=2;} // set samples value to power of two

 test=0; // reset test because we have abused it
 while (test++ < samples) // oversampling loop (for averaging)
 { ADCSRA |= _BV(ADSC); // start the conversion by setting ADSC=1
 while (bit_is_set(ADCSRA, ADSC)); // ADSC is cleared when the conversion
finishes

Page: 167

 RawTemp = (ADCL | (ADCH << 8)); // get the ADC reading (low byte first)

 RawSum += RawTemp; // accumalate 10 bit ADC value
 }

 Time=micros()-Start; // record benchmark time
 return ((RawSum)>>exp); // averag by shifting bit position,

 // LSBs lost
 }

//--
word avrBandGap1(word samples)

 { // gets raw reading in the range 0 to 1023 from internal Band Gap reference
 // using internal volt 1.1 voltage ref
 // Should return 1023
 unsigned long RawSum=0;

 word RawTemp=0;
 word test=0;
 byte exp=0;
 unsigned long Start=micros();

 sbi(ADCSRA, ADPS2);

 sbi(ADCSRA, ADPS1);
 sbi(ADCSRA, ADPS0);
 cbi(ADCSRA, ADATE);
 sbi(ADCSRA, ADEN);

 ADMUX = B11001110; // High Nibble: 1100 = internal 1.1 Vref
 delay(10); // Low Nibble: 1110 = 1.1V BandGap (Vbg)

 while (samples>1) { samples /=2; exp++;}
 samples=1;

 while (test++ < exp) { samples *=2;}

 test=0;
 while (test++ < samples)
 { ADCSRA |= _BV(ADSC);
 while (bit_is_set(ADCSRA, ADSC));
 RawTemp = (ADCL | (ADCH << 8));
 RawSum += RawTemp;
 RawTemp=0;
 }

 Time=micros()-Start;
 return ((RawSum)>>exp);

 }

//--

word avrBandGap2(word samples)
 { // gets raw reading in the range 0 to 1023 from internal Band Gap reference

 // using internal volt ref AVCC= 5 voltage ref
 // should return ~225
 unsigned long RawSum=0;

 word RawTemp=0;
 word test=0;
 byte exp=0;
 unsigned long Start=micros();

 sbi(ADCSRA, ADPS2);
 sbi(ADCSRA, ADPS1);
 sbi(ADCSRA, ADPS0);
 cbi(ADCSRA, ADATE);
 sbi(ADCSRA, ADEN);

 ADMUX = B01001110; // High Nibble: 0100 = internal 5.0 Vref
 delay(10); // Low Nibble: 1110 = 1.1V BandGap (Vbg)

 while (samples>1) { samples /=2; exp++;}

Page: 168

 samples=1;

 while (test++ < exp) { samples *=2;}

 test=0;
 while (test++ < samples)

 { ADCSRA |= _BV(ADSC);
 while (bit_is_set(ADCSRA, ADSC));
 RawTemp = (ADCL | (ADCH << 8));

 RawSum += RawTemp;
 }

 Time=micros()-Start;
 return ((RawSum)>>exp);
 }

//--
word avrGround1(word samples)
 { // gets raw reading in the range 0 to 1023 from from internal ground reference
 // using internal volt 1.1 voltage ref
 // This should return zero
 unsigned long RawSum=0;

 word RawTemp=0;
 word test=0;
 byte exp=0;
 unsigned long Start=micros();

 sbi(ADCSRA, ADPS2);
 sbi(ADCSRA, ADPS1);

 sbi(ADCSRA, ADPS0);
 cbi(ADCSRA, ADATE);
 sbi(ADCSRA, ADEN);

 ADMUX = B11001111; // High Nibble: 1100 = internal 1.1 Vref
 delay(10); // Low Nibble: 1111 = Internal Ground Ref

 while (samples>1) { samples /=2; exp++;}
 samples=1;
 while (test++ < exp) { samples *=2;}

 test=0;
 while (test++ < samples)

 { ADCSRA |= _BV(ADSC);
 while (bit_is_set(ADCSRA, ADSC));

 RawTemp = (ADCL | (ADCH << 8));
 RawSum += RawTemp;
 }

 Time=micros()-Start;
 return ((RawSum)>>exp);

 }

//--

word avrGround2(word samples)
 { // gets raw reading in the range 0 to 1023 from from internal ground reference
 // using internal volt ref AVCC= 5 voltage ref
 // This should return zero

 unsigned long RawSum=0;
 word RawTemp=0;
 word test=0;
 byte exp=0;
 unsigned long Start=micros();

 sbi(ADCSRA, ADPS2);
 sbi(ADCSRA, ADPS1);
 sbi(ADCSRA, ADPS0);
 cbi(ADCSRA, ADATE);
 sbi(ADCSRA, ADEN);

Page: 169

 ADMUX = B01001111; // High Nibble: 0100 = internal 5.0 Vref
 delay(10); // Low Nibble: 1111 = Internal Ground Ref

 while (samples>1) { samples /=2; exp++;}

 samples=1;
 while (test++ < exp) { samples *=2;}

 test=0;
 while (test++ < samples)

 { ADCSRA |= _BV(ADSC);
 while (bit_is_set(ADCSRA, ADSC));
 RawTemp = (ADCL | (ADCH << 8));
 RawSum += RawTemp;

 }
 Time=micros()-Start;
 return ((RawSum)>>exp);
 }

Page: 170

Appendix: Disabling Auto Reset

Someone in their infinite wisdom decided that the Arduino should automatically reset every time the serial port
is opened by the PC.

Reference: http://arduino.cc/en/Main/ArduinoBoardNano

Automatic (Software) Reset

Rather then requiring a physical press of the reset button before an upload, the Arduino Nano is

designed in a way that allows it to be reset by software running on a connected computer. One of

the hardware flow control lines (DTR) of the FT232RL is connected to the reset line of the

ATmega168 or ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the

reset line drops long enough to reset the chip. The Arduino software uses this capability to

allow you to upload code by simply pressing the upload button in the Arduino environment. This

means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-

coordinated with the start of the upload.

This setup has other implications. When the Nano is connected to either a computer running Mac OS

X or Linux, it resets each time a connection is made to it from software (via USB). For the

following half-second or so, the bootloader is running on the Nano. While it is programmed to

ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first

few bytes of data sent to the board after a connection is opened. If a sketch running on the

board receives one-time configuration or other data when it first starts, make sure that the

software with which it communicates waits a second after opening the connection and before

sending this data.

That makes it easier to use with the IDE because the IDE can reset it to upload a new program. This sounds like a
fine idea if the only time that the device is attached to the PC is when it is being programed. The are however
some situations where the auto reset feature is a problem: However two implications that are not mentioned in
the Arduino guide are:

The Arduino Nano (and most other Arduino boards) cannot be used with a ISCP hardware debugger.
The Arduino Nano (and most other Arduino boards) cannot be used as an ISCP programmer.

A third situation is a the target application where the Nano is ALWAYS attached to the PC and one would rather
not have it resetting every time the open serial port is opened so one could uses multiple applications to
communicate with the device. Some versions of the Arduino have a small trace that can be cut to disable this
irritating behavior but appears that GRAVITECH did not consider this a useful feature. There are a couple of
alternatives:

Reference: http://playground.arduino.cc/Main/DisablingAutoResetOnSerialConnection

“Stick a 120 ohm resistor in the headers between 5v and reset (you can find these on the isp

connector too). 120 is hard to find so just combine resistors. Don't go below 110 ohms or above

124 ohms, and don't do this with an isp programmer attached. You can just pull out the resistor

when you want auto-reset back.”

 “Another way to avoid autoreset is connecting a capacitor between reset pin and ground. 10 uf

should be enough. The ATmega168 is reset by pulsing its reset pin to GND. The Arduino IDE
itself cannot create such pulses, but by setting the DTR line to LOW and adding a capacitor (R3

on the pcb, marked red), the reset pin gets sucked to LOW until the capacitor is charged through

the internal pull up resistor and R1 - which resets the chip. This works in the same spirit as

adding "auto reset" to a chip for proper startup after connecting power.”

Neither method is useful in the case of using a hardware debugger.

http://arduino.cc/en/Main/ArduinoBoardNano
http://playground.arduino.cc/Main/DisablingAutoResetOnSerialConnection

Page: 171

This is a drawing of the traces on the underside of the Nano board (looking from the bottom point of view). The
rest circuit traces are shown in orange. The offending trace is shown in red inside the yellow highlighted circle.
Cut this trace and Auto Reset will be disabled. The rest of the reset circuit (and functions) will be left intact.

For reference this is the top of the Nano board (looking from the top point of view) with the reset circuit traces

shown in orange.

Page: 172

Appendix: Arduino ElfDump

This is a small utility written in FreeBasic to read the Arduino preferences file and find the build.path. Then it
searches for the matching sketch directory and writes a CMD file to use avr-readelf to create a header file
(foo.hdr.txt) and avr-objdump to create an assembler file (foo.asm.txt). The CMD files can be edited to change
the options. The program is open source and public domain. The command lines for these two utilities are
somewhat long and complex. This simplifies the task of creating those command lines. This is a sample of the
output “.CMD” file. The command lines are “wrapped” as three lines in the example. Note that the basic options
for each of the utilities are included as well.

"C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\avr-objdump.exe" -S

"c:\users\your.name\documents\arduino\build\ThermometerOne.cpp.elf" > "c:\users\ your.name

\documents\arduino\sketches\ThermometerOne\ThermometerOne.asm.txt"

"C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\avr-readelf.exe" -e "c:\users\ your.name

\documents\arduino\build\ThermometerOne.cpp.elf" > "c:\users\ your.name
\documents\arduino\sketches\ThermometerOne\ThermometerOne.hrd.txt"

exit

avr-objdump

Options are:
 -a, --archive-headers Display archive header information
 -f, --file-headers Display the contents of the overall file header

 -p, --private-headers Display object format specific file header contents
 -h, --[section-]headers Display the contents of the section headers

 -x, --all-headers Display the contents of all headers
 -d, --disassemble Display assembler contents of executable sections
 -D, --disassemble-all Display assembler contents of all sections

 -S, --source Intermix source code with disassembly
 -s, --full-contents Display the full contents of all sections requested

 -g, --debugging Display debug information in object file
 -e, --debugging-tags Display debug information using ctags style
 -G, --stabs Display (in raw form) any STABS info in the file

 -W, --dwarf Display DWARF info in the file
 -t, --syms Display the contents of the symbol table(s)

 -T, --dynamic-syms Display the contents of the dynamic symbol table
 -r, --reloc Display the relocation entries in the file
 -R, --dynamic-reloc Display the dynamic relocation entries in the file

readelf
Options are:

 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I
 -h --file-header Display the ELF file header

 -l --program-headers Display the program headers
 -S --section-headers Display the sections' header
 -g --section-groups Display the section groups

 -t --section-details Display the section details
 -e --headers Equivalent to: -h -l -S

 -s --symbols Display the symbol table
 -n --notes Display the core notes (if present)
 -r --relocs Display the relocations (if present)

 -u --unwind Display the unwind info (if present)
 -d --dynamic Display the dynamic section (if present)
 -V --version-info Display the version sections (if present)

 -A --arch-specific Display architecture specific information (if any).
 -c --archive-index Display the symbol/file index in an archive

 -D --use-dynamic Use the dynamic section info when displaying symbols

This is the FreeBasic Source code for the utility.

/' small propgram to automate dumping dissassebly from elf file

<ARDUINOPATH>/hardware/tools/avr/bin/avr-objdump -d
 <BUILDPATH>/<PROJECTNAME>.cpp.elf > <PROJECTNAME>.asm

Source code is placed in public domain: August 2013, Lewis Balentine, lewis@keywild.com
Target compiler: FreeBasic, http://www.freebasic.net/

Note: This is written to run as a console application under Windows.
 I suspect numerous changes would be needed for linux.

Page: 173

'/

' --
Include "dir.bi"

dim HomePath as string '' users HOMEDRIVE and HOMEPATH
dim AppDataPath as string '' users HOMEDRIVE and APPDATA
dim PrefFile as string '' users's Arduino preferencesfile

Dim SketchPath as String '' users's Arduino Sketchbook
Dim BuildPath as String '' Arduino build directory

Dim ElfFile as String '' Elf file name (with path)
Dim ProjName as String '' Arduino project name
Dim AvrObjDump as String '' Avr-ObjDump.exe with full path

Dim AvrReadElf as String '' Avr-readelf.exe with full path
Dim CmdFile as String '' CMD file with full path

Dim Cr as String '' Carriage return/line feed (ASCII 13,10)
Dim HelpStr as String '' command line Help
Dim DmpOpts as String '' Options for Avr-ObjDump.exe

Dim ElfOpts as String '' Options for Avr-readelf.exe

Dim Buffer as String '' working buffer for reading files
Dim TempStr as String '' working string

Dim P as Integer '' position from instr
' --

Cr=chr(13) & chr(10)
' --
HelpStr= "Arduino-elf-dump.exe is a small program written in FreeBasic to automate the" & Cr & _

 "process of creating dume files from the elf file produced by the Ardunio IDE." & Cr & _
 "The program attempts to write a CMD file to the project directory and execute" & Cr & _

 "it. The CMD file allows the Avr-ObjDump and/or Avr-readelf options to be" & Cr & _
 "edited as desired. The dump files are also placed in the project directory. " & Cr & _
 Cr & _

 "This program requires that 'build.path' be specified in the user's Ardunio" & Cr & _
 "preferences file. Please set up a directory for builds and add it to your " & Cr & _

 "preferences file.Please also set preproc.save_build_files to true." & Cr & _
 Cr & _
 "The program searches the following directories for Avr-ObjDump & Avr-readelf:" & Cr & _

 " C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\" & Cr & _
 " C:\Program Files\Arduino\hardware\tools\avr\bin\" & Cr & _

 " C:\Arduino\hardware\tools\avr\bin\" & Cr & _
 " C:\bin\Arduino\hardware\tools\avr\bin\" & Cr & _
 Cr & _

 "The program searches the following directories for project directory:" & Cr & _
 " Sketchbook (as defined in Arduino preferences file)" & Cr & _

 " <users home path>\Documents\Arduino" & Cr & _
 " <users home path>\My Documents\Arduino" & Cr & _
 " <users home path>\Documents\Projects" & Cr & _

 " <users home path>\My Documents\Projects" & Cr & _
 "If project directory can be found then the CMD file is written to the build" & Cr & _

 "is written to the build directory." & Cr & _
 Cr & _
 "There are no command line options." & Cr & _

 "This program is Public Domain open source." & Cr
' --
DmpOpts= Cr & Cr & "exit" & Cr & Cr & _

 "avr-objdump" & Cr & _
 "Options are:" & Cr & _

 " -a, --archive-headers Display archive header information" & Cr & _
 " -f, --file-headers Display the contents of the overall file header" & Cr & _
 " -p, --private-headers Display object format specific file header contents" & Cr & _

 " -h, --[section-]headers Display the contents of the section headers" & Cr & _
 " -x, --all-headers Display the contents of all headers" & Cr & _

 " -d, --disassemble Display assembler contents of executable sections" & Cr & _
 " -D, --disassemble-all Display assembler contents of all sections" & Cr & _
 " -S, --source Intermix source code with disassembly" & Cr & _

 " -s, --full-contents Display the full contents of all sections requested" & Cr & _
 " -g, --debugging Display debug information in object file" & Cr & _

 " -e, --debugging-tags Display debug information using ctags style" & Cr & _
 " -G, --stabs Display (in raw form) any STABS info in the file" & Cr & _
 " -W, --dwarf Display DWARF info in the file" & Cr & _

 " -t, --syms Display the contents of the symbol table(s)" & Cr & _
 " -T, --dynamic-syms Display the contents of the dynamic symbol table" & Cr & _

 " -r, --reloc Display the relocation entries in the file" & Cr & _
 " -R, --dynamic-reloc Display the dynamic relocation entries in the file" & Cr & Cr
' --

ElfOpts= Cr & _
 "readelf" & Cr & _

 "Options are:" & Cr & _
 " -a --all Equivalent to: -h -l -S -s -r -d -V -A -I" & Cr & _

Page: 174

 " -h --file-header Display the ELF file header" & Cr & _

 " -l --program-headers Display the program headers" & Cr & _
 " -S --section-headers Display the sections' header" & Cr & _

 " -g --section-groups Display the section groups" & Cr & _
 " -t --section-details Display the section details" & Cr & _
 " -e --headers Equivalent to: -h -l -S" & Cr & _

 " -s --symbols Display the symbol table" & Cr & _
 " -n --notes Display the core notes (if present)" & Cr & _

 " -r --relocs Display the relocations (if present)" & Cr & _
 " -u --unwind Display the unwind info (if present)" & Cr & _
 " -d --dynamic Display the dynamic section (if present)" & Cr & _

 " -V --version-info Display the version sections (if present)" & Cr & _
 " -A --arch-specific Display architecture specific information (if any)." & Cr & _

 " -c --archive-index Display the symbol/file index in an archive" & Cr & _
 " -D --use-dynamic Use the dynamic section info when displaying symbols" & Cr
' --

' check for command line arguments

TempStr = Command (-1)
If TempStr <> "" then
 Print HelpStr

 End 0
End if

' Get users HOMEDRIVE and HOMEPATH from enviroment

HomePath = Environ("HomeDrive") & Environ("HomePath") & "\"
' Print HomePath

' Get users HOMEDRIVE and APPDATA from enviroment
AppDataPath = Environ("AppData") & "\"

' Print AppDataPath

' Find Arduino preferences file
' <AppData>\Arduino\preferences.txt
PrefFile=AppDataPath & "\Arduino\preferences.txt"

If Dir(PrefFile) = "" then
 Print "**ERROR** Can not find Ardunio preferences file:"

 Print PrefFile
 Sleep ' sleep waits for a keypress before continueing
 End -1

End If

'Open file and look for build.path & sketchbook.path
' build.path=<users path>\Documents\Arduino\Build
' sketchbook.path=<users path>\Documents\Arduino

' preproc.save_build_files=true
Open PrefFile for input as #1

If Err>0 Then
 Print "**Error** opening Ardunio preferences file:"
 Print PrefFile

 sleep
 End -1
End If

BuildPath=""

SketchPath=""
Do Until EOF(1) '' loop until we have reached the end of the file
 Line Input #1, buffer '' read a line of text

 buffer=Lcase(Trim(buffer)) '' we should not need this but ...
 If InStr (buffer, "build.path")=1 then BuildPath=buffer

 If InStr (buffer, "sketchbook.path")=1 then SketchPath=buffer
Loop
Close #1

' for this to work we reuire that a build path be set in the Ardunio preferences file

If Len(BuildPath) < 20 then
 Print "**ERROR** This program requires that the 'build.path' is specified"
 Print " in the user's Ardunio preferences file. Please set up a"

 Print " directory for builds and add it to your preferences file."
 Print " Example:"

 Print " build.path=" & HomePath & "Documents\Arduino\Build"
 Print ""
 Print " Please also set preproc.save_build_files to true."

 Print ""
 Print "Your Ardunio preferences file is:"

 Print PrefFile
 Sleep

Page: 175

 End -1

End If

' Now go find the the build
' First we need to strip off "build.path="
P=InStr (BuildPath, "=")

BuildPath = Trim(Mid (BuildPath, P+1)) & "\"
ElfFile =""

ElfFile = Dir (BuildPath & "*.elf")
If ElfFile ="" then
 Print "**ERROR** Can not find '*.elf' file in build directory:"

 Print BuildPath
 Sleep

 End -1
End If

' Extract project name ... example: HelloWorld_001.cpp.elf
' this should be everything in front of .cpp.elf

P=InStr (ElfFile, ".cpp.elf")
ProjName=Trim(Left (ElfFile,P-1))
' Now see if we can find the project directory

if SketchPath<>"" then
 P=InStr (SketchPath, "=")

 ' SketchPath = Trim(Mid (SketchPath, P+1)) & "\sketches\" & ProjName
 TempStr = Trim(Mid (SketchPath, P+1)) & "\sketches\" & ProjName & "\"
end if

if dir(TempStr & ProjName & ".ino")="" then
 ' try an alternative

 TempStr = Trim(Mid (SketchPath, P+1)) & "\" & ProjName &"\"
end if
if dir(TempStr & ProjName & ".ino")="" then

 ' try an alternative
 TempStr = HomePath & "Documents\Projects\" & ProjName &"\"

end if
if dir(TempStr & ProjName & ".ino")="" then
 ' try an alternative

 TempStr = HomePath & "My Documents\Projects\" & ProjName &"\"
end if

if dir(TempStr & ProjName & ".ino")="" then
 ' try an alternative
 TempStr = HomePath & "Documents\Arduino\" & ProjName &"\"

end if
if dir(TempStr & ProjName & ".ino")="" then

 ' try an alternative
 TempStr = HomePath & "My Documents\Arduino\" & ProjName &"\"
end if

If dir(TempStr & ProjName & ".ino")="" then
 ' instead of an error we are going to dump the assembly output to
 ' the build directory

 SketchPath=BuildPath
else
 SketchPath=TempStr

end If

' now find the avr-objdump
' <ARDUINOPATH>/hardware/tools/avr/bin/avr-objdump
' C:\Program Files (x86)\Arduino\hardware\tools\avr\bin

AvrObjDump=""
TempStr = "C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\avr-objdump.exe"

If Dir(TempStr)<>"" then AvrObjDump=TempStr
TempStr = "C:\Program Files\Arduino\hardware\tools\avr\bin\avr-objdump.exe"
If Dir(TempStr)<>"" then AvrObjDump=TempStr

TempStr = "C:\Arduino\hardware\tools\avr\bin\avr-objdump.exe"
If Dir(TempStr)<>"" then AvrObjDump=TempStr

TempStr = "C:\bin\Arduino\hardware\tools\avr\bin\avr-objdump.exe"
If Dir(TempStr)<>"" then AvrObjDump=TempStr
If AvrObjDump ="" then

 Print "**ERROR** Can not find 'avr-objdump.exe'."
 Print "Searched:"

 Print " C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\"
 Print " C:\Program Files\Arduino\hardware\tools\avr\bin\"
 Print " C:\Arduino\hardware\tools\avr\bin\"

 Print " C:\bin\Arduino\hardware\tools\avr\bin\"
 Sleep

 End -1
End If

Page: 176

P=Instr(AvrObjDump,"avr-objdump.exe")

AvrReadElf=Left(AvrObjDump,P-1) & "avr-readelf.exe"

' Now build our command string ...
CmdFile = SketchPath & ProjName & "_dump.cmd"
open CmdFile for output as #1

TempStr = chr(34) & AvrObjDump & chr(34) & " -S "
TempStr = TempStr & chr(34) & BuildPath & ElfFile & chr(34)

TempStr = TempStr & " > " & chr(34) & SketchPath & ProjName & ".asm.txt" & chr(34)
Print #1, TempStr
TempStr = chr(34) & AvrReadElf & chr(34) & " -e "

TempStr = TempStr & chr(34) & BuildPath & ElfFile & chr(34)
TempStr = TempStr & " > " & chr(34) & SketchPath & ProjName & ".hrd.txt" & chr(34)

Print #1, TempStr
Print #1, DmpOpts
Print #1, ElfOpts

Close #1
Shell CmdFile

end 0

Page: 177

Appendix: Arduino Receiver

Arduino Receiver is an enhanced version of the Serial Port Monitor program presented in the main text. The
program was developed and tested under the Windows 7 operating system. It is also known to be fully
functional on Windows XP. It was written in a manner such that it should also function under X86 Linux
operating systems with appropriate COM port strings in the INI file but has not been tested in this environment.
This program (along with the source code) is available for download from:

http://www.keywild.com/arduino/index.htm (current version)

A copy was posted in The Arduino “Other Software Development: Arduino Receiver, PC RS-232 data logger”
Forum Thread at:

 http://forum.arduino.cc/index.php?topic=187396.0 (Version 1.5.5)

Program Name: Arduino_Receiver.exe

Program Vers: 1.5.5

Program Date: September 13, 2013

Author: Lewis Balentine, http://www.keywild.com

This program placed in the Public Domain by the author.

No warranties of any kind either expressed or implied.

Please read 'Arduino_Receiver.ini' & 'Arduino_Receiver_Notes.txt' for help.

arduino_reciever(1.5.5).zip

ZIP file contains EXE, INI, TXT and BAS(source) files.

Description:

This program monitors a serial port and displays the received ASCII lines in a console window.

All Parameters are controlled by a INI file of the same name but there is a command line option

to use an alternate INI file. Options in the INI file include:

...PortStr = All parameters for COM port (Range=ANY: see notes for detailed options)

...SwitchHrs = Sequential log file names rotated on the hour (range 0-24 hours, default 0))

...ApndTime = Appends Date/time to front of each line of received data (default false)

...StdOut = Suppress status messages. Error message are always output. (default false)

...FileStr = If defined will send data to a log file as well as Standard Out (default False)

...Delimiter = Specify delimiter to go between Date/Time and received data (default TAB)

...EOL = Specify end of line character for output file (CR/LF, CR, or LF)

...ExitKey = Define specific key for exit (default Escape Key)

PortStr is the ONLY required parameter line.

All INI parameter lines, port Options and error codes are fully Documented in included files.

http://www.keywild.com/arduino/index.htm
http://forum.arduino.cc/index.php?topic=187396.0

Page: 178

 If PortStr is the only INI Parameter line used then operation is exactly like the Serial Port Monitor program with
the exception that Error Checking has been implemented for all COM port and File Input/Output operations.
Sixteen (16) error codes/messages are defined to assist in trouble shooting. Exit codes are produced on every
exit except abnormal termination (i.e. program closed by Operation System).

' exit code 50: normal exit, user pressed exit key

' exit code 51: normal exit, End Of Transmission received

' exit code 52: normal exit, user requested help

' exit code 53: ini file not found

' exit code 54: error opening ini file

' exit code 55: error reading ini file

' exit code 56: error closing ini file

' exit code 57: PortStr not found in ini file

' exit code 58: error opening COM port

' exit code 59: error opening output file

' exit code 60: error reading COM port

' exit code 61: error writing output file

' exit code 62: error closing COM port

' exit code 63: error closing output file

' exit code 64: error closing output file during file switch

' exit code 65: error opening output file during file switch

File flushing takes place on every log file write to guard against data-loss in the event of abnormal exit, power
interruption or similar problems. Existing log files are NOT overwritten and may be opened by other applications
during logging operations. All output goes to “standard out” which defaults to the console window display.
The source code is HEAVILY commented and written to be used as a template for other applications. The source
code is broken into three files:
 Arduino_Receiver.Bas Main source code
 Arduino_Receiver_Globals.Bas Global Variables (shared among all modules/functions)
 Arduino_Receiver_Functions.Bas Functions used by Main Program

The main program code is 20 lines long:

' ---- libraries --

#include Once "string.bi" ' needed for format function

#include once "crt.bi" ' for file flush (see notes)

#include once "file.bi" ' for file flush (see notes)#include once '

include global varriables

#include once "Ardunio_Receiver_Globals.Bas" ' Global Variables

#include once "Arduino_Receiver_Functions.bas" ' function defined for this prog

'------ main program code --

VoidByte = InitalizeGlobals()

' find, read and parse INI file

If ReadIniFile()<>0 then End(ExitCode)

' evaluate global variables read from INI

If EvalGlobals()<>0 then End(ExitCode)

' opens Com Port and optional Log File

If OpenCommunications()<>0 then End(ExitCode)

' process serial data loop

VoidByte = Communications()

' close com port and optional log file

End (CloseCommunications())

'----- End Of File--

The Functions module is somewhat longer: approximately 650 lines. There are probably more comments than
actual source code. Functions included are:

GetIniFileName() ‘ searches for INI file among several options provided

CleanIniStr() ‘ used to strip comments and stray characters

ReadIniFile() ‘ used to read and parse INI file

BuildFileStr() ‘ used for log file

BuildStatusStr() ‘ used to display start time, log file, INI options

EvalGlobals () ‘ used to initialize operations, validate INI parameters, etc

OpenCommunications() ‘ used to open com port and optional log file

CloseCommunications() ‘ used to close com port and optional log file

CheckTime() ‘ used to switch optional log file

ProcessData() ‘ used to write serial data to display and optional log file

Communications() ‘ main program loop used to read serial port and keyboard

Page: 179

The function “ReadIniFile()” uses a case structure so that adding additional options to the INI file is simple. The
function “Communications()” includes provisions to allow commands to be sent to Arduino device (or other
serial device for that matter).

A provision has been included in “GetIniFileName()” to test the command line for “user help request”. This
request may be any of several help request conventions (i.e. HELP /? -? --? /h –h --h). As the program is written
this request is answer with the program name, version and suggestion to read the INI file. It could be easily
expanded (two alternatives are launching a PDF reader or Web Browser with a specific reference).

Of course there is always the option to use it just as it is.

Page: 180

Appendix: Thermometer.exe

All code that was specifically added for the Thermometer application is shown in BOLD characters.

Main Program Code

Code File for Thermometer.exe = Ardunio_Thermometer.bas
This is the file that must be active when you select Compile in the FBIDE editor.

' ---- libraries --

#include Once "string.bi" ' needed for format function
#include once "crt.bi" ' for file flush (see notes)
#include once "file.bi" ' for file flush (see notes)
' include global varriables
#include once "Ardunio_Thermometer_Globals.Bas" ' Global Variables
#include once "Ardunio_Thermometer_Functions.Bas" ' function defined for this prog
'------ main program code --
VoidByte = InitalizeGlobals()

' find, read and parse INI file
If ReadIniFile()<>0 then End(ExitCode)
' evaluate global variables read from INI

If EvalGlobals()<>0 then End(ExitCode)
' opens Com Port and optional Log File
If OpenCommunications()<>0 then End(ExitCode)

' process serial data loop
VoidByte = Communications()
' close com port and optional log file
End (CloseCommunications())

'----- End Of File--

Global Variables

Code File for Thermometer.exe = Ardunio_Thermometer_Globals.Bas
' Global Variables for the Arduino Reciever Program

' ---- libraries --
#include Once "string.bi" ' needed for format function
#include once "crt.bi" ' for file flush (see notes)
#include once "file.bi" ' for file flush (see notes)

'-----define False-----------
#ifndef FALSE
#define FALSE 0
#endif

#ifndef False
#define False 0

#endif
#ifndef false
#define false 0

#endif

'-----define True-----------
#ifndef TRUE
#define TRUE -1
#endif
#ifndef true
#define true -1
#endif
#ifndef True
#define True -1

#endif

'----------------------------

Dim SHARED VoidByte as Byte = 0 ' BECASUE FREEBASIC DOES NOT SUPPORT VOID
'--------------------

Page: 181

' revision October 2013 -- moved from checktime function in order to eliminate

' firs pass requirement
Dim SHARED PrevHour as Byte ' holds last hout counted

Dim SHARED NowHour as Byte ' holds last current hour
Dim SHARED HourCount as Byte =0 ' holds hour count

'---
Dim SHARED ProgramName as String ' used to display program Name ...
Dim SHARED ProgramVer as String ' used to display program Version ...

Dim SHARED IdString as String ' imbed program name, version, date
Dim SHARED Status as String ' used to display program status ...

Dim SHARED IniName as String ' name of ini file
Dim SHARED PortStr as String ' hold parameters for opening com port
Dim SHARED AddDateTime as Byte ' if not zero then append time to string
Dim SHARED FileStr as String ' optional file name for output

Dim SHARED SendToFile as Byte ' if not zero then append to file
Dim SHARED SwitchHrs as Byte ' used to increment file name
Dim SHARED Delimiter as String ' string used between date/time and data
Dim SHARED EOL as String ' Carriage Return / Line Feed
Dim SHARED StdOutFlg as Byte ' Flag to send to Standard out only
Dim SHARED LogFileHandle as FILE ptr ' used to flush file buffer to disk

Dim SHARED ExitKey as Byte ' used to define specific key for exit
Dim SHARED TStart as String ' used to calculate run time
Dim SHARED DStart as String ' hold start day, used to calculate run time
Dim SHARED ExitCode as Integer ' used to pass exit code
'---

‘ variables added for Thermometer application
Dim Shared DebugMode as Byte ' False=0, True<>0;

Dim Shared CelsiusMode as Byte ' False=0, True<>0;
Dim Shared FahrenheitMode as Byte ' False=0, True<>0;
Dim Shared AvrMode as Byte ' False=0, True<>0;

Dim Shared EEMode as Byte ' False=0, True<>0;
Dim Shared RawMode as Byte ' False=0, True<>0;
Dim Shared RoundMode as Byte ' False=0, True<>0;
Dim Shared UserStr1 as String ' user defined strin in INI file
Dim Shared UserStr2 as String ' user defined strin in INI file
Dim Shared UserStr3 as String ' user defined strin in INI file
Dim Shared UserStr4 as String ' user defined strin in INI file
Dim Shared UserStr5 as String ' user defined strin in INI file
Dim Shared OffsetVal as Single ' used to store current degree offset
'

'---
' Initalize all global variables

Function InitalizeGlobals()as byte
 EOL = Chr(13) &chr(10) ' This si the default EOL until INI is read
 ProgramName = "Arduino_Thermometer.exe"

 ProgramVer = "1.0.5 (8 October 2013)"
 ' ------ IdString is defined Globally to imbed within Object code -------

 IdString = "Program Name: " & ProgramName & EOL & _
 "Program Vers: " & ProgramVer & EOL & _
 "Author: Lewis Balentine, http://www.keywild.com" & EOL & _

 "This program placed in the Public Domain by the author." & EOL & _
 "No warranties of any kind either expressed or implied." & EOL & _
 "Please read 'Arduino_Thermometer.ini' for help." & EOL
 PortStr = ""

 FileStr = ""
 ExitCode=0
 SendToFile = 0
 AddDateTime=0
 StdOutFlg=0
 SwitchHrs=0

 ExitKey=27
 Delimiter = chr(9)
 DStart= Date ' get the start date
 TStart= Time ' get the start time (24 hour format)
 '--------------------

Page: 182

 ' revision October 2013 -- initalize checktime parameters

 NowHour=val(Left(time,2))
 PrevHour=NowHour

 HourCount=0

 ' ------------------------------
 ' These are the default modes
 DebugMode=False

 CelsiusMode=True
 FahrenheitMode=True

 AvrMode=False
 EEMode=False
 RawMode=True
 RoundMode=True

 UserStr1 ="Z1"
 UserStr2 ="Z2"
 UserStr3 ="ZD"
 UserStr4 =""
 UserStr5 =""
 OffsetVal=0

 Return 0
End Function
'--End of File ---

Thermometer Functions

Code File for Thermometer.exe = Ardunio_Thermometer_Functions.bas
' Functions defined for the program Arduino Reciever

' Functions defined before USE do not require declarations
' Place this module at the TOP of the main source module
'
' ---- libraries --
#include Once "string.bi" ' needed for format function
#include once "crt.bi" ' for file flush (see notes)
#include once "file.bi" ' for file flush (see notes)

' include global varriables
#include once "Ardunio_Thermometer_Globals.Bas" ' Global Variables

'

'===
Function GetIniFileName (HelpStr as String, Default as String) as Byte
 ' This function is used to get the ini file name as well as

 ' check for user requested help.
 ' If help request is found this function terminates the program

 ' If INI file is not found this function terminates the program
 ' Input:
 ' HelpStr = string to be printed if help is requested on command line

 ' OutPut:

 ' Returns INI file name. Aborts if file not found.

 ' --
 Dim Buffer As String ' used to read command line arguments
 Dim P as Byte ' working numeric variable
 Dim TryString as String ' Various INI names tried
 '---
 TryString="These filneames were tried:" & EOL
 ' check for command line help request
 Buffer=Trim(Ucase(Command(-1))) ' returns ENTIRE command line
 If Buffer<>"" then

 ' there are number of possible conventions
 If (Buffer = "?") or _
 (Buffer = "HELP") or _
 (Instr(Buffer, "/?")>0) or _

 (Instr(Buffer, "/H")>0) or _

Page: 183

 (Instr(Buffer, "-?")>0) or _

 (Instr(Buffer, "-H")>0) or _
 (Instr(Buffer, "--?")>0) or _

 (Instr(Buffer, "--H")>0) or _
 (Instr(Buffer, "/HELP")>0) then

 Print HelpStr
 Print "Normal exit, ExitCode: 52"
 ExitCode=52

 Return(ExitCode)
 End If

 End If
 ' Check for command line specifying INI file -------------------------------
 Buffer=Trim(Command(1)) ' returns first parameter
 If Buffer <> "" then

 ' we must have a alternate ini file name, but is it valid ?
 TryString= TryString & Buffer & EOL
 If DIR(Buffer)<>"" then
 IniName = Buffer
 return 0
 End If

 End If
 ' Check for INI file matching EXE name -------------------------------------
 ' get the actual command string and set the default ini filename to match
 ' This allows the executable to be renamed with not change to source
 Buffer=Trim(Command(0)) ' includes path if used

 if lcase(right(Buffer,4))=".exe" then
 P=Len(Buffer)-3

 Buffer=Left(Buffer,P) & "ini"
 Else
 Buffer=Buffer & ".ini"

 End If
 ' do we have a valid file name
 TryString= TryString & Buffer & EOL
 If DIR(Buffer)<>"" then
 IniName = Buffer
 return 0
 End If
 ' Check for default INI file name ---
 TryString= TryString & Default & EOL
 If DIR(Default)<>"" then

 IniName = Default
 Return 0

 End If
 ' If we fall through to this point then report error and abort
 Print HelpStr

 Print "*** FATAL ERROR ****: No INI file found."
 Print TryString

 Print "***ERROR*** exit, ExitCode: 53"
 ExitCode=62
 Return(ExitCode)

End Function
'
'===
Function CleanIniStr (Buffer as String, _

 ByRef KeyStr as String, _
 ByRef ValStr as String) As Byte
 ' This function is used to strip comments, non-printing characters and
 ' quotes from a INI file String.
 ' Input:
 ' Buffer = String to be cleaned

 ' KeyStr = Holds Prarmeter name string on return
 ' ValStr = Holds Prarmeter value string on return
 ' OutPut:
 ' Returns 0 if Buffer is NOT a valid parameter line
 ' Returns -1 if Buffer is a valid parameter line

Page: 184

 '---

 Dim P as Byte = 0 ' used as index into buffer
 Dim Work as String = "" ' working storage

 Dim C as Byte ' holds value for single character
 '---

 ' remove any spaces
 Buffer=Trim(Buffer)
 ' strip off comments

 P=Instr(Buffer, ";")
 If P=1 then Return 0

 If P>1 then Buffer=Trim(Left(Buffer, P-1))
 ' check for empty string
 If Buffer="" then Return 0
 ' clean up strange characters ...

 ' mostly to eliminate any tab characters or qoutes
 For P = 1 to Len(Buffer)
 C=Asc(Mid(Buffer,P,1))
 ' only accept characters that match our criteria
 ' chr(34) = double quote, chr(39) = single quote
 If (C>31) and (C<127) and (C<>34) and (C<>39) then

 Work=Work & Chr(C)
 End If
 Next P
 ' again check for spaces after possible tabs/quotes removed
 Work=Trim(Work)

 If Work="" then Return 0
 P=Instr(Work, "=")

 If (P=0) or (P=1) or (P=len(work)) then Return 0
 KeyStr=Ucase(Trim(Left(Buffer, P-1)))
 ValStr=Trim(Mid(Buffer, P+1))

 If (KeyStr="") or (ValStr="") then Return 0
 Return -1
End Function
'
'===
Function ReadIniFile () As Byte
 ' This function is used to read the ini file. Should be first function used.
 ' Uses previous defined function: "GetIniFileName"
 ' Uses previous defined function: "CleanIniStr"
 ' Input:

 ' none
 ' OutPut:

 ' Returns ExitCode on Error, Else 0
 '---
 Dim ErrCode as Integer ' used to hold Err code

 Dim P as Byte ' used as index into string
 Dim Buffer as String ' used to hold input line

 Dim KeyStr as String ' used in parsing ini file
 Dim ValStr as String ' used in parsing ini file
 Dim EnvStr as String ' used to expand enviroment string

 '---
 If GetIniFileName (IdString, "Arduino_Receiver.ini")<>0 then
 Return ExitCode
 End If

 open IniName for input as #1
 ErrCode=Err ' reading error code destroyes it
 If ErrCode<>0 then
 Print "*** FATAL ERROR ****: opening: " & IniName
 Print "Error code returned was: " & ErrCode
 Print "***ERROR*** exit, ExitCode: 54"

 ExitCode=54
 Return ExitCode
 End If
 '---
 ' read each line of the ini file checking for parameters

Page: 185

 While not (eof(1))

 Line Input #1, Buffer
 ErrCode=Err ' reading error code destroyes it

 If ErrCode<>0 then
 Print "*** FATAL ERROR **** reading: " & IniName

 Print "Error code returned was: " & ErrCode
 Print "***ERROR*** exit, ExitCode: 55"
 ExitCode=55

 Return ExitCode
 End If

 ' CleanIniStr return 0 for non-parameter line
 If CleanIniStr(Buffer, KeyStr, ValStr)<>0 then
 ' print KeyStr, ValStr: sleep ' for debugging
 Select Case KeyStr

 Case "PORTSTR"
 PortStr=ValStr
 Case "APNDTIME"
 ValStr=Ucase(ValStr)
 if (ValStr="TRUE") or (ValStr="YES") then AddDateTime=1
 Case "STDOUT"

 ValStr=Ucase(ValStr)
 if (ValStr="TRUE") or (ValStr="YES") then StdOutFlg=1
 Case "FILESTR"
 FileStr=ValStr
 SendToFile=1

 ' expand enviromental variable
 ' I am a bit perplexed by the offsets used

 ' but they seem to work (trial & error until success)
 If Left(FileStr,1) = "%" then
 'Print FileStr 'debugging

 P=Instr(2,Buffer, "%")
 EnvStr=Mid(Left(FileStr,P-2),2)
 'Print EnvStr 'debugging
 EnvStr=Environ(EnvStr)
 'Print EnvStr 'debugging
 FileStr=EnvStr & Mid(FileStr, P)
 End If
 Case "SWITCHHRS"
 ' print KeyStr, ValStr: sleep ' for debugging
 SwitchHrs=Abs(Int(Val(ValStr)))

 If SwitchHrs>24 then SwitchHrs=24
 ' print SwitchHrs, ValStr: sleep ' for debugging

 Case "DELIMITER"
 if ValStr="TAB" then: Delimiter=chr(09)
 elseif ValStr="COMMA" then Delimiter=", "

 elseif ValStr="COLLON" then Delimiter=": "
 elseif Abs(Val(ValStr)) >0 then _

 Delimiter=Space(Int(Val(ValStr)))
 elseif Left(ValStr,1)="0" then Delimiter=""
 elseif Lcase(ValStr)="zero" then Delimiter=""

 else DELIMITER=chr(9)
 end if
 Case "EOL"
 ValStr=Left(ValStr,1)

 if ValStr="0" then: EOL=chr(13) & chr(10)
 elseif ValStr="1" then EOL=chr(10)
 elseif ValStr="2" then EOL=chr(13)
 else EOL=chr(13) & chr(10)
 end if
 Case "EXITKEY"

 If Lcase(ValStr)="escape" then
 ExitKey=27
 Elseif Lcase(ValStr)="ctlx" then
 ExitKey=24
 Else

Page: 186

 ExitKey=Abs(Int(Val(ValStr)))

 If ExitKey<>0 then
 If ExitKey>126 then ExitKey=27

 If ExitKey<32 then ExitKey=27
 End If

 end if
 '--
 ' add addtional case statements for new options in INI file

 ' Example:
 'Case "BULLWINKLE"

 ' BULLWINKLE code goes here
 'Case "ROCKYRACOON"
 ' ROCKYRACOON code goes here
 'case keyword MUST be UPPERCASE (in INI file it can be upper or lower)

 'for reliability include spaces in keyword
 '--
 Case "USERSTR1"
 If Lcase(ValStr)<>"" then UserStr1=Trim(ValStr)
 Case "USERSTR2"
 If Lcase(ValStr)<>"" then UserStr2=Trim(ValStr)

 Case "USERSTR3"
 If Lcase(ValStr)<>"" then UserStr3=Trim(ValStr)
 Case "USERSTR4"
 If Lcase(ValStr)<>"" then UserStr4=Trim(ValStr)
 Case "USERSTR5"

 If Lcase(ValStr)<>"" then UserStr5=Trim(ValStr)
 Case Else

 'ignore it
 End Select ' case KeyStr
 End If ' CleanIniStr

 Wend 'not (eof(1))
 Close #1
 ErrCode=Err ' reading error code destroyes it
 If ErrCode<>0 then
 Print "*** FATAL ERROR **** closing: " & IniName
 Print "Error code returned was: " & ErrCode
 Print "***ERROR*** exit, ExitCode: 56"
 ExitCode=56
 Return ExitCode
 End If

 Return ExitCode
End Function

'
'===
Function BuildFileStr () as String

 ' This function is used build sequential file names when SwitchHrs>0
 ' Input:

 ' none
 ' OutPut:
 ' Returns valid FileStr UNLESS SendToFile=0

 '---
 Static BaseFileStr0 as String ' holds FileStr as defined in INI file
 Static BaseFileStr1 as String ' holds first part of FileStr
 Static BaseFileStr2 as String ' holds last part of FileStr

 Static SwitchHrsNdx as Integer=-1 ' holds current iteration of filename
 '---
 Dim P as Integer ' index into string
 Dim Exist as String="xxx" ' used to check for existence of file
 '---
 ' by definition if SendToFile=0 then FileStr=""

 If SendToFile=0 then Return ""
 ' If SwitchHrs=0 then default FileStr is to be used
 If SwitchHrs=0 then Return FileStr
 ' This is only executed on the first call
 If SwitchHrsNdx = -1 then

Page: 187

 ' This is the first time into the function

 P=Instr(FileStr, "0000")
 If P=0 then

 ' user has failed to specify appropriate file string
 ' disable SwitchHrs and return

 SwitchHrs=0
 Return FileStr
 Else

 BaseFileStr0=FileStr ' save it just in case
 BaseFileStr1=Left(FileStr,P-1)

 BaseFileStr2=Mid(FileStr,P)
 ' regardless of what was in the INI file
 ' we are only going to use four zeros
 While Left(BaseFileStr2,1)="0"

 BaseFileStr2=Mid(BaseFileStr2,2)
 Wend
 End If
 End If
 ' This is executed on the every call
 While Exist <> ""

 SwitchHrsNdx=SwitchHrsNdx +1
 FileStr=BaseFileStr1 & _
 Right("0000" & Trim(Str(SwitchHrsNdx)),4) & _
 BaseFileStr2
 Exist=Dir(FileStr)

 Wend
 Return (FileStr)

End Function
'
'===

Function BuildStatusStr () as Byte
 ' This function is used to build the status line message that is displayed
 ' when the user presses "?" or "/".
 ' Input:
 ' none
 ' OutPut:
 ' Returns StdOutFlg
 '---

 Status = EOL & _

 "=== Arduino Receiver Ver" & ProgramVer & " ===" & EOL & _
 "Using INI file: " & EOL & IniName & EOL & _

 "Using Port Str: " & PortStr & EOL
 If AddDateTime<>0 then Status = Status & "Appending date/time to data." & EOL
 If FileStr<>"" then

 Status = Status & "Logging data to: " & FileStr & EOL
 ' display EOL and Delimiter are a bit more complicated

 ' Fortunately there are a limited numebr of possibilities.
 If Delimiter=", " then: Status = Status & "Delimiter: Comma" & EOL
 elseIf Delimiter=": " then Status = Status & "Delimiter: Collon" & EOL

 elseIf Delimiter=chr(9) then Status = Status & "Delimiter: Tab" & EOL
 elseIf Delimiter="" then Status = Status & "Delimiter: none" & EOL
 else Status = Status & "Delimiter: " & chr(34) & Delimiter & Chr(34) & EOL
 end if

 If EOL=chr(13) then: Status = Status & "EOL: carriage return" & EOL
 elseIf EOL=chr(10) then Status = Status & "EOL: line feed" & EOL
 else Status = Status & "EOL: carriage return plus line feed" & EOL
 end if
 End If
 Status = Status & "Start: " & Dstart & " " & Tstart & EOL

 Status = Status & "Press '?' or '/' to redispaly this message" & EOL
 If ExitKey = 24 then
 Status = Status & "Press 'Ctrl' and 'X' to exit." & EOL
 ElseIf ExitKey = 27 then
 Status = Status & "Press 'Escape' key to exit." & EOL

Page: 188

 Else

 Status = Status & "Press '" & Chr(ExitKey) & "' key to exit." & EOL
 End If

 '---
 ' Add Aplication help here

 Status = Status & EOL
 Status = Status & " Keys '1' to '0' set report Times" & EOL
 Status = Status & " Key 'A' toggles AVR mode" & EOL

 Status = Status & " Key 'B' Restore from Backup" & EOL
 Status = Status & " Key 'C' toggles Celsius mode" & EOL

 Status = Status & " Key 'D' toggles Debug mode" & EOL
 Status = Status & " Key 'E' toggles EEPROM mode" & EOL
 Status = Status & " Key 'F' toggles Fahrenheit mode" & EOL
 Status = Status & " Key 'L' lists AVR commands" & EOL

 Status = Status & " Key 'M' turns on Minimal mode (Fahrenheit only)" & EOL
 Status = Status & " Key 'Q' prints AVR storage" & EOL
 Status = Status & " Key 'R' toggles Rounding mode" & EOL
 Status = Status & " Key 'S' prints AVR Status" & EOL
 Status = Status & " Key 'V' toggles Raw Reading mode" & EOL
 Status = Status & " Key '>' increase Degree Offset by 0.25 Fahrenheit" & EOL

 Status = Status & " Key '<' decrease Degree Offset by 0.25 Fahrenheit" & EOL
 if (UserStr1<>"") then Status = Status & " Key 'U1' INI defined string: " &_
 chr(34) & UserStr1 & chr(34) & EOL
 if (UserStr2<>"") then Status = Status & " Key 'U2' INI defined string: " &_
 chr(34) & UserStr2 & chr(34) & EOL

 if (UserStr3<>"") then Status = Status & " Key 'U3' INI defined string: " &_
 chr(34) & UserStr3 & chr(34) & EOL

 if (UserStr4<>"") then Status = Status & " Key 'U4' INI defined string: " &_
 chr(34) & UserStr4 & chr(34) & EOL
 if (UserStr5<>"") then Status = Status & " Key 'U5' INI defined string: " &_

 chr(34) & UserStr5 & chr(34) & EOL

 Return StdOutFlg
End Function
'
'===
Function EvalGlobals () as Byte
 ' This function is used to read the ini file. Should be first function used.
 ' Uses previous defined function: "BuildFileStr"

 ' Uses previous defined function: "BuildStatusStr"
 ' Input:

 ' none
 ' OutPut:
 ' Returns ExitCode on failure, Else 0

 '---
 ' Port String is required

 If PortStr="" then
 Print "*** FATAL ERROR ****: PortStr not found in " & IniName
 Print "***ERROR*** exit, ExitCode: 57"

 ExitCode=57
 Return ExitCode
 End If
 ' If SwitchHrs<>0 then we need to build our FileStr

 If SwitchHrs<> 0 then FileStr=BuildFileStr
 If BuildStatusStr()<> 0 then print Status
 Return ExitCode
End Function
'
'===

Function OpenCommunications() as Byte
 ' This function is used to open the Serial port and the optional log file
 ' Input:
 ' none
 ' OutPut:

Page: 189

 ' Returns ExitCode

 '---
 Dim ErrCode as Integer ' used to hold Err code

 '---
 ' One alternative is to use this function to open a Database

 ' Data could then be sent to the Database in the ProcessData function
 ' Add code to CloseCommunications to close DataBase.
 '---

 Open Com(PortStr) AS #2
 ErrCode=Err ' reading error code destroyes it

 If ErrCode<>0 then
 Print "***Fatal Error*** opening com port using string: "
 Print PortStr
 Print "Error code was: " & ErrCode

 Print "***ERROR*** exit, ExitCode: 58"
 ExitCode=58
 End If
 '---
 If SendToFile<>0 then
 Open FileStr for Append as #3

 ErrCode=Err
 If ErrCode<>0 then
 Print "***Error*** opening file: " & FileStr
 Print "Error reported was: " & ErrCode
 Close #2

 print "***ERROR*** exit, ExitCode: 59"
 ExitCode=59

 End If
 End If
 Return ExitCode

End Function
'
'===
Function CloseCommunications() as Byte
 ' This function is used to close the Serial port and the optional log file
 ' Input:
 ' none
 ' OutPut:
 ' always Returns 0
 '---

 Dim ErrCode as Integer ' used to hold Err code
 Dim SaveCode as Integer ' used to hold Err code

 '---
 SaveCode = ExitCode ' save the reason we are exiting
 Close #2

 ErrCode=Err
 If ErrCode<>0 then

 Print "***Error*** closing file COM port"
 Print "Error reported was: " & ErrCode
 ExitCode=62

 End If
 '--
 If SendToFile<>0 then
 ' if open failed then we never got here ...

 ' log the reason the program is exiting
 Print #3, "Exit Code: " & SaveCode & " at " & Time & " on " & Date
 Close #3
 ErrCode=Err
 If ErrCode<>0 then
 Print "***Error*** closing file: " & FileStr

 Print "Error reported was: " & ErrCode
 ExitCode=63
 End If
 End If
 '--

Page: 190

 Select Case SaveCode

 Case 50
 print "Normal exit, User pressed exit key"

 Case 51
 print "Normal exit, EOT recieved in data stream"

 Case Else
 print "***ERROR*** exit, ExitCode: " & SaveCode
 End Select

 Return ExitCode
End Function

'
'===
Function CheckTime() as Byte
 ' This function is used tally hours for sequential files filanems.

 ' If the total hours is greater thatn ot equal to SwitchHrs then
 ' the current log file is close and a new one is opened.
 ' Uses previous defined function: "BuildFileStr"
 ' Uses previous defined function: "BuildStatusStr"
 ' Input:
 ' none

 ' OutPut:
 ' returns ExitCode on Failure, else 0
 '---
 ' revision October 2013 --
 ' NowHour, PrevHour, HourCount made into Global Variables

 ' Eliminated first pass code -- Variables initalized Globally
 ' Faster exit when hours have not changed

 ' Fixed updating PrevHour bug
 '---
 Dim ErrCode as Integer ' used to hold Err code

 Dim SaveCode as Integer ' used to hold Err code
 Dim DateStr as String ' used to reformat date/time into useable format
 Dim K as Byte = 0 ' error trigger
 '---
 ' always check for unintended calls
 If SwitchHrs=0 then return 0
 ' check hours
 NowHour=val(Left(time,2))
 if NowHour=PrevHour then return 0
 ' ExitCode=0 ' keep current exit code unless ther is an error

 ' if we get this far then we need to increment our parameters

 PrevHour=NowHour
 HourCount=HourCount+1
 ' now check for the file switch

 If HourCount> SwitchHrs then
 ' time to change our socks ...

 ' print "changeing socks ..." : sleep
 Close #3
 ErrCode=Err

 If ErrCode<>0 then
 Print "***Error*** closing file during file switch: " & FileStr
 Print "Error reported was: " & ErrCode
 ExitCode = 64

 Return 64
 End If
 Open BuildFileStr() for Append as #3
 ErrCode=Err
 If ErrCode<>0 then
 Print "***Error*** opening file during file switch: " & FileStr

 Print "Error reported was: " & ErrCode
 print "***ERROR*** ExitCode: 65"
 ExitCode = 65
 Return 65
 End If

Page: 191

 VoidByte=BuildStatusStr()

 HourCount=0
 End If

 Return ExitCode
End Function

'
'===
Function ProcessData(ByRef Buffer as String) as Byte

 ' This function is used to process a single line of filtered ASCII data
 ' that has been collected from the serial port.

 ' All data writes take place in this function.
 ' Input:
 ' none
 ' OutPut:

 ' Returns ExitCode=60 on error, else 0
 '---
 ' revision October 2013 --
 ' moved checktime function call to this function
 '---
 Dim ErrCode as Integer ' used to hold Err code

 Dim SaveCode as Integer ' used to hold Err code
 Dim DateStr1 as String ' used to reformat date/time into useable format
 Dim DateStr2 as String ' used to reformat date/time into useable format
 Dim Counter as Integer ' used to trigger CheckTime
 Dim K as Byte = 0 ' error trigger

 '---
 ' added for Thermometer Application

 Dim C as String ' used for first character of string
 Dim P as Byte = 0
 '---

 ' Place any addition processing code in this function.
 ' Keep it SHORT. Reading the COM is 'paused' for this function.
 '------------- added for thermometer application --------
 ' check to see if this is a non-report line
 ' we do not want to add date and time to non-report lines
 ' secondly we want to capture the degree offset if we can
 C=Left(Buffer,1)
 if C=";" then ' we have a non-report line
 if instr(Buffer,"Offset:")>0 then ' check for Degree Offset
 P=Instr(Buffer, chr(9)) ' find TAB character

 OffsetVal=Val(trim(Mid(Buffer,P+1))) ' capture and convert value
 end if

 end if

 '------------ display write ------
 ' next line modified for Thermometer application

 ' If (AddDateTime) then
 If ((AddDateTime) and (C <>";")) then
 DateStr1=mid(Date,7,4) & "-" ' get year

 DateStr1=DateStr1 & Left(Date,2) & "-" ' get month
 DateStr1=DateStr1 & Mid(Date,4,2) ' get day
 DateStr2=DateStr1 & Delimiter & Time ' get time for file
 DateStr1=DateStr1 & " " & Time ' get time for display

 If StdOutFlg=0 then
 Print DateStr1 & " " & buffer
 Else
 Print DateStr2 & Delimiter & buffer
 End If
 Else

 Print buffer
 End If

 '------------ file write ------
 If SendToFile<>0 then

Page: 192

 ' revision October 2013 --

 ' The only time that we actually need to check the time
 ' is when we are writing to a file

 CheckTime
 ' setup for file flush

 LogFileHandle=cast(FILE Ptr,Fileattr(3,fbFileAttrHandle))
 ' next line modified for Thermometer application
 ' If (AddDateTime) then

 If ((AddDateTime) and (C <>";")) then
 Print #3,DateStr2 & Delimiter & buffer & EOL;

 ErrCode=Err
 fflush(LogFileHandle) ' no error to check for
 Else
 Print #3, buffer & EOL;

 ErrCode=Err
 fflush(LogFileHandle) ' no error to check for
 End If
 If ErrCode<>0 then
 Print "***Error*** writting file: " & FileStr
 Print "Error reported was: " & ErrCode

 ExitCode = 61
 Return 61
 End If
 End If ' SendToFile<>0
 '------------ clear input buffer ------

 Buffer=""
 Return ExitCode

End Function
'
'===

Function Communications() as Byte
 ' This function is the main process loop for collecting data from both the
 ' serial port and the keyboard. All data reads take place in this function.
 ' The Serial data is filtered for ASCII characters only. When an EOL
 ' is recieved then the data string is sent to the ProcessData function.
 ' Com port & optional log file must be opened prior to calling this function.
 ' Uses previous defined function: "ProcessData"
 ' Uses previous defined function: "CheckTime"
 ' Input:
 ' none

 ' OutPut:
 ' Returns ExitCode

 '---
 ' revision October 2013 --
 ' moved checktime function call from this function to ProcessData function

 '---
 Dim ErrCode as Integer ' used to hold Err code

 Dim C As Byte = 0 ' this is our incoming byte of data
 Dim K as Integer =0 ' used to read keyboard & trigger exit
 Dim Buffer As String = "" ' this is our buffer to collect the bytes

 ' Dim Counter as Integer ' used to trigger CheckTime
 '---
 While InKey<> "" 'empty the keyboard buffer ... just in case
 Wend

 ' loop untill there is an exit trigger
 While ExitCode=0
 ' The first line checks to see if there is anything waiting in the COM
 ' buffer. Without it one is subject to reading a bunch of garbage.
 If EOF(2) then

 ' Call Sleep with 25ms or less to release time-slice when waiting
 ' for user input or looping inside a thread.This will prevent the
 ' program from unnecessarily hogging the CPU.
 Sleep 25
 Else

Page: 193

 ' get a single byte from the serial port

 Get #2,0,C,1
 ErrCode=Err

 If ErrCode<>0 then
 Print "***Fatal Error*** reading com port"

 Print PortStr
 Print "Error code was: " & ErrCode
 ExitCode=60

 End If
 ' ------ filter recieved data --------------------------------------

 ' characters below ASCII 32 are 'non-printing characters
 ' characters above ASCII 126 are not defined (by ASCII)
 ' append any printable character to the string
 ' include an exception for horizontal tab characters

 If ((C > 31) and (C < 127)) or (C = 9) Then Buffer = Buffer + Chr(C)
 ' Linux/Unix terminate strings with a line feed (ASCII 10)
 ' MACs terminate lines with a carriage return (ASCII 13)
 ' Microsoft and Arduino use carriage return/linefeed (ASCII 13,10)
 ' End of Transmission is ASCII 04
 ' If we get any of the above then print the string

 ' but only if we have something to process.
 If ((C=13) Or (C=10) or (C=04)) And (Len(Buffer) >0) Then
 ExitCode = ProcessData(buffer)
 End If ' ((C=13) Or (C=10) ...
 ' check for end of tranmission code in data stream

 If C=04 then
 ExitCode=51

 End If
 End If ' Not(EOF(2))
' ' revision October 2013 --

' ' if we are writing to sequential file names then we need to
' ' check if a log file needs to be changed
' If SwitchHrs>0 then
' Counter=Counter+1
' If Counter > 2048 then ' abitrary number, change as needed
' ExitCode=CheckTime
' Counter=0
' End If
' End If
 ' if we do not already have an exit flag then read the key board

 If ExitCode=0 then
 K=ASC(InKey)

 Select Case K
 Case 63,47 ' ASCII 63 ="?" question mark
 Print Status ' ASCII 47 ="/" question mark

 Case ExitKey
 ExitCode=50 ' set exit code, normal exit

 ' thermometer application key inserted below----------------------
 Case 49 ' numeric key "1"
 Print #2, "T1" ' set timing to 1 minute

 Print "Report Time set to 1 minute"
 Case 50 ' numeric key "2"
 Print #2, "T2" ' set timing to 2 minutes
 Print "Report Time set to 2 minutes"

 Case 51 ' numeric key "3"
 Print #2, "T3" ' set timing to 3 minutes
 Print "Report Time set to 3 minutes"
 Case 52 ' numeric key "4"
 Print #2, "T4" ' set timing to 4 minutes
 Print "Report Time set to 4 minutes"

 Case 53 ' numeric key "5"
 Print #2, "T5" ' set timing to 5 minutes
 Print "Report Time set to 5 minutes"
 Case 54 ' numeric key "6"
 Print #2, "T6" ' set timing to 10 minutes

Page: 194

 Print "Report Time set to 10 minutes"

 Case 55 ' numeric key "7"
 Print #2, "T7" ' set timing to 15 minutes

 Print "Report Time set to 15 minutes"
 Case 55 ' numeric key "8"

 Print #2, "T8" ' set timing to 20 minutes
 Print "Report Time set to 20 minutes"
 Case 55 ' numeric key "9"

 Print #2, "T9" ' set timing to 30 minutes
 Print "Report Time set to 30 minutes"

 Case 55 ' numeric key "0"
 Print #2, "T0" ' set timing to 60 minutes
 Print "Report Time set to 60 minutes"
 Case 68,100 ' Alpha Key "D" or "d"

 Print #2, "DB" ' set debug mode
 if (DebugMode=False) then
 DebugMode=True
 Print "Turn Debug mode on"
 else
 DebugMode=False

 Print "Turn Debug mode off"
 End if
 Case 70,102 ' Alpha Key "F" or "f"
 if (FahrenheitMode=False) then
 FahrenheitMode=True

 Print "Turn Fahrenheit Mode on"
 Print #2, "FT"

 else
 FahrenheitMode=False
 Print "Turn Fahrenheit Mode off"

 Print #2, "FF"
 End if
 Case 67,99 ' Alpha Key "C" or "c"
 if (CelsiusMode=False) then
 CelsiusMode=True
 Print "Turn Celsius Mode on"
 Print #2, "CT"
 else
 CelsiusMode=False
 Print "Turn Celsius Mode off"

 Print #2, "CF"
 End if

 Case 65,97 ' Alpha Key "A" or "A"
 if (AVRMode=False) then
 AVRMode=True

 Print "Turn Avr Internal Mode on"
 Print #2, "IT"

 else
 AVRMode=False
 Print "Turn AVR Internal Mode off"

 Print #2, "IF"
 End if
 Case 69,101 ' Alpha Key "E" or "e"
 if (EEMode=False) then

 EEMode=True
 Print "Turn EEMode Mode on, ***NEXT AVR RESTART***"
 Print #2, "E+"
 else
 EEMode=False
 Print "Turn EEMode Mode off, ***NEXT AVR RESTART***"

 Print #2, "E-"
 End if
 Case 82,114 ' Alpha Key "R" or "r"
 Print #2, "00"
 if (RoundMode=False) then

Page: 195

 RoundMode=True

 Print "Turn Rounding Mode on"
 else

 RoundMode=False
 Print "Turn Rounding Mode off"

 End if
 Case 86,118 ' Alpha Key "V" or "v"
 if (RawMode=False) then

 RawMode=True
 Print "Turn Raw Reading Mode on"

 Print #2, "RT"
 else
 RawMode=False
 Print "Turn Raw Reading Mode off"

 Print #2, "RF"
 End if

 Case 77,109 ' Alpha Key "M" or "m"
 Print "Setting minimal mode (Fahrenheit only)"
 if (DebugMode=True) then Print #2, "DB"

 DebugMode=False
 if (RoundMode=False) then Print #2, "00"
 DebugMode=True
 Print #2, "RF CF IF FT ST" ' Set minimal mode
 RawMode=False

 CelsiusMode=False
 AvrMode=False

 FahrenheitMode=True
 Case 66,98 ' Alpha Key "B" or "b"
 Print #2, "W-" ' restore from backup

 Case 83,115 ' Alpha Key "S" or "s"
 Print #2, "ST" ' print Status
 Case 81,113 ' Alpha Key "Q" or "q"
 Print #2, "ED" ' Dump EEPROM Storage
 Case 76,108 ' Alpha Key "L" or "l"
 Print #2, "??" ' print AVR help
 Case 85,117,26,122 ' Alpha Key "U" or "u"
' Send user defined String, String is defined in INI file
‘ This violates the 'Keep it shut' rule
‘ but this application only sends data once a minute
 Sleep (1000) ' allow up to one second second keypress
 K=ASC(InKey)

 if (K=49) and UserStr1<>"" then print #2, UserStr1
 if (K=50) and UserStr2<>"" then print #2, UserStr2
 if (K=51) and UserStr3<>"" then print #2, UserStr3

 if (K=52) and UserStr4<>"" then print #2, UserStr4
 if (K=53) and UserStr5<>"" then print #2, UserStr5

 case 60,44 ' keys '<' and ','
 OffsetVal=OffsetVal-0.25
 if OffsetVal=0 then OffsetVal=0.0001

 Print #2, "DO " & OffsetVal
 case 62,46 ' keys '>' and '.'
 OffsetVal=OffsetVal+0.25
 if OffsetVal=0 then OffsetVal=0.0001

 Print #2, "DO " & OffsetVal
 ' thermometer application key inserted above -----------------------
 Case Else
 ' Add additional case statements for other Keyboard codes.
 ' Use TestKeyCode.exe to identify ASC() keycodes.
 ' Hint:You can use mapped keys for longer sequences:

 ' Case 65,97 then print #2, "Long command line Here".
 ' "A"=65, "a"=97
 '
 ' Or place Keyboard handling code here.
 ' Example:

Page: 196

 ' if you need to send special commands

 ' out the serial port to control the Arduino
 ' A=Ucase(chr(K))

 ' If instr("0123456789ABCDEF",A) then Print #2, A;
 '

 ' Keep it SHORT ... the COM port will not be read again
 ' until this sequence is completed.
 ' It is best handle one key stroke at a time at a time.

 ' Otherwise:
 ' 1) Increase the size of the recieve buffer using the PortStr

 ' extended option RB (i.e. RB64 or RB128 or RB256 or RB1024)
 ' 2) Launch a seperate thread for keyboard handling/processing
 ' and replace this section with access to a shared variable
 '

 End Select
 End If
 Wend
 Return ExitCode
End Function
'

'===End of File===

Ini File for Main Program

Ardunio_Thermometer.ini
PortStr = COM12:9600,N,8,1,CD,CS,DS,OP,BIN

;--
; Arduino Thermometer monitors a specific COM port and displays any ASCII strings it receives.
; No warranties of any kind either expressed or implied.

; Note that the program only updates the display when it recieves an "end of line" character.
; any end of line characer: carriage return and/or linefeed
; empty lines (end of line character only) are discarded
; only ASCII characters between 32 and 126 are used
; with the exception horizontal tabs (ASCII 09)
;
; To exit the program press the Escape Key.
; Press "?" or "/" to print status information.

; (see parameter line "ExitKey" to define a different keypress for exit)
; The ASCII EOT character in the data stream will also terminate the application.

; EOT (End Of Transmission) = decimal 04.

;
; This file "Arduino_Thermometer.ini" is the default INI file.
; THe program looks for an INI file with the same name as the executable (including path).

; A different INI file may be specified on the command line to allow for multiple
; instances or alternate configurations.

;
; In the INI file:
; semicolons indicate remarks, the program ignores anything on a line following a semicolon

; parameters are NOT case sensitive

; either YES or TRUE evaluate to True

; a parameter line may appear anywhere in the ini file
; the last instance of any parameter line is used
;
; The only REQUIRED parameter line is PortStr.
; There are number of optional parameter lines.
; See details below for each parameter line.
;
;--
; PortStr is used directly (without any changes) by the program to open a com port.

; Any of these strings except the last will work in the X86 Windows.
; The first seems to be reliable.
;
; PortStr = "COM12:9600,N,8,1,CD,CS,DS,OP,BIN"

; PortStr = "COM12:9600,N,8,1,CD,CS,DS,OP,ASC,FE,TB0,RB0"

Page: 197

; PortStr = "COM12:9600,N,8,1,CD,CS,DS,OP"

; PortStr = "COM12:9600,N,8,1,CD,CS,DS"
; PortStr = "COM12:9600,N,8,1,CD,CS" /' does not work for Arduino '/
; "Com##: [####][, [parity][, [data_bits][, [stop_bits][, [extended_options]]]]]"

; (see Arduino_Receiver_Notes.bas for specific details)
; This is a ***REQUIRED*** parameter line.

;==
; PortStr = COM12:9600,N,8,1,CD,CS,DS,OP,BIN

; (PortStr moved to top of file for 'obvious' easy access for new users)
;

;--

; If ApndStr = True then the Date and Time are appended to the beginining of each string
; A delimiter (see below) is used to seperate that value from the string
; The format of the date/time string is: YYYY-MM-DD HH:MM:SS
; Resolution is limited to one second.
; This is an optional parameter. Default is false.
;==
ApndTime = TRUE
;
;--

; StdOut is used for all display output.
; Setting this parameter to true suppresses status and some error messages.
; (***Fatal Error*** messages are NOT suppressed)

; It also forces the delimiter parameter to be used for display output.

; This is an optional parameter. Default is false.

;==
StdOut = False
;
;--
; FileStr, if not empty, is used by the program to open a file.

; Whatever is received on the com port is appended to the file as well as the display.
; If you want the file in specific directory then include the directory path as well.
; Quotes are NOT required around FileStr (and deleted if found before any other processing).
; A ***SINGLE*** envirometnal variable of the form %VARIABLENAME% may be used at the
; beginning of the file/path name (i.e. %HOMEPATH%\Documents\My Logs\XXX.log).
; Relative paths may be used as well.
; This is an optional parameter. Default is no output file.
;==

FileStr = Thermometer_0000.LOG
;

;--
; SwitchHrs will cause filename to be incremented periodically based on hours.
; The Valid range is from 1 (one) to 24 (twenty-four).This is done by looking for "0000"
; in the FileStr and incremetning it. Existing matching file names are skipped.
; This is an optional parameter. Default is 0.

;==
SwitchHrs = 12
;

;--
; Delimiter options are:

; TAB ... Places one character code 09 between Date/Time and Data in file

; COMMA ... Places ", " between Date/Time and Data in file
; Collon ... Places ": " between Date/Time and Data in file
; Number ... Places number spaces between Date/Time and Data in file
; 0 (zero) is a valid option and effectively eliminates the Delimiter
; This is an optional parameter. Default is TAB character.
;==
Delimiter = TAB
;
;--

; EOL sets the end of line termiantion used in the output file.
; EOL = 0 for carriage return plus line feed (Windows/DOS)
; EOL = 1 for line feed (Linux ?)
; EOL = 2 for carriage return (MAC ?)

; EOL when defined is also used for terminations of Display strings.

Page: 198

; (Except for the inital command line help request which is called before the INI file is read.)

; This is an optional parameter. Default is carraige return plus line feed.
;==

EOL = 0
;

;--
; ExitKey allows a specif key to be used to exit the program. This is usefule to avoid
; accidental exits. The ASCII value must be in the range 32 to 126 a keyword is used:

; "Escape" = ASCII 27 (the escape Key).
; "CtlX" = ASCII 24 (Control X)

; Note: Control "C" will cause an 'abnormal termination'.
; The utility TestKeyCode.exe can be used to indetify specific keycodes.
; This is an optional parameter. Default is Escape key.
;==

ExitKey = Escape
;
;--
; USERSTR#: USERSTR1, USERSTR2, USERSTR3, USERSTR4, USERSTR5
; This was added for the Arduino Thermometer application.
; The user can define up to five string that will be sent when the user presses

; the "U" key followed by "1", "2", "3", "4" or "5" within one second.
; These are an optional parameters.
;==
USERSTR1=Z1 ;default is Z1 = load default data set 1
USERSTR2=Z2 ; default is Z2 = load default data set 2

USERSTR3=ZD ; default is ZD = Dump EEPROM
; End of File

Utility Program

Code File for stripsemicolonlines.exe = stripsemicolonlines.bas
This is the file that must be active when you select Compile in the FBIDE editor.

'-----define False-----------
#ifndef FALSE
#define FALSE 0

#endif
#ifndef False
#define False 0

#endif

#ifndef false
#define false 0
#endif

'-----define True-----------
#ifndef TRUE

#define TRUE -1
#endif
#ifndef true

#define true -1

#endif
#ifndef True
#define True -1
#endif

'--declare variables --------------------------
Dim SHARED FileIn as String
Dim SHARED FileOut as String
Dim SHARED SemiOut as String
Dim SHARED Work as String

Dim SHARED Buffer as String
Dim SHARED HlpStr as String
Dim SHARED PrgStr as String

Dim SHARED EOL as String
Dim SHARED C as String

Page: 199

Dim SHARED P as Integer

Dim SHARED I as Integer
Dim SHARED OverWrite as Byte

Dim SHARED AppendMode as Byte
Dim SHARED DeleteFile as Byte

Dim SHARED SplitLine as Byte
Dim SHARED AllLines as Byte
Dim SHARED Retain as Byte

Dim SHARED MarkMode as Byte
Dim SHARED Verbose as Byte

Dim SHARED DeBugMe as Byte
Dim SHARED RtnCode as Integer
Dim SHARED SemiCount as Long
Dim SHARED LineCount as Long

Dim SHARED BlankCount as Long
Dim SHARED PartialCount as Long
Dim SHARED MarkLine as Long

' set defaults ---------------------------------
PrgStr=""

EOL=chr(13) & Chr(10)
OverWrite=False
AppendMode=False
DeleteFile=False
SplitLine=False

AllLines=False
Retain=False

MarkMode=False
DeBugMe=False
Verbose=False

SemiCount=0
LineCount=0
BlankCount=0
PartialCount=0
MarkLine=0
I=0
P=0

' define Help string------------------------------
HlpStr="Syntax: StripSemicolonLines.exe file1 file2 file3 [options]" & EOL & _

 " file1 = input filename" & EOL & _
 " file2 = output filename" & EOL & _

 " file3 = output filename with stripped lines (optional)" & EOL & _
 "Options:" & EOL & _
 " /O = Overwrite any existing output file" & EOL & _

 " /A = Append to any existing output file (overrides /O)" & EOL & _
 " /D = Delete input file" & EOL & _

 " /R = Retain blank lines" & EOL & _
 " /S = Split lines at semicolon and delete trailing portion" & EOL & _
 " /X = Deletes all lines with semicolon regardless of location" & EOL & _

 " /M = Mark end of file with " & chr(34) & ";;--PROCESSED--;;" & chr(34) & EOL & _
 " On next run seeks to last marker before processing" & EOL & _
 " /E = Execute program with output file" & EOL & _
 " Program name is delimited by a collon" & EOL & _

 " Example /E:" & chr(34) & "full path\MyProgram.exe" & chr(34) & EOL & _
 " /V = Verbose prints statistics before exiting" & EOL & EOL & _
 " /? = display help and exit" & EOL & EOL & _
 "All lines that begin with semicolons will be removed from oputput file" & EOL & _
 "Unless /R option is used all blank lines will also be removed from oputput file" & EOL & _
 "Trailing blanks are deleted in any case" & EOL & _

 "------This program placed in the PUBLIC DOMAIN October 2013------"

' get the command line ----------------------------------
Buffer=Command(1)

If Buffer="/DB" then DeBugMe=True ‘ undocumented debug mode

Page: 200

p=1
While (Buffer<>"")

 Buffer=Trim(Ucase(Command(P)))
 If (DeBugMe=True) then print Buffer: Sleep

 If Buffer="?" then Print HlpStr: End: end If

 If len(Buffer)=2 then

 If Buffer="/?" then Print HlpStr: End: end If
 If Buffer="-?" then Print HlpStr: End: end If

 If Buffer="??" then Print HlpStr: End: end If

 If Buffer="/O" then OverWrite=True
 If Buffer="/A" then AppendMode=True

 If Buffer="/D" then DeleteFile=True
 If Buffer="/S" then SplitLine=True
 If Buffer="/X" then AllLines=True
 If Buffer="/R" then Retain=True
 If Buffer="/M" then MarkMode=True
 If Buffer="/V" then Verbose=True

 If Buffer="-O" then OverWrite=True
 If Buffer="-A" then AppendMode=True
 If Buffer="-D" then DeleteFile=True
 If Buffer="-S" then SplitLine=True

 If Buffer="-X" then AllLines=True
 If Buffer="-R" then Retain=True

 If Buffer="-M" then MarkMode=True
 If Buffer="-V" then Verbose=True

 else
 If Left(Buffer,3)= "/E:" then
 ' allow for upper/lower case
 PrgStr=Trim(Mid(Trim(Command(P)),4))
 else
 If Buffer="/DB" then
 ' do nothing
 Else ' must be a filename
 I=I+1
 If I=1 then FileIn=Trim(Command(P))

 If I=2 then FileOut=Trim(Command(P))
 If I=3 then SemiOut=Trim(Command(P))

 End If
 end If
 end If

 ' next command parameter
 P=P+1

Wend

' Appendmode overrides Overwrite mode ----------

if AppendMode=true then OverWrite=False

' debug ------
if (DeBugMe=True) then

 Print " FileIn: " & FileIn
 Print " FileOut: " & FileOut
 Print " SemiOut: " & SemiOut
 Print " PrgStr: " & PrgStr
 Print " OverWrite: " & OverWrite
 Print "AppendMode: " & AppendMode

 Print "DeleteFile: " & DeleteFile
 Print " SplitLine: " & SplitLine
 Print " AllLines: " & AllLines
 Print " Retain: " & Retain
 Print " MarkMode: " & MarkMode

Page: 201

 Print " Verbose: " & Verbose

 sleep
end if

' check file names -----------------

if (FileIn="") then Print EOL & HlpStr: End: end If
if dir(FileIn)="" then
 Print EOL & "***ERROR*** Input file not found" & EOL

 Print FileIn
 end

End If

if (FileOut="") then
 Print EOL & "***ERROR*** No output file specified" & EOL

 End
end If

If dir(FileOut)<> "" then
 if (OverWrite=true) then
 kill (FileOut)

 RtnCode=Err
 if(RtnCode<>0) then
 Print EOL & "***ERROR*** Cannot delete existing output file"
 Print " " & FileOut
 Print " Error= " & RtnCode

 End
 end if

 else
 If AppendMode=false then
 Print EOL & "***ERROR*** Output file exists."

 Print " Overwrite option not specified."
 Print " Append option not specified."
 Print " " & FileOut
 Print EOL & HlpStr
 End if
 end if
End If

If SemiOut<>"" then
 If dir(SemiOut)<> "" then

 if (OverWrite=true) then
 kill (SemiOut)

 RtnCode=Err
 if(RtnCode<>0) then
 Print EOL & "***ERROR*** Cannot delete existing output file"

 Print " " & SemiOut
 Print " Error= " & RtnCode

 End
 end if
 else

 If AppendMode=false then
 Print EOL & "***ERROR*** Output file exists."
 Print " Overwrite option not specified."
 Print " Append option not specified."

 Print " " & SemiOut
 Print EOL & HlpStr
 End if
 end if
 End If
End If

' Find last mark ?? -----------
if (MarkMode=True) then
 Open FileIn for Input as #1
 While not(eof(1))

Page: 202

 Line Input #1, Buffer

 LineCount=LineCount+1
 if Buffer=";;--PROCESSED--;;" then MarkLine=LineCount

 Wend
 Close #1

 LineCount=0
 If (DeBugMe=True) then print "Mark Line: " & MarkLine : Sleep
end If

' Open Files -----------------

Open FileIn for Input as #1
RtnCode=Err
If (RtnCode) <>0 then
 Print EOL & "***ERROR*** Can not open Input file."

 Print " " & FileIn
 Print " Error= " & RtnCode
 End
End If

Open Fileout for Append as #2

RtnCode=Err
If(RtnCode) <>0 then
 Print EOL & "***ERROR*** Can not open Output file."
 Print " " & FileOut
 Print " Error= " & RtnCode

 End
End If

If SemiOut<>"" then
 Open SemiOut for Append as #3

 RtnCode=Err
 If(RtnCode) <>0 then
 Print EOL & "***ERROR*** Can not open Output file."
 Print " " & SemiOut
 Print " Error= " & RtnCode
 End
 End If
End If
If (DeBugMe=True) then print "files opened": Sleep
'

' ---- process file -------------------

' see to last file mark
While LineCount<MarkLine
 Line Input #1, Buffer

 LineCount=LineCount+1
Wend

LineCount=0

While not (EOF(1))

 Line Input #1, Buffer
 if Trim(buffer)="" then
 BlankCount=BlankCount+1
 If (Retain=True) then Print #2,""

 Else
 C=left(trim(buffer),1)
 If C=";" then
 SemiCount=SemiCount+1
 If SemiOut<>"" then Print #3,rtrim(buffer)
 else

 P=Instr(Buffer,";")
 if (AllLines=True) and (P>0) then
 SemiCount=SemiCount+1
 If SemiOut<>"" then Print #3,rtrim(buffer)
 Else

Page: 203

 if (SplitLine=True) and (P>0) then

 SemiCount=SemiCount+1
 PartialCount=PartialCount+1

 If SemiOut<>"" then Print #3,rtrim(buffer)
 Buffer = Left(Buffer, P-1)

 Print #2, rtrim(BUffer)
 Else
 LineCount=LineCount+1

 Print #2, rtrim(BUffer)
 end if

 end if
 end If
 end If
Wend

If (DeBugMe=True) then print "files processed": Sleep

' close files ------------------------------
close #1
close #2
If SemiOut<>"" then Close #3

if DeleteFile=True then
 kill (FileIn)
 RtnCode=Err
 if(RtnCode<>0) then
 Print EOL & "***ERROR*** Cannot delete input file"

 Print " " & FileIn
 Print " Error= " & RtnCode

 End
 end if
End If

If (DeBugMe=True) then print "files closed": Sleep

' Mark file as processed ------------------------
if (MarkMode=True) then
 Open FileIn for Append as #1
 print #1, ";;--PROCESSED--;;"
 Close #1
 If (DeBugMe=True) then print "File Marked": Sleep
end If

' report ---
If Verbose=True then

 Print EOL & " Total Lines: " & BlankCount+SemiCount+LineCount
 Print "Semicolon Lines: " & SemiCount
 if (SplitLine=True) and (PartialCount>0) then Print " Partial Lines: " & PartialCount

 if (BlankCount>0) then Print " Blank Lines: " & BlankCount
 if (SplitLine=True) then LineCount=LineCount+PartialCount

 If (Retain=True) then LineCount=LineCount+BlankCount
 Print " Output Lines: " & LineCount
End If

' Execute ?? --------------------------------------
If PrgStr<>"" then
 If (DeBugMe=True) then

 print "Executing Program: "
 print PrgStr & " " & chr(34) & Fileout & chr(34)
 Sleep
 end if
 RtnCode=Run (PrgStr, chr(34) & Fileout & chr(34))
 If RtnCode<>0 then

 print "***ERROR*** Execution failed:"
 print PrgStr & " " & chr(34) & Fileout & chr(34)
 end if
end If
If (DeBugMe=True) then print "Program Complete": Sleep

Page: 204

‘ sleep waits for a key press

' go away --
end

Page: 205

Appendix: Thermometer One Program Code (Plan “A”)

Thermometer One Main Program File

/* ThermometerOne */

#include <avr/sleep.h> // needed for shutdown function
#include <EEPROM.h> // needed for EEPROM read and write

#include <HexDecAsc.h> // used for EEPROM dump All

// EEPROM Address Constants
const word EEmask = 0; // 1 byte location of EEPROM storage mode mask
const word EEflag = 1; // 1 byte location of EEPROM storage mode flag
const word EEoffsetR= 2; // 2 byte location of CovrtOffset
const word EEcelsius= 4; // 2 byte location of Covrt2Celsius
const word EEminutes= 6; // 2 byte location of Report Target Minutes
const word EEunused0= 8; // 2 byte location -- unused --
const word EEunused1= 10; // 2 byte location -- unused --

const word EEunused2= 12; // 2 byte location -- unused --
const word EEunused3= 14; // 2 byte location -- unused --

const word EEidtring= 16; // ID string w/o termiantion size (16)
const word EEidsize = 16; // 24 byte location of IdString

const word EEwdsize = EEidtring+EEidsize; // Working data storage size (32)
//-----------------------------
const word StorageWorking=EEmask; // EEPROM start for working calibration data
// EEPROM start for backup copy of constants
// note we have to add 1 to the value

// Becasue addresses begin with zero not one

const word StorageBackup =((E2END-(EEwdsize))+1);

// EEPROM addresses variables
word StorageBegin =StorageWorking+EEwdsize;// begin storage for report data
word StorageMark =StorageBegin; // marks start of current segment
word StorageEnd =StorageBackup; // marks end of current segment
word StorageIndex =StorageBegin; // index for next EEPROM write

// Conversion Factors/Calibraton Data
const float CovrtFactor=65532;

char IdString[EEidsize+1]; // ID/Location string for this device
word CovrtOffsetR; // Raw Reading offset
const word CovrtOffsetC=20; // Celsius temperature offset (default 20)
const word CovrtOffsetF=68; // Fahrenheit temperature offset (default 68)

float Covrt2Celsius; // Linear scale factor for Celsius (default 0.25)
float Covrt2Fahrenheit; // Linear scale factor for Fahrenheit (default 0.45)
float Celsius; // Last conversion to Celsius Temperature

float Fahrenheit; // Last conversion to Fahrenheit Temperature
byte newflg=0; // used to indicate new conversion factors in memory

// Global operational mode Variables // set default operation modes
boolean ReportMode = true; // True = reporting, False = Command Mode
boolean RtnRawRead = true; // True = include Raw
boolean RtnFahrenh = true; // True = include Fahrenheit
boolean RtnCelsius = true; // True = include Celsius
boolean DeBug = false; // True = extended reporting for debugging
boolean SleepMode = false; // False - sleepmode not implimented
boolean EepromMode = false; // False - write data to EEPROM

// Global work Variables
char cmd[] = {0,0,0}; // used to store two character command

char prevcmd[] = {0,0,0}; // used to store previous two character command
word MinuteTarget = 1; // Number of minutes between report lines

// word SecondsMinute = 10000; // --- to speed things up a bit for debugging
word SecondsMinute = 60000; // added so calibraton timining can be reduced
unsigned long SecondsTarget = 0; // Number of seconds between report lines

Page: 206

unsigned long Accumalator = 0; // Accumalate temperature reads

unsigned long CycleCount = 0; // Cycles per Report line
unsigned long RptStartTime = 0; // Time between report lines

unsigned long RptTrigger = 0; // Target Time for report
unsigned long CycleStart = 0; // Target Time for report

unsigned long CycleTime = 0; // Target Time for report
word LastRead = 0; // Stores previous RawRead Average
byte Consecutive = 0; // used to count consective equal readings

byte gap = 0; // used to increase gap between reads
 // There are 1000 milliseconds in a second

//---
void setup()
 { char c;

 Serial.begin (9600);
 pinMode(13, OUTPUT); // so we can blink it later during writes
 EnableADC(); // enables the ADC and set ADC clock factor
 delay (1000); // let serial library complete setup
 while (Serial.available()>0) // drain any data from the serial buffer
 c=Serial.read();

 Read_Calibration_Data(); // read and set conversion factors from EEPROM
 Check_EEPROM(); // see if we are writing to EEPROM vs Serial
 // calculate seconds between report lines
 // we have to "cast" the two word values or we will get a word value for the result
 SecondsTarget=long(MinuteTarget)*long(SecondsMinute);

 //delay (5000); // allow PC 5 seconds to get setup
 if (EepromMode==false) ReportStatus(); // report default parameters

 Accumalator = 0; // set startup parameters
 CycleCount = 0;
 RptTrigger = millis() + SecondsTarget;

 RptStartTime= millis();
 //------debugging stuff--------------------
 // Serial.println ("Got here");
 // while (true);
 }

//---
void loop()
 { char c1, c2;
 word wtemp;

 // ---- This is where we check for command input

 if ((Serial.available()>2) && (EepromMode==false))
 { if(ReadTwoCharacters()) CmdProcessor();}

 // ---- This is where we collect our temperature data
 // gap is used to increase the amount of time between reading sampling the ADC.

 // This Insures that we will not miss any data transmitted on the serial port.
 if (gap++ == 9)
 { gap=0;

 // cycle times are only used if debugging is turned on
 if (DeBug == true) CycleStart= millis();
 avrRawTemp();
 if (DeBug == true) CycleTime = CycleTime+(millis()-CycleStart);

 }

 // ---- This is where we output the teperature data
 // The time required to read 64 samples is about 119-120 milliseconds. If we get
 // within 125 milliseconds of the Report Trigger Time then we wait for it.
 // With the these timing numbers there are 500 reads of

 // 64 virtual 12 bit samples per minute.
 // Added condition for millis exceeding report trigger (possible with long commands)
 if (((RptTrigger-millis())< 125) || (millis()>RptTrigger))
 { // Serial.println ("Got here: RptTrigger ");
 while (millis() < RptTrigger);

Page: 207

 // We want the new trigger time set as close as possible to when the previous trigger

 // went off --- so we put ti first.
 RptTrigger= (millis() + (SecondsTarget));

 // Serial.print (F("Got Here: RptTrigger, milliseconds to wait= "));
 // Serial.println (SecondsTarget);

 Report();
 }
 }

//==

void CmdProcessor()
 {// this function is the main command handler
 // not many comments because I think the code is obviuos
 if (DeBug == true)

 { Serial.print (F("; Command Processor "));
 DebugPrintCharacters (cmd[0],cmd[1]);
 }
 if ((cmd[0]=='I') && (cmd[1]=='D')) {Serial.print(F("; ")); Print_IdString();}
 else if ((cmd[0]=='S') && (cmd[1]=='T')) ReportStatus();
 else if ((cmd[0]=='O') && (cmd[1]==':')) NewOffsetR();

 else if ((cmd[0]=='C') && (cmd[1]==':')) NewCelsius();
 else if ((cmd[0]=='C') && (cmd[1]=='=')) CelsiusEquals();
 else if ((cmd[0]=='F') && (cmd[1]==':')) NewFahrenheit();
 else if ((cmd[0]=='F') && (cmd[1]=='=')) FahrenheitEquals();
 else if ((cmd[0]=='L') && (cmd[1]==':')) NewIdString();

 else if ((cmd[0]=='D') && (cmd[1]=='B')) ToggleDebugMode();
 else if ((cmd[0]=='W') && (cmd[1]=='W')) Write_Calibration_Data();

 else if ((cmd[0]=='W') && (cmd[1]=='+')) OverwriteBackup();
 else if ((cmd[0]=='W') && (cmd[1]=='-')) RestoreFromBackup();
 else if ((cmd[0]=='L') && (cmd[1]=='L')) HelpMe();

 else if ((cmd[0]=='?') && (cmd[1]=='?')) HelpMe();
 else if ((cmd[0]=='S') && (cmd[1]=='S')) ShutDown();
 else if ((cmd[0]=='!') && (cmd[1]=='!')) software_Reset();
 else if ((cmd[0]=='E') && (cmd[1]=='+')) EEmodeFlagSet();
 else if ((cmd[0]=='E') && (cmd[1]=='-')) EEmodeFlagClear();
 else if ((cmd[0]=='E') && (cmd[1]=='C')) ClearStorage();
 else if ((cmd[0]=='E') && (cmd[1]=='D')) DumpStorage();
// else if ((cmd[0]=='T') && (cmd[1]=='T')) TestTest();
 else if (cmd[0]=='R') SetRawReadMode();
 else if (cmd[0]=='F') SetFahrenheitdMode();

 else if (cmd[0]=='C') SetCelsiusMode();
 else if (cmd[0]=='T') NewReportTime();

 else if (cmd[0]=='P') SetReportMode();
 // example of commands not implemented
 else if ((cmd[0]=='A') && (cmd[1]==':')) PrintNotImplemented();

 else if ((cmd[0]=='S') && (cmd[1]==':')) PrintNotImplemented();
 // example of application specific command implimneted

 // these two commands write test data to the EEPROM working storage
 else if ((cmd[0]=='Z') && (cmd[1]=='1')) TestData1();
 else if ((cmd[0]=='Z') && (cmd[1]=='2')) TestData2();

 // this command used for calibration, changes reporting to 5 seconds
 else if ((cmd[0]=='Z') && (cmd[1]=='Z')) CalibrationMode();
 // this command used to dump entire EEPROM to Serail Port
 else if ((cmd[0]=='Z') && (cmd[1]=='D')) EepromDumpAll();

 else PrintNotRecognized(); // not recognized
 }

//--
//void TestTest()
// { for (byte i=0; i< 20; i++)

// { QuickBlink();
// delay (200);
// }
// }

Page: 208

//--

void HelpMe()
 //Serial.println(F("This string will be stored in flash memory"));

 { PrintSeperatorLine();
 Serial.println(F("; Arduino AtMega328 Internal Temperature Sensor 1.0"));

 Serial.println(F("; ID Output ID string"));
 Serial.println(F("; ST Output Status"));
 Serial.println(F("; RT Raw=True"));

 Serial.println(F("; RF Raw=False"));
 Serial.println(F("; FT Fahrenheit=True"));

 Serial.println(F("; FF Fahrenheit=False"));
 Serial.println(F("; F= Enter Current Fahrenheit"));
 Serial.println(F("; CT Celsius=True"));
 Serial.println(F("; CF Celsius=False"));

 Serial.println(F("; C= Enter Current Celsius"));
 Serial.println(F("; T1 Report time = 01 minutes"));
 Serial.println(F("; T2 Report time = 02 minutes"));
 Serial.println(F("; T3 Report time = 03 minutes"));
 Serial.println(F("; T4 Report time = 04 minutes"));
 Serial.println(F("; T5 Report time = 05 minutes"));

 Serial.println(F("; T6 Report time = 10 minutes"));
 Serial.println(F("; T7 Report time = 15 minutes"));
 Serial.println(F("; T8 Report time = 20 minutes"));
 Serial.println(F("; T9 Report time = 30 minutes"));
 Serial.println(F("; T0 Report time = 60 minutes"));

 Serial.println(F("; TA Report time = 02 hours"));
 Serial.println(F("; TB Report time = 04 hours"));

 Serial.println(F("; TC Report time = 06 hours"));
 Serial.println(F("; TD Report time = 08 hours"));
 Serial.println(F("; TE Report time = 12 hours"));

 Serial.println(F("; TF Report time = 24 hours"));
 Serial.println(F("; PF Print mode = False"));
 Serial.println(F("; PT Print mode = True"));
 Serial.println(F("; DB Debug mode toggle"));
 Serial.println(F("; L: New Location"));
 Serial.println(F("; O: New Raw Offset"));
 Serial.println(F("; F: New Fahrenheit Factor"));
 Serial.println(F("; C: New Celsius Factor"));
 Serial.println(F("; WW Write Calibraton data to EEPROM"));
 Serial.println(F("; W+ Overwrtite Backup Calibraton data"));

 Serial.println(F("; W- Restore from Backup Calibraton data"));
 Serial.println(F("; E+ Set Flag to send next run to EEPROM"));

 Serial.println(F("; E- Clear Flag to send next run to EEPROM"));
 Serial.println(F("; EC Clear EEPROM Storage"));
 Serial.println(F("; ED Dump data stored in EEPROM"));

 Serial.println(F("; LL List implimented commands"));
 Serial.println(F("; ?? List implimented commands"));

 Serial.println(F("; SS Shutdown (send twice)"));
 Serial.println(F("; !! Reset (send twice)"));
 Serial.println(F("; Responce 'XX' = not implemented"));

 Serial.println(F("; Responce '??' = not recognized"));
 PrintSeperatorLine();
 // example of application specific command implimneted
 // these two commands write test data to the EEPROM working storage

 Serial.println(F("; Z1 Write test data 1"));
 Serial.println(F("; Z2 Write test data 2"));
 // special calibration mode
 Serial.println(F("; ZZ 5 Second reporting for calibration"));
 // Dump all EEPROM memory to Serial in Hex and ASCII
 Serial.println(F("; ZD Dump ALLL EEPROM to serial"));

 PrintSeperatorLine();
 }

//---
void PrintSeperatorLine()

Page: 209

 { Serial.println(F("; ---"));

 }

//==
boolean ReadTwoCharacters()

 { char c1=0,c2=0,c3=-1;
 byte m=0;
 boolean EOC=true; // End of Command Terminator

 boolean OurReturn=false;

 // It is not to be believed how much effort went into creating this simple function to read
 // two characters. I noted a bit of problem reading characters from the serail port when
 // the loop was too fast therefore I have added a bit of a delay to insure the serial port
 // library can keep up. Worst case senario this function can take more than 250 milliseconds.

 // Normally when this functionis called we expect the htree bytes we need to be in the buffer
 // but if there is noise on the line or a parrot randomly pecking at the keyboard it could
 // take a bit longer.
 //
 // by defintion we are looking for two characters followed by a terminator
 // we define a command terminatore to be a carriage return, new line or null character

 // --- for good measure we are including the tab character and space as well
 // space was added because it is impossible to send a tab character from the Ardunion IDE
 // we will accept any combination of those characters as a single terminator
 // we will accept the last two printable ASCII characters before a terminator for our command
 // we keep reading until we get a terminator, but we will only read for a short period

 // but before we do anything else we are going to save the rpevious command for posterity

 prevcmd[0]=cmd[0]; // actually we are saving it so that shutdown
 prevcmd[1]=cmd[1]; // and reset can check it before they execute

 while ((c3 != 13) && (c3 != 10) && (c3 != 9) && (c3 != 0) && (c3 != 32) && (m<25))
 { // if we have a valid ASCII character for c3 then roll the charaters down
 if (Serial.available()>0)
 { c3=Serial.read();
 if (c3>32) {c1=c2; c2=c3;}
 }
 // we need a bit of a delay to let the serial interface catch up
 // after 25 empty reads we give up
 else { delay (10); m++;}
 }

 // DebugPrintCharacters (c1,c2,c3,m);

 // we are very liberal about what we will accept for a command terminator
 // but we insist on having one.
 if ((c3 != 13) && (c3 != 10) && (c3 != 9) && (c3 != 0) && (c3 != 32)) EOC= false;

 // we need to drain any remaining command terminator characters from the serail buffer
 else DrainCmdTermiantors();

 // now check for valid ASCII charaters and End of Line
 if ((c1>32) && (c2>32) && EOC)

 { // OK... we have something to work with
 // Convert lower case to UPPER case excpet "w"
 // DebugPrintCharacters (c1,c2,c3);
 if ((c1 != 'w') && (c1 >96) && (c1 <123)) c1 = (c1 -32);

 if ((c2 != 'w') && (c2 >96) && (c2 <123)) c2 = (c2 -32);
 // DebugPrintCharacters (c1,c2);
 cmd[0]=c1;
 cmd[1]=c2;
 OurReturn=true;
 }

 // whatever it was that was sent did not meet our criteria
 // inform the parrot that he or she must do better
 else Serial.println(F("; ?? ??"));
 return OurReturn;
 }

Page: 210

//--
void DrainCmdTermiantors()

 { char c3=0;
 // removed leading command terminators from serial buffer

 delay (10); c3=Serial.peek();
 while ((c3==13) || (c3==10) || (c3==9) || (c3==0) || (c3 == 32))
 { c3=Serial.read();

 delay (10);
 c3=Serial.peek();

 }
 // c3 should at this point should be -1 unless there are more commands/charaters in the
buffer
 }

//==
// overloaded debugging function for debugging the above input routine
void DebugPrintCharacters (char c1, char c2, char c3, byte m)
 {
 if (DeBug == true)

 { Serial.print ("Received: ");
 Serial.print (c1);
 // Serial.print (" ");
 Serial.print (c2);
 Serial.print (" ");

 if (c3 != 0)
 { Serial.print (c3, DEC);

 Serial.print (" ");
 }
 if (m != 0) Serial.print (m, DEC);

 Serial.println ();
 }
 }
void DebugPrintCharacters (char c1, char c2, char c3)
 { byte m=0;
 DebugPrintCharacters (c1,c2,c3,m);
 }
void DebugPrintCharacters (char c1, char c2)
 { byte m=0;
 char c3=0;

 DebugPrintCharacters (c1,c2,c3,m);
 }

//----------------End of Main File------------------------------

Thermometer One Functions Module

// cbi and sbi are standard (AVR) methods for setting,

// or clearing, bits in PORT (and other) variables.

#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

//--
void EnableADC()

 { // This is probably not needed but
 // set system clock devisor to 128
 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
 sbi(ADCSRA, ADPS2); // bit 2 of ADCSRA, system clock devisor

 sbi(ADCSRA, ADPS1); // bit 1 of ADCSRA, system clock devisor

Page: 211

 sbi(ADCSRA, ADPS0); // bit 0 of ADCSRA, system clock devisor

 cbi(ADCSRA, ADATE); // bit 5 of ADCSRA, disable auto trigger mode
 sbi(ADCSRA, ADEN); // bit 7 of ADCSRA, enable ADC

 }

//--
void Read_Calibration_Data()
 { // This is more or less taken straight from the

 // EEPROM_TempSensor_Calibration_Constants program
 byte i=0, j=0;

 float saveflt;
 word TempWord;

 // detect a virgin device --- well at least try

 if ((EEPROM.read(EEminutes)==0xFF) &&
 (EEPROM.read(EEminutes+1)==0xFF))
 TestData1();

 // Get the rawreading offset;
 CovrtOffsetR= EEPROM.read(EEoffsetR)<<8;

 CovrtOffsetR= (CovrtOffsetR + EEPROM.read(EEoffsetR +1));

 // Get the Covrt2Celsius factor;
 TempWord= EEPROM.read(EEcelsius)<<8;
 TempWord= TempWord + EEPROM.read(EEcelsius +1);

 // now we need to convert it
 Covrt2Celsius = float(TempWord)/CovrtFactor ;

 // calculate Covrt2Fahrenheit factor;
 Covrt2Fahrenheit = Covrt2Celsius * 1.8000;

 // ID String -------------------------------------
 i=0; c=1;
 while (c!=0,i< EEidsize)
 {c=EEPROM.read(EEidtring + i); // read the ID string
 IdString [i++]=c;
 }
 IdString [EEidsize]=0; // just in case

 // Set MinuteTarget from default minutes

 MinuteTarget=(EEPROM.read(EEminutes)<<8) + EEPROM.read(EEminutes +1);
 if (MinuteTarget<1)MinuteTarget=1;

 // this is a bit flag to indicate when the current constants
 // in memory are different from those stored in working storage

 newflg=0;

 // Get the unused------------------------------
 // TempWord= EEPROM.read(EEunused)<<8;
 // TempWord= TempWord + EEPROM.read(EEunused+1);

 // unused=TempWord
 // CovrtOffsetR=1389;
 // Covrt2Celsius = 0.25;
 // Covrt2Fahrenheit = 0.45;

 // MinuteTarget=1;
 }

//--
void Write_Calibration_Data()
 { word i=0;

 // float saveflt;
 word TempWord;
 char c=-1;

 // New location

Page: 212

 if ((newflg & B00000001) == B00000001)

 {// Serial.println ("Got Here: Write_Calibration_Data, Location");
 for (i=0;i<EEidsize; i++) {EEPROM.write((EEidtring +i), IdString[i]);}

 }

 // New Offset Constant
 if ((newflg & B00000010) == B00000010)
 {// Serial.println ("Got Here: Write_Calibration_Data, Offset");

 TempWord=word(CovrtOffsetR);
 EEPROM.write(EEoffsetR , highByte(TempWord));

 EEPROM.write(EEoffsetR +1, lowByte (TempWord));
 }
 // New Celsius Factor
 if ((newflg & B00000100) == B00000100)

 { //Serial.println ("Got Here: Write_Calibration_Data, Celsius Factor");
 TempWord = word(Covrt2Celsius * CovrtFactor);
 EEPROM.write(EEcelsius , highByte(TempWord));
 EEPROM.write(EEcelsius +1, lowByte (TempWord));
 // Note:
 // When the EEPROM data is read

 // Covrt2Fahrenheit is calculated from Covrt2Celsius
 }

 // New MinuteTarget
 if ((newflg & B00010000) == B00010000)

 {// Serial.println ("Got Here: Write_Calibration_Data, MinuteTarget");
 EEPROM.write(EEminutes , highByte(MinuteTarget));

 EEPROM.write(EEminutes +1, lowByte (MinuteTarget));
 }

 // write the unused word(s)
 i=EEunused0;
 while (i<EEidtring)
 {if (EEPROM.read(i)!= 0xFF) EEPROM.write(i, 0xFF);
 i++;
 }

 // clear the EEMODE flag
 EEmodeFlagClear();

 // Serial.println ("Got Here: Write_Calibration_Data, Read");
 // note newflg is reset by Read_Calibration_Data

 Read_Calibration_Data();
 // PrintOKStr(); is sent by Report_Reset
 Report_Reset();

 }

//---
void ClearStorage()
 { // this is used to clear/erase the EEPROM data storage (except for constant areas)

 word addr;
 byte b;
 for (addr=(StorageBegin); addr<StorageBackup; addr++)
 { if (EEPROM.read(addr) != 0xFF) EEPROM.write(addr,0xFF);

 } // note: each byte requires 6-8 machine cycles
 PrintOKStr ();
 }

//---
 void EEmodeFlagSet()

 { // toggle the flag forthe next run to write to EEPROM
 // does not affect current run
 // Here is the thing. We have setup wearleveling for our EEPROM data storage
 // but modeflag gets hit twice for every EEPROM run. So it will wearout
 // long before the bulk of the storage. We could just increment the byte and

Page: 213

 // look for odd or even values but that would continuelly toggle the low bit

 // wearing it out before there rest. As it turns out it is writing a zero to
 // a bit that wears then out. So we want to minimize the zero bit writes.

 // We are going to move a zero bit right to left. This extends our life by a
 // factor of eight. At that point you need to swap the backup and working

 // data locations by changing the EEPROM address locations and reprograming
 // the Arduino. That would double the life (2 * 8 = 16).
 //

 byte flag;
 if(EEmodeFlagTF()==false)

 { // Serial.println (F("Got here: EEmodeFlagToggle, make not equal"));
 // make them not equal
 // shift left and add a one to the right
 flag=EEPROM.read(EEflag);

 // Serial.println(flag);
 flag=(flag<<1)+1;
 // Serial.println(flag);
 // if we have all ones start over again at the right
 if (flag==B11111111) flag=B11111110;
 // Serial.println(flag);

 // now save it
 EEPROM.write(EEflag,flag);
 }
 PrintOKStr();
 }

//---

 void EEmodeFlagClear()
 { byte flag;
 if(EEmodeFlagTF())

 { // Serial.println (F("Got here: EEmodeFlagClear"));
 // make them equal
 flag=EEPROM.read(EEflag);
 EEPROM.write(EEmask,flag);
 }
 if (EepromMode==false) PrintOKStr();
 }

//--
boolean EEmodeFlagTF()

 { // returns true if EEmodeFlag is set
 byte flag,mask;

 flag=EEPROM.read(EEflag);
 mask=EEPROM.read(EEmask);
 if(flag==mask) return false;

 else return true;
 }

//---
void Check_EEPROM()

 { byte b[4],i;
 word w;
 word addr;

 EepromMode=false;
 if (EEmodeFlagTF())
 { // Serial.println ("got here: Check_EEPROM");
 EepromMode=true;
 // clear the flag
 EEmodeFlagClear();

 // disable serial reporting and debug mode
 ReportMode=false;
 DeBug=false;
 // we need to find the beginning of EEPROM that has not been used
 // we need at least four bytes to begin a new section.

Page: 214

 // so we need to find the first place where there are four bytes with FFh

 // zero our test pattern
 for (i=0; i<4; i++) b[i]=0;

 addr=StorageBegin;
 while ((addr<StorageBackup) && ((b[0]!=0xFF) || (b[1]!=0xFF)

 || (b[2]!=0xFF) || (b[3]!=0xFF)))
 { b[0]=b[1];
 b[1]=b[2];

 b[2]=b[3];
 b[3]=EEPROM.read(addr++);

 }
 // did we read until the end ??
 if (addr >= StorageEnd) StorageMark=StorageBegin;
 // we found 4 bytes that have not been written to

 else StorageMark=addr-4;
 // in either case we clear the storage
 ClearStorage();
 // mark the beginning
 EEPROM.write(StorageMark,0);
 EEPROM.write(StorageMark+1,0);

 // set then beginning and end of the current segment
 StorageIndex=StorageMark+2;
 StorageEnd=StorageBackup;
 // -------
 // while(true); // stop here so we can check a memory dump

 }
 }

//---
void Print_IdString()

 { // Serial.print(F("; ")); // pefix
 Serial.println(IdString); // print it
 }

//---
void PrintTrueFalse(byte T)
 { // used to report True or False for boolean Globals
 if(T == 0) Serial.println(F("False"));
 else Serial.println(F("True"));
 }

//---

void ReportStatus()
 { // report settings
 PrintSeperatorLine();

 Serial.print (F("; Report Mode: "));
 PrintTrueFalse (ReportMode);

 Serial.print (F("; Debugging Active: "));
 PrintTrueFalse (DeBug);
 Serial.print (F("; Report Raw Reading: "));

 PrintTrueFalse (RtnRawRead);
 Serial.print (F("; Report Fahrenheit: "));
 PrintTrueFalse (RtnFahrenh);

 Serial.print (F("; Report Celsius: "));
 PrintTrueFalse (RtnCelsius);
 Serial.print (F("; Minutes Bewteen: "));
 Serial.println (MinuteTarget, DEC);

 // single sensor, no prefix needed

 Serial.print (F("; Sensor ID/Location: "));
 Print_IdString ();
 Serial.print (F("; Raw Offset: "));
 Serial.println (CovrtOffsetR, DEC);
 Serial.print (F("; Celsius Factor: "));

Page: 215

 Serial.println (Covrt2Celsius, 4);

 Serial.print (F("; Fahrenheit Factor: "));
 Serial.println (Covrt2Fahrenheit, 4);

 if (newflg != 0)

 Serial.println (F("; Current parameters have *NOT* been written to EEPROM."));
 if(EEmodeFlagTF())
 Serial.println (F("; *** Next run will write Data to EEPROM ***"));

 PrintSeperatorLine();

 }

//---

void avrRawTemp()
 { /* each sample has 16 ADC reads for a 12 bit virtual ADC */
 /* REF: Atmel document number AVR121.pdf */
 //---//
 /* on 16Mhz ATmega328 512 samples requires just under 1 second */
 /* 16 samples (16*16=256) gives fairly consistent results */

 /* on a steady-state system in under 40K microseconds */
 //---//
 unsigned long RawSum=0; // used to sum samples for averaging
 word RawTemp=0; // used to accumalate 10 bit ADC readings
 word test=0; // used to count samples

 byte k; // counter for 10 bit ADC reads

 // turn on internal reference, right-shift ADC buffer,ADC channel = internal temp sensor
 ADMUX = 0xC8;
 delay(5); // wait a bit for the analog ref to stabilize

 while (test++ < 64) // oversampling loop (for averaging)
 { for (k=0; k<16; k++) // virtual ADC loop,
 // 16 consecutiive readings
 { ADCSRA |= _BV(ADSC); // start the conversion
 while (bit_is_set(ADCSRA, ADSC)); // ADSC is cleared when the
 // conversion finishes
 RawTemp += (ADCL | (ADCH << 8)); // accumalate the reading (low byte first)
 }
 RawSum += (RawTemp >>2); // accumalate virtual 12 bit ADC value

 RawTemp=0; // zero ADC accumalator for
 // the next sequence

 }
 // Serial.println ("Got here: avrRawTemp");
 Accumalator += ((RawSum)>>6); // averag by shifting bit position,

 // LSBs are lost
 CycleCount++; // used by functions to average readings

 }

//---

void Convert(word RawReading)
 { //converts Raw Reading to Celsius and Fahrenheit

 // we need to use an interger for the delata to allow for negative values

int Delta;
 byte fraction;

 // get the difference between the current reading and the raw reading offset
 Delta=RawReading-CovrtOffsetR;

 //Serial.println (F("; got here: Convert"));
 //Serial.println (RawReading);
 //Serial.println (CovrtOffsetR);
 //Serial.println (Delta);
 //Serial.println (Covrt2Celsius);

Page: 216

 //Serial.println (CovrtOffsetC);

 Celsius= ((Delta * Covrt2Celsius) + CovrtOffsetC)+40;

 // now find closest 1/4 degree
 fraction=100*(Celsius-word(Celsius));

 if (fraction > 87) fraction=4;
 else if (fraction > 62) fraction=3;
 else if (fraction > 37) fraction=2;

 else if (fraction > 12) fraction=1;
 else fraction=0;

 // the extra 40 degrees had to be inserted to fix a problem
 // where conversion below zero rolled the value for

// word(Celsius) to positive number
 Celsius=(word(Celsius)+(float(fraction)*0.25))-40;

 Fahrenheit= (Delta * Covrt2Fahrenheit) + CovrtOffsetF;
 // now find closest 1/2 degree
 fraction=100*(Fahrenheit-word(Fahrenheit));
 if (fraction > 75) fraction=2;

 else if (fraction > 25) fraction=1;
 else fraction=0;
 Fahrenheit=word(Fahrenheit)+(float(fraction)*0.5);
 }

//---
void Report()

 { word AvgSumRead;
 AvgSumRead = Accumalator/CycleCount;
 if (EepromMode == true) Report2EEPROM(AvgSumRead);

 else if (ReportMode == true)
 { Convert (AvgSumRead);
 if (RtnRawRead == true)
 { Serial.print (AvgSumRead);
 Serial.print (char(9));
 }
 if (RtnCelsius == true)
 { Serial.print (Celsius,2);
 Serial.print (char(9));
 }

 if (RtnFahrenh == true)
 { Serial.print (Fahrenheit,2);

 Serial.print (char(9));
 }
 if (DeBug == true)

 { Serial.print (CycleTime/CycleCount);
 Serial.print (char(9));

 Serial.print (CycleCount);
 Serial.print (char(9));
 Serial.print (millis()-RptStartTime);

 RptStartTime=millis();
 }
 Serial.println();
 }

 Accumalator = 0;
 CycleCount = 0;
 CycleTime = 0;
 LastRead=AvgSumRead;
 }

//--
void QuickBlink()
 { // on the UNO 1 mullisecond will surfice
 // adjusted up to 3 for Nano
 digitalWrite(13, HIGH); // turn on LED

Page: 217

 delay(3);

 digitalWrite(13, LOW); // turn off LED
 }

//--

void Report2EEPROM(word AvgSumRead)
 { // We are implimenting both data compression and wearleveling.
 // Our data is only 12 bits. Becuase we should never get a reading

 // over 2047 in our high bit will always be zero.
 // We are going to use the top four bits to count consecutive equal

 // readings. In that manner we may be able to store 16 readings in
 // a singal word value.
 word makeword;
 QuickBlink();

 // Serial.println(F("Get here: Report2EEPROM"));
 // send this string for testing: EC EE ST !! !!
 // we need to skip the firs pass because we have nothing to work with
 if (LastRead !=0)
 { if (LastRead == AvgSumRead) Consecutive++;

 if ((Consecutive == 15) || (LastRead != AvgSumRead))
 { // Serial.println(F("Get here: Report2EEPROM, write record"));
 // we are going to try two blinks everytime that there is a write
 makeword = (Consecutive <<12)+LastRead;
 EEPROM.write (StorageIndex++, highByte(makeword));

 EEPROM.write (StorageIndex++, lowByte(makeword));
 Consecutive=0;

 // now we need to check our storage space
 if ((StorageEnd-StorageIndex)<2)
 { // folks there is Trouble in river city !

 if (StorageMark==StorageBegin)
 {prevcmd[1]=prevcmd[0]=cmd[1]=cmd[0]='S'; ShutDown();}
 if (StorageEnd ==StorageMark)
 {prevcmd[1]=prevcmd[0]=cmd[1]=cmd[0]='S'; ShutDown();}
 // OK, start at the beginning
 StorageIndex=StorageBegin;
 StorageEnd=StorageMark;
 }
 delay (50); // force a bit of a delay so both blinks can be seen
 QuickBlink();

 }
 }

 LastRead == AvgSumRead;
 }

//--
void DumpStorage()

 { // print data stored in eeprom
 byte b1, b2, c;
 word reading;

 word countreading=0;
 word countwords=0;
 boolean savemode;
 // save the current reporting mode

 savemode=ReportMode;
 // find the beginning of the data defined to be two zero bytes
 b1=1;
 b2=1;
 while ((StorageIndex<StorageBackup) && ((b1!=0) || (b2!=0)))
 { b1=b2;

 b2=EEPROM.read(StorageIndex++);
 }
 StorageEnd=StorageBackup;
 StorageMark=StorageIndex-2;
 // 4 high bits are the count, low 12 bits are the reading

Page: 218

 Serial.println ("; Begin EEPROM data dump -------------------------");

 Serial.print ("Raw Reading");
 Serial.print (char(9));

 Serial.print ("Celsius");
 Serial.print (char(9));

 Serial.print ("Fahrenheit");
 Serial.println ();
 while (((StorageEnd-StorageIndex)>=2) && ((b1 != 0xFF)||(b2 != 0xFF)))

 { b1=EEPROM.read(StorageIndex++);
 b2=EEPROM.read(StorageIndex++);

 //----------------- debuggin code
 // Serial.print ("; Location: ");
 // Serial.print (StorageIndex);
 // Serial.print (", ");

 // Serial.print (b1,HEX);
 // Serial.print (", ");
 // Serial.print (b2,HEX);
 countwords++;
 // two bytes of FFh will mark the end
 if ((b1 != 0xFF) || (b1 != 0xFF))

 { Consecutive=b1>>4;
 reading= ((b1 & B00001111)<<8)+b2;
 Convert(reading);
 //----------------- debuggin code
 // Serial.print (", ");

 // Serial.print (Consecutive);
 // Serial.print (", ");

 // Serial.print (reading);
 // Serial.println();
 // while (Serial.available() ==0);

 // c=Serial.read();
 // the logic here is we need to print every reading at least once ...
 // that is when it is zero. When we subtract one from zero we get 255
 while (Consecutive<255)
 { countreading++;
 Serial.print (reading);
 Serial.print (char(9));
 Serial.print (Celsius,2);
 Serial.print (char(9));
 Serial.print (Fahrenheit,2);

 Serial.println ();
 Consecutive--;

 //----------------- debuggin code
 // Serial.print (Consecutive);
 // Serial.print (", ");

 // Serial.println();
 // while (Serial.available() ==0);

 // c=Serial.read();
 }
 // now check the addresses

 if ((StorageEnd-StorageIndex)<2)
 { if (StorageMark != StorageBegin)
 { StorageEnd = StorageMark;
 StorageMark = StorageBegin;

 StorageIndex = StorageMark +2;
 }
 }
 }
 }
 Serial.println (F("; End EEPROM data dump ---------------------------"));

 Serial.print (F("; readings: "));
 Serial.println (countreading, DEC);
 Serial.print (F("; storage words: "));
 Serial.println (countwords, DEC);
 PrintSeperatorLine();

Page: 219

 // restore the current reporting mode

 ReportMode=savemode;
 }

//--

void PrintOKStr ()
 { // command was accepted and processed
 // this just serves to reduce command responce memory usage a bit

 if (EepromMode == false)
 { // we do not want to get hung up

 // trying to wrtie to seomthing that is not connected
 Serial.print (F("; "));
 Serial.print (cmd);
 Serial.println (F(" OK"));

 }
 }

//--
void PrintNotRecognized()
 { // command was Not Recognized

 // this just serves to reduce command responce memory usage a bit
 if (EepromMode == false)
 { // we do not want to get hung up
 // trying to wrtie to seomthing that is not connected
 Serial.print (F("; "));

 Serial.print (cmd);
 Serial.println (F(" ??"));

 }
 }

//--
void PrintNotImplemented()
 { // command was Not Recognized
 // this just serves to reduce command responce memory usage a bit
 if (EepromMode == false)
 { Serial.print (F("; "));
 Serial.print (cmd);
 Serial.println (F(" XX"));
 }
 }

//---

void ShutDown()
 { // Note that no provision is made to wake up.
 // This is as close to shutdown as we can get.

 // Because of the inefficent voltage regulator this
 // mode still draws a lot of power (about 10mA).

 // A standard 9 volt battery may last about 16 hours.

 // Serial.println(prevcmd);

 if ((prevcmd[0]=='S') && (prevcmd[1]=='S'))
 { Serial.println (F("; SHUTDOWN"));
 // give device time to send string
 for (byte i=0; i< 25; i++)

 { QuickBlink();
 delay (100);
 }
 cbi(ADCSRA, ADEN); // bit 7 of ADCSRA, disable ADC
 SleepMode = true;
 noInterrupts();

 set_sleep_mode(SLEEP_MODE_PWR_DOWN);
 sleep_enable();
 sleep_mode(); // all execution should stop here
 while(0==0); // endless loop (belts and suspenders)
 }

Page: 220

 else PrintOKStr(); // first time through only

 }

//--
void software_Reset()

 { // Restarts program from beginning but
 // does not reset the peripherals and registers
 // as we are not doing anything with the the

 // timers or peripherals or registers this
 // should be adequate (will not support updating)

 // Serial.println(prevcmd);
 if ((prevcmd[0]=='!') && (prevcmd[1]=='!'))
 { Serial.println (F("; RESETTING"));

 // give device time to send string
 delay (1000);
 asm volatile (" jmp 0");
 }
 else PrintOKStr(); // first time through only
 }

//--
void SetRawReadMode()
 { // check for "T" or "F", true of false
 if (cmd[1]=='T') {RtnRawRead = true; PrintOKStr();}

 else if (cmd[1]=='F') {RtnRawRead = false; PrintOKStr();}
 else PrintNotRecognized();

 }

//--

void SetFahrenheitdMode()
 { // check for "T" or "F", true of false
 if (cmd[1]=='T') {RtnFahrenh = true; PrintOKStr();}
 else if (cmd[1]=='F') {RtnFahrenh = false; PrintOKStr();}
 else PrintNotRecognized();
 }

//--
void SetCelsiusMode()
 { // check for "T" or "F", true of false

 if (cmd[1]=='T') {RtnCelsius = true; PrintOKStr();}
 else if (cmd[1]=='F') {RtnCelsius = false; PrintOKStr();}

 else PrintNotRecognized();
 }

//--
void SetReportMode()

 { // check for "T" or "F", true of false
 if (cmd[1]=='T') {ReportMode = true; PrintOKStr();}
 else if (cmd[1]=='F') {ReportMode = false; PrintOKStr();}

 else PrintNotRecognized();
 }

//--

void ToggleDebugMode()
 { // toggle Debug mode
 if (DeBug == true) DeBug = false;
 else if (DeBug == false) DeBug = true;
 PrintOKStr();
 }

//--
void NewReportTime()
 { // set report Minutes
 if (cmd[1]=='1') { MinuteTarget = 1; Report_Reset();}

Page: 221

 else if (cmd[1]=='2') { MinuteTarget = 2; Report_Reset();}

 else if (cmd[1]=='3') { MinuteTarget = 3; Report_Reset();}
 else if (cmd[1]=='4') { MinuteTarget = 4; Report_Reset();}

 else if (cmd[1]=='5') { MinuteTarget = 5; Report_Reset();}
 //---- the timings below have not been tested ---------------

 else if (cmd[1]=='6') { MinuteTarget = 10; Report_Reset();}
 else if (cmd[1]=='7') { MinuteTarget = 15; Report_Reset();}
 else if (cmd[1]=='8') { MinuteTarget = 20; Report_Reset();}

 else if (cmd[1]=='9') { MinuteTarget = 30; Report_Reset();}
 else if (cmd[1]=='0') { MinuteTarget = 60; Report_Reset();}

 else if (cmd[1]=='A') { MinuteTarget = 120; Report_Reset();}
 else if (cmd[1]=='B') { MinuteTarget = 240; Report_Reset();}
 else if (cmd[1]=='C') { MinuteTarget = 360; Report_Reset();}
 else if (cmd[1]=='D') { MinuteTarget = 480; Report_Reset();}

 else if (cmd[1]=='E') { MinuteTarget = 720; Report_Reset();}
 else if (cmd[1]=='F') { MinuteTarget = 1440; Report_Reset();}
 // max=86,400,000 milliseconds and that is why we use four byte variables

 else if (cmd[1]=='T') Serial.println(F("; TT XX")); // not implimented
 else PrintNotRecognized(); // not recognized

 }

//--
void Report_Reset()
 { // this force the current data to be reported

 // and reset our clock using the new time
 unsigned long SaveMe=SecondsTarget;

 PrintOKStr();
 Serial.println (F("; Report Timing reset"));
 // calculate seconds between report lines

 // SecondsTarget=MinuteTarget*SecondsMinute;
 // we have to "cast" the two word values or we will get a word value for the result
 SecondsTarget=long(MinuteTarget)*long(SecondsMinute);
 if (SecondsTarget != SaveMe) newflg = newflg | B00010000;
 // Serial.print (F("Got Here: report reset, milliseconds to wait= "));
 // Serial.println (SecondsTarget);

 Accumalator = 0; // reset report parameters
 CycleCount = 0;
 RptTrigger = millis() + SecondsTarget;

 RptStartTime= millis();
 // Serial.print (F("Got Here: report reset, trigger= "));

 // Serial.println (RptTrigger-millis());
 }

//--
void NewIdString()

 { // New Location ID String
 // Serial.println("got here: NewIdString");
 // set time out to 5 seconds

 unsigned long timelimit = millis() + (5000);
 boolean timeout=false;
 char c= -1;
 byte n= 0;

 while ((c != 0) && (c != 10) && (c != 9) && (c != 13) && (n<EEidsize) && (timeout==false))
 { delay(10);
 c = Serial.read();
 if (c > 31) IdString[n++]=c;
 // check for timeout
 if (millis()>timelimit) timeout=true;

 }
 if (timeout) Serial.println (F("; L: aborted due to timeout"));
 else
 { IdString[EEidsize]=0; // make certain last charater is null
 newflg = newflg | B00000001;

Page: 222

 // Serial.println (IdString);

 PrintOKStr();
 }

 DrainCmdTermiantors();
 }

//--
void NewOffsetR()

 { // New Conversion Offset
 int tempfloat=0;

 delay (2000);
 tempfloat=Serial.parseFloat();
 if (tempfloat!=0)
 { CovrtOffsetR=tempfloat;

 newflg = newflg | B00000010;
 PrintOKStr();
 }
 else Serial.println (F("; O: zero value not accepted"));
 DrainCmdTermiantors();
 }

//--
void CelsiusEquals()
 { // sets offset according to current reading and input Celsius
 float tempfloat=0;

 word deltaR=0;
 // Serial.println (F("Got Here: CelsiusEquals"));

 delay (2000);
 tempfloat=Serial.parseFloat();
 if (tempfloat != 0)

 { // get the current raw reading
 Serial.println (F("; Calculating new offset"));
 deltaR = (tempfloat - CovrtOffsetC) / Covrt2Celsius;
 while (CycleCount<250) avrRawTemp();
 CovrtOffsetR = (Accumalator/CycleCount)-deltaR;
 newflg = newflg | B00000010;
 PrintOKStr();
 }
 else Serial.println (F("; C= zero value not accepted"));
 DrainCmdTermiantors();

 }

//--
void FahrenheitEquals()
 { // sets offset according to current reading and input Fahrenheit

 float tempfloat=0;
 float deltaR;

 // Serial.println (F("Got Here: FahrenheitEquals"));
 delay (2000);
 tempfloat=Serial.parseFloat();

 if (tempfloat != 0)
 { // get the current raw reading
 Serial.println (F("; Calculating new offset"));
 deltaR = (tempfloat - CovrtOffsetF) / Covrt2Fahrenheit;

 while (CycleCount<250) avrRawTemp();
 CovrtOffsetR = (Accumalator/CycleCount)-deltaR;
 newflg = newflg | B00000010;
 PrintOKStr();
 }
 else Serial.println (F("; F: zero value not accepted"));

 DrainCmdTermiantors();
 }

//--
void NewCelsius()

Page: 223

 { // New Celsius Factor

 delay (2000);
 float tempfloat=0;

 // Serial.println ("Got Here: NewCelsius");
 tempfloat=Serial.parseFloat();

 if (tempfloat != 0)
 { Covrt2Celsius=tempfloat;
 newflg = newflg | B00000100;

 // Calculate Fahrenheit factor
 Covrt2Fahrenheit=Covrt2Celsius * 1.8000;

 PrintOKStr();
 }
 else Serial.println (F("; C: zero value not accepted"));
 DrainCmdTermiantors();

 }

//--
void NewFahrenheit()
 { // New Fahrenheit constant
 delay (2000);

 float tempfloat=0;
 // Serial.println ("Got Here: NewFahrenheit");
 tempfloat=Serial.parseFloat();
 if (tempfloat != 0)
 { Covrt2Fahrenheit=tempfloat;

 newflg = newflg | B00000100;
 // Calculate Celsius factor

 Covrt2Celsius = Covrt2Fahrenheit / 1.8000;
 PrintOKStr();
 }

 else Serial.println (F("; F= zero value not accepted"));
 DrainCmdTermiantors();
 }

//---
void RestoreFromBackup()
 { char TempString[EEwdsize];
 byte i;
 // read the backup copy
 for (i=0; i<EEwdsize; i++) TempString[i]=EEPROM.read(StorageBackup + i);

 // write working copy
 for (i=0; i<EEwdsize; i++) EEPROM.write(StorageWorking +i, TempString[i]);

 newflg=0;
 Read_Calibration_Data();
 Report_Reset();

 }

//--
void OverwriteBackup()
 { char TempString[EEwdsize];

 byte i;
 // read the working copy
 for (i=0; i<EEwdsize; i++)
 TempString[i]=EEPROM.read(StorageWorking + i);

 // write backup copy
 for (i=0; i<EEwdsize; i++) EEPROM.write(StorageBackup +i, TempString[i]);
 PrintOKStr();
 }

//===

void TestData1()
 { // This is NOT valid calibration data
 // These sets were picked for testing
 // so that one set look like the another set.
 char temp[]="(1)tst data, UNO ";

Page: 224

 //...........1234567890123456

 byte i;
 Serial.println(F("; Test Data one being written to EEPROM"));

 // clear the EEPROM report storage area
 ClearStorage();

 for (i=0; i< EEidsize; i++) IdString[i]=temp[i];
 IdString[EEidsize]=0;
 CovrtOffsetR=1500;

 Covrt2Celsius =0.25000;
 Covrt2Fahrenheit=Covrt2Celsius * 1.80000;

 MinuteTarget=1;
 newflg=0XFF;
 Write_Calibration_Data();
 }

//---
void TestData2()
 { char temp[]="(2)tst data,Nano ";
 //...........1234567890123456
 byte i;

 Serial.println(F("; Test Data two being written to EEPROM"));
 // clear the EEPROM report storage area
 ClearStorage();
 for (i=0; i< EEidsize; i++) IdString[i]=temp[i];
 IdString[EEidsize]=0;

 CovrtOffsetR=1389;
 Covrt2Celsius =0.2217;

 Covrt2Fahrenheit=Covrt2Celsius * 1.80000;
 MinuteTarget=1;
 newflg=0XFF;

 Write_Calibration_Data();
}

//---
void CalibrationMode()
 { // used for calbration, reduces time between report lines to 5 seconds
 // there should be about 40 samples per report which will still give a good average
 Serial.println(F("; Entering 5 second calibration mode ..."));
 SecondsMinute=5000;
 MinuteTarget=1;

 DeBug=false;
 EepromMode=false;

 ReportMode=true;
 RtnRawRead = true;
 RtnFahrenh = false;

 RtnCelsius = false;
 Report_Reset();

 newflg=0;
 }

//---
void EepromDumpAll()
 { char buffer[60]; // allocate buffer
 word addr=0; // set start address

 PrintSeperatorLine();
 Serial.println(F("; Dump all EEPROM in Hex and ASCII")); // inform the user
 while (addr < E2END) // run until we reach the end
 { for (byte i=0; i<16; i++) // process 16 bytes at a time
 { buffer[i]=EEPROM.read(addr++); // read EEPROM
 }

 Serial.print ("; ");
 Serial.println(formatRamDump(addr-16, buffer)); // print formatted string
 }
 PrintSeperatorLine();
 PrintOKStr();

Page: 225

 }

// ------------- end of thermometer functions code------------

Page: 226

Appendix: Thermometer One Program Code (Plan “B”)

Thermometer One Main Program File

/* ThermometerOne, Plan "B" ATMEGA328 Version */

/* Release 1.0.0, October 2013, Public Domain */

#include <avr/sleep.h> // needed for shutdown function

#include <EEPROM.h> // needed for EEPROM read and write
#include <HexDecAsc.h> // used for EEPROM dump All

// EEPROM Address Constants
const word EEmask = 0; // 1 byte location of EEPROM storage mode mask
const word EEflag = 1; // 1 byte location of EEPROM storage mode flag
const word EErefvolt= 2; // 2 byte location of RefVoltage
const word EEoffset = 4; // 2 byte location of DegreeOffset
const word EEminutes= 6; // 2 byte location of Report Target Minutes
const word EEunused0= 8; // 2 byte location -- reserved -- unused

const word EEunused1= 10; // 2 byte location -- reserved -- unused
const word EEunused2= 12; // 2 byte location -- reserved -- unused

const word EEunused3= 14; // 2 byte location -- reserved -- unused
const word EEidtring= 16; // ID string w/o termiantion size (16)

const word EEidsize = 16; // 24 byte location of IdString
const word EEwdsize = EEidtring+EEidsize; // Working data storage size (32)
//----------------------------- ---- ---- // -- This area reserved for Table based system --
const word EEtable = 32; // 40 word location of converion table
const word EEtbsize = 80; // Working data storage size (80)

//----------------------------- ---- ---- // -- This area reserved for Table based system --

const word StorageWorking=EEmask; // EEPROM start for working calibration data
// EEPROM start for backup copy of constants
// note we have to add 1 to the value
// Becasue addresses begin with zero not one
const word StorageBackup =((E2END-(EEwdsize))+1);

// EEPROM addresses variables // begin storage for report data

word StorageBegin =StorageWorking+EEwdsize+EEtbsize;
word StorageMark =StorageBegin; // marks start of current segment
word StorageEnd =StorageBackup; // marks end of current segment

word StorageIndex =StorageBegin; // index for next EEPROM write

// Conversion Factors/Calibraton Data
float RefVoltage; // Analog Sensor Reference Voltage

const float CovrtFactorV= 8192;
float DegreeOffset; // Fudge factor to adjust output
const float CovrtFactorO= 1024;

char IdString[EEidsize+1]; // ID/Location string for this device
word MinuteTarget = 1; // Number of minutes between report lines

byte newflg=0; // used to indicate new factors in memory

float Celsius; // Last conversion to Celsius Temperature
float Fahrenheit; // Last conversion to Fahrenheit Temperature
float AvrCelsius; // Last AVR conversion to Celsius Temperature
float AVRFahrenheit; // Last AVR conversion to Fahrenheit Temperature

// Global operational mode Variables // set default operation modes
boolean ReportMode = true; // True = reporting, False = Command Mode
boolean RtnRawRead = true; // True = include Raw
boolean RtnCelsius = true; // True = include Celsius
boolean RtnFahrenh = true; // True = include Fahrenheit

boolean DeBug = false; // True = extended reporting for debugging
boolean RtnAvrRead = false; // True = include Avr internal Temperature line

boolean EepromMode = false; // True = write data to EEPROM on next run
boolean RoundMode = true; // True = round output to nearest 1/4 or 1/2

Page: 227

// Global work Variables // There are 1000 milliseconds in a second

// word SecondsMinute = 10000; // --- to speed things up a bit for debugging
word SecondsMinute = 60000; // added so calibraton timining can be reduced

unsigned long SecondsTarget = 0; // Number of seconds between report lines
unsigned long RptStartTime = 0; // Time between report lines

byte gap = 0; // used to increase gap between reads
unsigned long RptTrigger = 0; // Target Time for report
unsigned long CycleStart = 0; // Target Time for report

unsigned long CycleTime = 0; // Target Time for report

unsigned long Accumalator = 0; // Accumalate temperature reads
unsigned long CycleCount = 0; // Cycles per Report line
char cmd[] = {0,0,0}; // used to store two character command
char prevcmd[] = {0,0,0}; // used to store previous two character command

word LastRead = 0; // Stores previous RawRead Average
byte Consecutive = 0; // used to count consective equal readings

//===
void setup()

 { char c;
 Serial.begin (9600);
 pinMode(13, OUTPUT); // so we can blink it later during writes
 EnableADC(); // enables the ADC and set ADC clock factor
 delay (1000); // let serial library complete setup

 while (Serial.available()>0) // drain any data from the serial buffer
 c=Serial.read();

 Read_Calibration_Data(); // read and set conversion factors from EEPROM
 Check_EEPROM(); // see if we are writing to EEPROM vs Serial
 // calculate seconds between report lines

 // we have to "cast" the two word values or we will get a word value for the result
 SecondsTarget=long(MinuteTarget)*long(SecondsMinute);
 //delay (5000); // allow PC 5 seconds to get setup
 if (EepromMode==false) ReportStatus(); // report default parameters
 Accumalator = 0; // set startup parameters
 CycleCount = 0;
 RptTrigger = millis() + SecondsTarget;
 RptStartTime= millis();
 //------debugging stuff--------------------
 // Serial.println ("Got here");

 // while (true);
 }

//---
void loop()

 { char c1, c2;
 word wtemp;

 // ---- This is where we check for command input
 if ((Serial.available()>2) && (EepromMode==false))

 { if(ReadTwoCharacters()) CmdProcessor();}

 // ---- This is where we collect our temperature data
 // gap is used to increase the amount of time between reading sampling the ADC.

 // This Insures that we will not miss any data transmitted on the serial port.
 if (gap++ == 9)
 { gap=0;
 // cycle times are only used if debugging is turned on
 if (DeBug == true) CycleStart= millis();
 ReadRawTempA1();

 if (DeBug == true) CycleTime = CycleTime+(millis()-CycleStart);
 }

 // ---- This is where we output the teperature data
 // The time required to read 64 samples is about 119-120 milliseconds. If we get

Page: 228

 // within 150 milliseconds of the Report Trigger Time then we wait for it.

 // With the these timing numbers there are 500 reads of
 // 64 virtual 12 bit samples per minute.

 // Added condition for millis exceeding report trigger (possible with long commands)
 if (((RptTrigger-millis())< 150) || (millis()>RptTrigger))

 { // Serial.println ("Got here: RptTrigger ");
 while (millis() < RptTrigger);
 // We want the new trigger time set as close as possible to when the previous trigger

 // went off --- so we put ti first.
 RptTrigger= (millis() + (SecondsTarget));

 // Serial.print (F("Got Here: RptTrigger, milliseconds to wait= "));
 // Serial.println (SecondsTarget);
 Report();
 }

 }

//==
void CmdProcessor()
 {// this function is the main command handler
 // not many comments because I think the code is obviuos

 if (DeBug == true)
 { Serial.print (F("; Command Processor "));
 DebugPrintCharacters (cmd[0],cmd[1]);
 }
 if ((cmd[0]=='C') && (cmd[1]=='=')) CelsiusEquals();

 else if ((cmd[0]=='D') && (cmd[1]=='B')) ToggleDebugMode();
 else if ((cmd[0]=='D') && (cmd[1]=='O')) NewDegreeOffset();

 else if ((cmd[0]=='D') && (cmd[1]=='0')) NewDegreeOffset(); // for typoes
 else if ((cmd[0]=='E') && (cmd[1]=='+')) EEmodeFlagSet();
 else if ((cmd[0]=='E') && (cmd[1]=='C')) ClearStorage();

 else if ((cmd[0]=='E') && (cmd[1]=='D')) DumpStorage();
 else if ((cmd[0]=='E') && (cmd[1]=='-')) EEmodeFlagClear();
 else if ((cmd[0]=='F') && (cmd[1]=='=')) FahrenheitEquals();
 else if ((cmd[0]=='I') && (cmd[1]=='D')) {Serial.print(F("; ")); Print_IdString();}
 else if ((cmd[0]=='L') && (cmd[1]=='L')) HelpMe();
 else if ((cmd[0]=='L') && (cmd[1]==':')) NewIdString();
 else if ((cmd[0]=='R') && (cmd[1]=='V')) NewRefVolt();
 else if ((cmd[0]=='S') && (cmd[1]=='S')) ShutDown();
 else if ((cmd[0]=='S') && (cmd[1]=='T')) ReportStatus();
 else if ((cmd[0]=='W') && (cmd[1]=='W')) Write_Calibration_Data();

 else if ((cmd[0]=='W') && (cmd[1]=='+')) OverwriteBackup();
 else if ((cmd[0]=='W') && (cmd[1]=='-')) RestoreFromBackup();

 else if ((cmd[0]=='?') && (cmd[1]=='?')) HelpMe();
 else if ((cmd[0]=='!') && (cmd[1]=='!')) software_Reset();
 else if ((cmd[0]=='0') && (cmd[1]=='0')) ToggleRoundMode();

 else if (cmd[0]=='C') SetCelsiusMode();

 else if (cmd[0]=='F') SetFahrenheitdMode();
 else if (cmd[0]=='I') SetAvrInternalMode();
 else if (cmd[0]=='P') SetReportMode();

 else if (cmd[0]=='R') SetRawReadMode();
 else if (cmd[0]=='T') NewReportTime();

 // example of commands not implemented

 else if ((cmd[0]=='A') && (cmd[1]==':')) PrintNotImplemented();
 else if ((cmd[0]=='S') && (cmd[1]==':')) PrintNotImplemented();

 // example of application specific command implimneted
 // these two commands write test data to the EEPROM working storage
 else if ((cmd[0]=='Z') && (cmd[1]=='1')) TestData1();

 else if ((cmd[0]=='Z') && (cmd[1]=='2')) TestData2();
 // this command used for calibration, changes reporting to 5 seconds
 else if ((cmd[0]=='Z') && (cmd[1]=='Z')) CalibrationMode();
 // this command used to dump entire EEPROM to Serail Port
 else if ((cmd[0]=='Z') && (cmd[1]=='D')) EepromDumpAll();

Page: 229

 else PrintNotRecognized(); // not recognized

 // --
 // previously define commands not valid in this implimentation

 // else if ((cmd[0]=='O') && (cmd[1]==':')) NewOffsetR();
 // else if ((cmd[0]=='F') && (cmd[1]==':')) NewFahrenheit();

 // else if ((cmd[0]=='C') && (cmd[1]==':')) NewCelsius();
 // else if ((cmd[0]=='C') && (cmd[1]=='=')) CelsiusEquals();
 // else if ((cmd[0]=='T') && (cmd[1]=='T')) TestTest();

 }

//--
//void TestTest()
// { for (byte i=0; i< 20; i++)

// { QuickBlink();
// delay (200);
// }
// }

//--

void HelpMe()
 //Serial.println(F("This string will be stored in flash memory"));
 { PrintSeperatorLine();
 Serial.println(F(";\t\tArduino AtMega328 Temperature Sensor 1.0.0"));
 Serial.println(F(";\tID\tOutput ID string"));

 Serial.println(F(";\tST\tOutput Status"));
 Serial.println(F(";\tRT\tRaw=True"));

 Serial.println(F(";\tRF\tRaw=False"));
 Serial.println(F(";\tFT\tFahrenheit=True"));
 Serial.println(F(";\tFF\tFahrenheit=False"));

 Serial.println(F(";\tF=\tEnter Current Fahrenheit"));
 Serial.println(F(";\tCT\tCelsius=True"));
 Serial.println(F(";\tCF\tCelsius=False"));
 Serial.println(F(";\tIT\tAVR Internal Temperature=True"));
 Serial.println(F(";\tIF\tAVR Internal Temperature=False"));
 Serial.println(F(";\tC=\tEnter Current Celsius")); // to be done
 Serial.println(F(";\tDO\tNew Degree Offset (Fahrenheit)"));
 Serial.println(F(";\tDF\tSame as DO"));
 Serial.println(F(";\tRV\tNew Reference Voltage"));
 Serial.println(F(";\tT1\tReport time = 01 minutes"));

 Serial.println(F(";\tT2\tReport time = 02 minutes"));
 Serial.println(F(";\tT3\tReport time = 03 minutes"));

 Serial.println(F(";\tT4\tReport time = 04 minutes"));
 Serial.println(F(";\tT5\tReport time = 05 minutes"));
 Serial.println(F(";\tT6\tReport time = 10 minutes"));

 Serial.println(F(";\tT7\tReport time = 15 minutes"));
 Serial.println(F(";\tT8\tReport time = 20 minutes"));

 Serial.println(F(";\tT9\tReport time = 30 minutes"));
 Serial.println(F(";\tT0\tReport time = 60 minutes"));
 Serial.println(F(";\tTA\tReport time = 02 hours"));

 Serial.println(F(";\tTB\tReport time = 04 hours"));
 Serial.println(F(";\tTC\tReport time = 06 hours"));
 Serial.println(F(";\tTD\tReport time = 08 hours"));
 Serial.println(F(";\tTE\tReport time = 12 hours"));

 Serial.println(F(";\tTF\tReport time = 24 hours"));
 Serial.println(F(";\tPF\tPrint mode = False"));
 Serial.println(F(";\tPT\tPrint mode = True"));
 Serial.println(F(";\tDB\tDebug mode toggle"));
 Serial.println(F(";\t00\tRounding mode toggle"));
 Serial.println(F(";\tL:\tNew Location"));

 Serial.println(F(";\tWW\tWrite Calibration data to EEPROM"));
 Serial.println(F(";\tW+\tOverwrite Backup Calibration data"));
 Serial.println(F(";\tW-\tRestore from Backup Calibration data"));
 Serial.println(F(";\tE+\tSet Flag to send next run to EEPROM"));
 Serial.println(F(";\tE-\tClear Flag to send next run to EEPROM"));

Page: 230

 Serial.println(F(";\tEC\tClear EEPROM Storage"));

 Serial.println(F(";\tED\tDump data stored in EEPROM"));
 Serial.println(F(";\tLL\tList implemented commands"));

 Serial.println(F(";\t??\tList implemented commands"));
 Serial.println(F(";\tSS\tShutdown (send twice)"));

 Serial.println(F(";\t!!\tReset (send twice)"));
 PrintSeperatorLine();
 // example of application specific command implimneted

 // these two commands write test data to the EEPROM working storage
 Serial.println(F(";\tZ1\tWrite test data 1"));

 Serial.println(F(";\tZ2\tWrite test data 2"));
 // special calibration mode
 Serial.println(F(";\tZZ\tToggle 5 Second reporting"));
 // Dump all EEPROM memory to Serial in Hex and ASCII

 Serial.println(F(";\tZD\tDump ALLL EEPROM to serial"));
 PrintSeperatorLine();
 Serial.println(F(";\t\tResponse 'XX' = not implemented"));
 Serial.println(F(";\t\tResponse '??' = not recognized"));
 PrintSeperatorLine();
 }

//---
void PrintSeperatorLine()
 { Serial.print("; ");
 for (byte i=0; i<36; i++) Serial.print('-');

 Serial.println();
 }

//==
boolean ReadTwoCharacters()

 { char c1=0,c2=0,c3=-1;
 byte m=0;
 boolean EOC=true; // End of Command Terminator
 boolean OurReturn=false;

 // It is not to be believed how much effort went into creating this simple function to read
 // two characters. I noted a bit of problem reading characters from the serail port when
 // the loop was too fast therefore I have added a bit of a delay to insure the serial port
 // library can keep up. Worst case senario this function can take more than 250 milliseconds.
 // Normally when this functionis called we expect the htree bytes we need to be in the buffer

 // but if there is noise on the line or a parrot randomly pecking at the keyboard it could
 // take a bit longer.

 //
 // by defintion we are looking for two characters followed by a terminator
 // we define a command terminatore to be a carriage return, new line or null character

 // --- for good measure we are including the tab character and space as well
 // space was added because it is impossible to send a tab character from the Ardunion IDE

 // we will accept any combination of those characters as a single terminator
 // we will accept the last two printable ASCII characters before a terminator for our command
 // we keep reading until we get a terminator, but we will only read for a short period

 // but before we do anything else we are going to save the rpevious command for posterity
 prevcmd[0]=cmd[0]; // actually we are saving it so that shutdown
 prevcmd[1]=cmd[1]; // and reset can check it before they execute

 while ((c3 != 13) && (c3 != 10) && (c3 != 9) && (c3 != 0) && (c3 != 32) && (m<25))
 { // if we have a valid ASCII character for c3 then roll the charaters down
 if (Serial.available()>0)
 { c3=Serial.read();
 if (c3>32) {c1=c2; c2=c3;}

 }
 // we need a bit of a delay to let the serial interface catch up
 // after 25 empty reads we give up
 else { delay (10); m++;}
 }

Page: 231

 // DebugPrintCharacters (c1,c2,c3,m);

 // we are very liberal about what we will accept for a command terminator

 // but we insist on having one.
 if ((c3 != 13) && (c3 != 10) && (c3 != 9) && (c3 != 0) && (c3 != 32)) EOC= false;

 // we need to drain any remaining command terminator characters from the serail buffer
 else DrainCmdTermiantors();

 // now check for valid ASCII charaters and End of Line
 if ((c1>32) && (c2>32) && EOC)

 { // OK... we have something to work with
 // Convert lower case to UPPER case excpet "w"
 // DebugPrintCharacters (c1,c2,c3);
 if ((c1 != 'w') && (c1 >96) && (c1 <123)) c1 = (c1 -32);

 if ((c2 != 'w') && (c2 >96) && (c2 <123)) c2 = (c2 -32);
 // DebugPrintCharacters (c1,c2);
 cmd[0]=c1;
 cmd[1]=c2;
 OurReturn=true;
 }

 // whatever it was that was sent did not meet our criteria
 // inform the parrot that he or she must do better
 else Serial.println(F("; ?? ??"));
 return OurReturn;
 }

//--

void DrainCmdTermiantors()
 { char c3=0;
 // removed leading command terminators from serial buffer

 delay (10); c3=Serial.peek();
 while ((c3==13) || (c3==10) || (c3==9) || (c3==0) || (c3 == 32))
 { c3=Serial.read();
 delay (10);
 c3=Serial.peek();
 }
 // c3 should at this point should be -1 unless there are more commands/charaters in the
buffer
 }

//==
// overloaded debugging function for debugging the above input routine

void DebugPrintCharacters (char c1, char c2, char c3, byte m)
 {
 if (DeBug == true)

 { Serial.print ("Received: ");
 Serial.print (c1);

 // Serial.print (" ");
 Serial.print (c2);
 Serial.print (" ");

 if (c3 != 0)
 { Serial.print (c3, DEC);
 Serial.print (" ");
 }

 if (m != 0) Serial.print (m, DEC);
 Serial.println ();
 }
 }
void DebugPrintCharacters (char c1, char c2, char c3)
 { byte m=0;

 DebugPrintCharacters (c1,c2,c3,m);
 }
void DebugPrintCharacters (char c1, char c2)
 { byte m=0;
 char c3=0;

Page: 232

 DebugPrintCharacters (c1,c2,c3,m);

 }

//----------------End of Main File------------------------------

Thermometer One Functions Module

// cbi and sbi are standard (AVR) methods for setting,

// or clearing, bits in PORT (and other) variables.

#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))

#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

//--
void EnableADC()
 { // This is probably not needed but

 // set system clock devisor to 128
 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
 sbi(ADCSRA, ADPS2); // bit 2 of ADCSRA, system clock devisor
 sbi(ADCSRA, ADPS1); // bit 1 of ADCSRA, system clock devisor

 sbi(ADCSRA, ADPS0); // bit 0 of ADCSRA, system clock devisor

 cbi(ADCSRA, ADATE); // bit 5 of ADCSRA, disable auto trigger mode

 sbi(ADCSRA, ADEN); // bit 7 of ADCSRA, enable ADC
 }

//--

void Read_Calibration_Data()
 { // This is more or less taken straight from the
 // EEPROM_TempSensor_Calibration_Constants program
 byte i=0, j=0;
 word TempWord;
 char c;
 char sign;

 // detect a virgin device --- well at least try
 if ((EEPROM.read(EEminutes)==0xFF) &&

 (EEPROM.read(EEminutes+1)==0xFF))

 TestData1();

 // Get Degree Offset

 TempWord= EEPROM.read(EEoffset)<<8;
 TempWord= (TempWord + EEPROM.read(EEoffset +1));

 // Serial.print (F("Got Here: Degree Offset EEPROM word: "));
 // Serial.println (TempWord, HEX);
 // get the sign bit

 sign= 1;

 // Serial.print (F("High Nibble: "));
 // Serial.println (TempWord>>12,BIN);

 if ((TempWord>>12) == B1000) sign= -1;
 // Serial.print (F("Sign: "));
 // Serial.println (sign,DEC);
 // strip the sign bit
 TempWord=(TempWord<<1)>>1;
 // Serial.print (F("Degree Offset EEPROM word stripped: "));
 // Serial.println (TempWord, HEX);
 // now we need to convert it to a fraction

 DegreeOffset=(float(TempWord)/float(CovrtFactorO)) * sign;

 // Get the RefVoltage factor;
 TempWord= EEPROM.read(EErefvolt)<<8;
 TempWord= TempWord + EEPROM.read(EErefvolt +1);

 // now we need to convert it to a fraction

Page: 233

 RefVoltage = float(TempWord)/CovrtFactorV ;

 // ID String -------------------------------------

 i=0; c=1;
 while (c!=0,i< EEidsize)

 {c=EEPROM.read(EEidtring + i); // read the ID string
 IdString [i++]=c;
 }

 IdString [EEidsize]=0; // just in case

 // Set MinuteTarget from default minutes
 MinuteTarget=(EEPROM.read(EEminutes)<<8) + EEPROM.read(EEminutes +1);
 if (MinuteTarget<1)MinuteTarget=1;

 // this is a bit flag to indicate when the current constants
 // in memory are different from those stored in working storage
 newflg=0;

 }

//--
void Write_Calibration_Data()
 { word i=0;
 // float saveflt;
 word TempWord;

 char c=-1;
 byte sign;

 // New location
 if ((newflg & B00000001) == B00000001)

 {// Serial.println ("Got Here: Write_Calibration_Data, Location");
 for (i=0;i<EEidsize; i++) {EEPROM.write((EEidtring +i), IdString[i]);}
 }

 // New Degree Offset
 if ((newflg & B00000010) == B00000010)
 { // Serial.println (F("Got Here: Write_Calibration_Data, Offset"));
 // Serial.print (F("Degree Offset: "));
 // Serial.println (DegreeOffset);
 sign = 0;

 if (DegreeOffset <0) sign = B10000000;
 TempWord=word(abs(DegreeOffset) * CovrtFactorO);

 // Serial.print (F("Degree Offset as word: "));
 // Serial.println (TempWord);
 // Serial.print (F("Sign: "));

 // Serial.println (sign);
 EEPROM.write(EEoffset , highByte(TempWord)|sign);

 EEPROM.write(EEoffset +1, lowByte (TempWord));
 }
 // New Reference Voltage

 if ((newflg & B00000100) == B00000100)
 { //Serial.println ("Got Here: Write_Calibration_Data, Reference Voltage");
 TempWord = word(RefVoltage * CovrtFactorV);
 EEPROM.write(EErefvolt , highByte(TempWord));

 EEPROM.write(EErefvolt +1, lowByte (TempWord));
 // Note:
 // When the EEPROM data is read
 // Covrt2Fahrenheit is calculated from RefVoltage
 }

 // New MinuteTarget
 if ((newflg & B00010000) == B00010000)
 {// Serial.println ("Got Here: Write_Calibration_Data, MinuteTarget");
 EEPROM.write(EEminutes , highByte(MinuteTarget));
 EEPROM.write(EEminutes +1, lowByte (MinuteTarget));

Page: 234

 }

 // write the unused word(s)

 i=EEunused0;
 while (i<EEidtring)

 {if (EEPROM.read(i)!= 0xFF) EEPROM.write(i, 0xFF);
 i++;
 }

 // clear the EEMODE flag

 EEmodeFlagClear();

 // Serial.println ("Got Here: Write_Calibration_Data, Read");
 // note newflg is reset by Read_Calibration_Data

 Read_Calibration_Data();
 // PrintOKStr(); is sent by Report_Reset
 Report_Reset();
 }

//---

void ClearStorage()
 { // this is used to clear/erase the EEPROM data storage (except for constant areas)
 word addr;
 byte b;
 for (addr=(StorageBegin); addr<StorageBackup; addr++)

 { if (EEPROM.read(addr) != 0xFF) EEPROM.write(addr,0xFF);
 } // note: each byte requires 6-8 machine cycles

 PrintOKStr ();
 }

//---
void EEmodeFlagSet()
 { // toggle the flag forthe next run to write to EEPROM
 // does not affect current run
 // Here is the thing. We have setup wearleveling for our EEPROM data storage
 // but modeflag gets hit twice for every EEPROM run. So it will wearout
 // long before the bulk of the storage. We could just increment the byte and
 // look for odd or even values but that would continuelly toggle the low bit
 // wearing it out before there rest. As it turns out it is writing a zero to
 // a bit that wears then out. So we want to minimize the zero bit writes.

 // We are going to move a zero bit right to left. This extends our life by a
 // factor of eight. At that point you need to swap the backup and working

 // data locations by changing the EEPROM address locations and reprograming
 // the Arduino. That would double the life (2 * 8 = 16).
 //

 byte flag;
 if(EEmodeFlagTF()==false)

 { // Serial.println (F("Got here: EEmodeFlagToggle, make not equal"));
 // make them not equal
 // shift left and add a one to the right

 flag=EEPROM.read(EEflag);
 // Serial.println(flag);
 flag=(flag<<1)+1;
 // Serial.println(flag);

 // if we have all ones start over again at the right
 if (flag==B11111111) flag=B11111110;
 // Serial.println(flag);
 // now save it
 EEPROM.write(EEflag,flag);
 }

 PrintOKStr();
 }

//---
void EEmodeFlagClear()

Page: 235

 { byte flag;

 if(EEmodeFlagTF())
 { // Serial.println (F("Got here: EEmodeFlagClear"));

 // make them equal
 flag=EEPROM.read(EEflag);

 EEPROM.write(EEmask,flag);
 }
 if (EepromMode==false) PrintOKStr();

 }

//--
boolean EEmodeFlagTF()
 { // returns true if EEmodeFlag is set
 byte flag,mask;

 flag=EEPROM.read(EEflag);
 mask=EEPROM.read(EEmask);
 if(flag==mask) return false;
 else return true;
 }

//---
void Check_EEPROM()
 { byte b[4],i;
 word w;
 word addr;

 EepromMode=false;

 if (EEmodeFlagTF())
 { // Serial.println ("got here: Check_EEPROM");
 EepromMode=true;

 // clear the flag
 EEmodeFlagClear();
 // disable serial reporting and debug mode
 ReportMode=false;
 DeBug=false;
 // we need to find the beginning of EEPROM that has not been used
 // we need at least four bytes to begin a new section.
 // so we need to find the first place where there are four bytes with FFh
 // zero our test pattern
 for (i=0; i<4; i++) b[i]=0;

 addr=StorageBegin;
 while ((addr<StorageBackup) && ((b[0]!=0xFF) || (b[1]!=0xFF)

 || (b[2]!=0xFF) || (b[3]!=0xFF)))
 { b[0]=b[1];
 b[1]=b[2];

 b[2]=b[3];
 b[3]=EEPROM.read(addr++);

 }
 // did we read until the end ??
 if (addr >= StorageEnd) StorageMark=StorageBegin;

 // we found 4 bytes that have not been written to
 else StorageMark=addr-4;
 // in either case we clear the storage
 ClearStorage();

 // mark the beginning
 EEPROM.write(StorageMark,0);
 EEPROM.write(StorageMark+1,0);
 // set then beginning and end of the current segment
 StorageIndex=StorageMark+2;
 StorageEnd=StorageBackup;

 // definitive notice of mode
 for (i=0; i < 30; i++) {QuickBlink(); delay (250);}
 // -------
 // while(true); // stop here so we can check a memory dump
 }

Page: 236

 }

//---

void Print_IdString()
 { // Serial.print(F("; ")); // pefix

 Serial.println(IdString); // print it
 }

//---
void PrintTrueFalse(byte T)

 { // used to report True or False for boolean Globals
 if(T == 0) Serial.println(F("False"));
 else Serial.println(F("True"));
 }

//---
void ReportStatus()
 { // report settings
 PrintSeperatorLine();
 Serial.print (F("; Report:\t"));

 PrintTrueFalse (ReportMode);
 Serial.print (F("; Debug:\t"));
 PrintTrueFalse (DeBug);
 Serial.print (F("; Raw:\t"));
 PrintTrueFalse (RtnRawRead);

 Serial.print (F(";Fahrenheit:\t"));
 PrintTrueFalse (RtnFahrenh);

 Serial.print (F("; Celsius:\t"));
 PrintTrueFalse (RtnCelsius);
 Serial.print (F("; Avr:\t"));

 PrintTrueFalse (RtnAvrRead);
 Serial.print (F("; Round:\t"));
 PrintTrueFalse (RoundMode);

 Serial.print (F("; Minutes:\t"));
 Serial.println (MinuteTarget, DEC);
 Serial.print (F("; Voltage:\t"));
 Serial.println (RefVoltage, 4);

 // single sensor, no prefix needed

 Serial.print (F("; Sensor ID:\t"));
 Print_IdString ();

 Serial.print (F("; Offset:\t"));
 Serial.println (DegreeOffset, 4);

 if (newflg != 0)
 Serial.println (F(";Parameters not saved"));

 if(EEmodeFlagTF())
 Serial.println (F(";EEPROM Mode Flag Set"));

 PrintSeperatorLine();

 }
//---

// ---- See Below for the function the read the External LM34DZ Temperature Sensor ----
//---
void AvrTemperature()
 { // Read AVR internal Temperature Sensor and Convert to Celsius and Degrees
 //
 unsigned long RawSum=0; // used to sum samples for averaging

 word RawTemp=0; // used to accumalate 10 bit ADC readings
 word test=0; // used to count samples
 word RawReading; // averaged reading
 float RawVoltage;
 float DegreesKelvin;

Page: 237

 // turn on internal reference, right-shift ADC buffer,ADC channel = Avr temperature
 // B11000000: AMUX Voltage reference = Internal 1.1 volt (bits 7,6)

 // B00000000: AMUX Right Shift ADC Buffer (bit 5)
 // B00001000: AMUX Input Source= internal temperature sensor (bits 3,2,1,0)

 ADMUX = B11001000;
 delay(10); // wait for the things to stabilize

 while (test++ < 1024) // oversampling loop (for averaging)
 { ADCSRA |= _BV(ADSC); // start the conversion

 while (bit_is_set(ADCSRA, ADSC)); // ADSC cleared when complete
 RawTemp = (ADCL | (ADCH << 8)); // collect the reading
 RawSum += RawTemp; // add it to out total
 }

 RawReading = (RawSum)>>10; // averag the 1024 readings
 //---- Convert It------
 // Convert to Raw Voltage
 RawVoltage = (float(RawReading)/1024)* RefVoltage;
 // Convert to Temperature in degrees Kelvin
 DegreesKelvin= RawVoltage * 1000;

 // Convert to Celsius
 AvrCelsius= DegreesKelvin - 273;
 // Convert to Fahrenheit
 AVRFahrenheit=(AvrCelsius*1.8)+32;
 //---- Print It------

 Serial.print (";");
 Serial.print (RawReading);

 Serial.print (char(9));
 // Serial.print (RawVoltage);
 // Serial.print (char(9));

 // Serial.print (DegreesKelvin);
 // Serial.print (char(9));
 Serial.print (AvrCelsius);
 Serial.print (char(9));
 Serial.print (AVRFahrenheit);
 Serial.print (char(9));
 Serial.println (F("ARV"));

 }

//---
// ---- Below is the function the read the External LM34DZ Temperature Sensor ----

//---
void ReadRawTempA1()
 { // Read ADC for Pin A1 (connected to LM34DZ Temperature Sensor)

 // Cycle time is aproximately 124 miliseconds
 unsigned long RawSum=0; // used to sum samples for averaging

 word RawTemp=0; // used to accumalate 10 bit ADC readings
 word test=0; // used to count samples

 // Just in case ...
 // The INPUT mode explicitly disables the internal pullup resistors.
 pinMode(A1,INPUT);

 // turn on internal reference, right-shift ADC buffer,ADC channel = ADC1 (pin A1)
 // B11000000: AMUX Voltage reference = Internal 1.1 volt (bits 7,6)
 // B00000000: AMUX Right Shift ADC Buffer (bit 5)
 // B00000001: AMUX Input Source= pin A1 (bits 3,2,1,0)
 ADMUX = B11000001;
 delay(10); // wait for the things to stabilize

 while (test++ < 1024) // oversampling loop (for averaging)
 { ADCSRA |= _BV(ADSC); // start the conversion
 while (bit_is_set(ADCSRA, ADSC)); // ADSC cleared when complete
 RawTemp = (ADCL | (ADCH << 8)); // collect the reading

Page: 238

 RawSum += RawTemp; // add it to out total

 }
 Accumalator += ((RawSum)>>10); // averag and add to Accumalator

 // LSBs are lost
 CycleCount++; // used by functions to average readings

 }

//---

void Convert(word RawReading)
 { // converts Raw Reading to Celsius and Fahrenheit

 // New plan: offset will only be used for minor correction
 // SCALE is actual voltage that is supposed to be 1.1 but reads 1.067
 // This temperature sensor reports in Fahrenheit 1 milivolt per degree
 // We need the correct voltage !!!

 // Covrt2Fahrenheit=1.067;
 Fahrenheit = (float(RawReading)/1024)* RefVoltage *100;
 Fahrenheit = Fahrenheit + DegreeOffset;
 if (RoundMode) Fahrenheit= nearesthalf(Fahrenheit);
 // Consistancy is next to godliness.
 // We are working in Fahrenheit.

 // In our case Celsius is a function of Fahrenheit.
 // Thus we always complete our Fahrenheit cals first.
 // That inludes rounding.
 Celsius = (Fahrenheit-32)/1.8;
 if (RoundMode) Celsius=nearestquater(Celsius);

 }

//---
float nearestquater (float ValueIn)
 { // Return value rounded to nearest quater (0.25)

 byte sign=1;
 float fraction;
 if (ValueIn , 0)
 {
 sign = -1;
 ValueIn=abs(ValueIn);
 }
 fraction =ValueIn-long(ValueIn);
 if (fraction >= 0.875) fraction=1.00;
 else if (fraction >= 0.625) fraction=0.75;

 else if (fraction >= 0.375) fraction=0.50;
 else if (fraction >= 0.125) fraction=0.25;

 else fraction=0;
 // Serial.println (ValueIn);
 // Serial.println (ValueIn-long(ValueIn));

 // Serial.println (fraction);
 // Serial.println (sign);

 return (long(ValueIn)+fraction) * sign;
 }

//---
float nearesthalf (float ValueIn)
 { // Return value rounded to nearest half (0.50)
 byte sign=1;

 float fraction;
 if (ValueIn , 0)
 {
 sign = -1;
 ValueIn=abs(ValueIn);
 }

 fraction =ValueIn-long(ValueIn);
 if (fraction >= 0.750) fraction=1.00;
 else if (fraction >= 0.250) fraction=0.50;
 else fraction=0;
 return (long(ValueIn)+fraction) * sign;

Page: 239

 }

//---

void Report()
 { word AvgSumRead;

 AvgSumRead = Accumalator/CycleCount;
 if (EepromMode) Report2EEPROM(AvgSumRead);
 else if (ReportMode)

 { Convert (AvgSumRead);
 Serial.print ('0');

 if (RtnRawRead)
 { Serial.print (AvgSumRead);
 Serial.print (char(9));
 }

 if (RtnCelsius)
 { Serial.print (Celsius,2);
 Serial.print (char(9));
 }
 if (RtnFahrenh)
 { Serial.print (Fahrenheit,2);

 Serial.print (char(9));
 }
 if (DeBug)
 { Serial.print (CycleTime/CycleCount);
 Serial.print (char(9));

 Serial.print (CycleCount);
 Serial.print (char(9));

 Serial.print (millis()-RptStartTime);
 RptStartTime=millis();
 }

 Serial.println();
 // addin for AVR internal temperature line
 if (RtnAvrRead) AvrTemperature();
 }
 Accumalator = 0;
 CycleCount = 0;
 CycleTime = 0;
 LastRead=AvgSumRead;
 }

//--
void QuickBlink()

 { // on the UNO 1 mullisecond will surfice
 // adjusted up to 3 for Nano
 digitalWrite(13, HIGH); // turn on LED

 delay(3);
 digitalWrite(13, LOW); // turn off LED

 }

//--

void Report2EEPROM(word AvgSumRead)
 { // We are implimenting both data compression and wearleveling.
 // Our data is only 12 bits. Becuase we should never get a reading
 // over 2047 in our high bit will always be zero.

 // We are going to use the top four bits to count consecutive equal
 // readings. In that manner we may be able to store 16 readings in
 // a singal word value.
 word makeword;
 QuickBlink();

 // Serial.println(F("Get here: Report2EEPROM"));
 // send this string for testing: EC EE ST !! !!
 // we need to skip the firs pass because we have nothing to work with
 if (LastRead !=0)
 { if (LastRead == AvgSumRead) Consecutive++;

Page: 240

 if ((Consecutive == 15) || (LastRead != AvgSumRead))

 { // Serial.println(F("Get here: Report2EEPROM, write record"));
 // we are going to try two blinks everytime that there is a write

 makeword = (Consecutive <<12)+LastRead;
 EEPROM.write (StorageIndex++, highByte(makeword));

 EEPROM.write (StorageIndex++, lowByte(makeword));
 Consecutive=0;
 // now we need to check our storage space

 if ((StorageEnd-StorageIndex)<2)
 { // folks there is Trouble in river city !

 if (StorageMark==StorageBegin)
 {prevcmd[1]=prevcmd[0]=cmd[1]=cmd[0]='S'; ShutDown();}
 if (StorageEnd ==StorageMark)
 {prevcmd[1]=prevcmd[0]=cmd[1]=cmd[0]='S'; ShutDown();}

 // OK, start at the beginning
 StorageIndex=StorageBegin;
 StorageEnd=StorageMark;
 }
 delay (50); // force a bit of a delay so both blinks can be seen
 QuickBlink();

 }
 }
 LastRead == AvgSumRead;
 }

//--
void DumpStorage()

 { // print data stored in eeprom
 byte b1, b2, c;
 word reading;

 word countreading=0;
 word countwords=0;
 boolean savemode;
 // save the current reporting mode
 savemode=ReportMode;
 // find the beginning of the data defined to be two zero bytes
 b1=1;
 b2=1;
 while ((StorageIndex<StorageBackup) && ((b1!=0) || (b2!=0)))
 { b1=b2;

 b2=EEPROM.read(StorageIndex++);
 }

 StorageEnd=StorageBackup;
 StorageMark=StorageIndex-2;
 // 4 high bits are the count, low 12 bits are the reading

 PrintSeperatorLine();
 Serial.println (F("; Begin EEPROM data dump"));

 Serial.println (F("; Raw Reading\tCelsius\tFahrenheit"));
 while (((StorageEnd-StorageIndex)>=2) && ((b1 != 0xFF)||(b2 != 0xFF)))
 { b1=EEPROM.read(StorageIndex++);

 b2=EEPROM.read(StorageIndex++);
 //----------------- debuggin code
 // Serial.print ("; Location: ");
 // Serial.print (StorageIndex);

 // Serial.print (", ");
 // Serial.print (b1,HEX);
 // Serial.print (", ");
 // Serial.print (b2,HEX);
 countwords++;
 // two bytes of FFh will mark the end

 if ((b1 != 0xFF) || (b1 != 0xFF))
 { Consecutive=b1>>4;
 reading= ((b1 & B00001111)<<8)+b2;
 Convert(reading);
 //----------------- debuggin code

Page: 241

 // Serial.print (", ");

 // Serial.print (Consecutive);
 // Serial.print (", ");

 // Serial.print (reading);
 // Serial.println();

 // while (Serial.available() ==0);
 // c=Serial.read();
 // the logic here is we need to print every reading at least once ...

 // that is when it is zero. When we subtract one from zero we get 255
 while (Consecutive<255)

 { countreading++;
 Serial.print (reading);
 Serial.print (char(9));
 Serial.print (Celsius,2);

 Serial.print (char(9));
 Serial.print (Fahrenheit,2);
 Serial.println ();
 Consecutive--;
 //----------------- debuggin code
 // Serial.print (Consecutive);

 // Serial.print (", ");
 // Serial.println();
 // while (Serial.available() ==0);
 // c=Serial.read();
 }

 // now check the addresses
 if ((StorageEnd-StorageIndex)<2)

 { if (StorageMark != StorageBegin)
 { StorageEnd = StorageMark;
 StorageMark = StorageBegin;

 StorageIndex = StorageMark +2;
 }
 }
 }
 }
 PrintSeperatorLine();
 Serial.println (F("; End EEPROM data dump"));
 Serial.print (F("; Readings:\t"));
 Serial.println (countreading, DEC);
 Serial.print (F(";Storage Words:\t"));

 Serial.println (countwords, DEC);
 PrintSeperatorLine();

 // restore the current reporting mode
 ReportMode=savemode;
 }

//--

void Responce (char str[])
 {if (EepromMode == false)
 { // we do not want to get hung up

 // this just serves to reduce command responce memory usage a bit
 // trying to wrtie to seomthing that is not connected
 Serial.print (F("; "));
 Serial.print (cmd);

 Serial.print (F(" "));
 Serial.println (str);
 }
 }

//--

void PrintOKStr ()
 { // command was accepted and processed
 // this just serves to reduce command responce memory usage a bit
 Responce ("OK");
 }

Page: 242

//--
void PrintNotRecognized()

 { // command was Not Recognized
 // this just serves to reduce command responce memory usage a bit

 Responce ("??");
 }

//--
void PrintNotImplemented()

 { // command was Not Recognized
 Responce ("XX");
 }

//---
void ShutDown()
 { // Note that no provision is made to wake up.
 // This is as close to shutdown as we can get.
 // Because of the inefficent voltage regulator this
 // mode still draws a lot of power (about 10mA).

 // A standard 9 volt battery may last about 16 hours.

 // Serial.println(prevcmd);
 if ((prevcmd[0]=='S') && (prevcmd[1]=='S'))
 { Serial.println (F("; SHUTDOWN"));

 // give device time to send string
 for (byte i=0; i< 25; i++)

 { QuickBlink();
 delay (100);
 }

 cbi(ADCSRA, ADEN); // bit 7 of ADCSRA, disable ADC
 noInterrupts();
 set_sleep_mode(SLEEP_MODE_PWR_DOWN);
 sleep_enable();
 sleep_mode(); // all execution should stop here
 while(0==0); // endless loop (belts and suspenders)
 }
 else PrintOKStr(); // first time through only
 }

//--
void software_Reset()

 { // Restarts program from beginning but
 // does not reset the peripherals and registers
 // as we are not doing anything with the the

 // timers or peripherals or registers this
 // should be adequate (will not support updating)

 // Serial.println(prevcmd);
 if ((prevcmd[0]=='!') && (prevcmd[1]=='!'))

 { Serial.println (F("; RESETTING"));
 // give device time to send string
 delay (1000);
 asm volatile (" jmp 0");

 }
 else PrintOKStr(); // first time through only
 }

//--
void SetRawReadMode()

 { // check for "T" or "F", true of false
 if (cmd[1]=='T') {RtnRawRead = true; PrintOKStr();}
 else if (cmd[1]=='F') {RtnRawRead = false; PrintOKStr();}
 else PrintNotRecognized();
 }

Page: 243

//--
void SetCelsiusMode()

 { // check for "T" or "F", true of false
 if (cmd[1]=='T') {RtnCelsius = true; PrintOKStr();}

 else if (cmd[1]=='F') {RtnCelsius = false; PrintOKStr();}
 else PrintNotRecognized();
 }

//--

void SetFahrenheitdMode()
 { // check for "T" or "F", true of false
 if (cmd[1]=='T') {RtnFahrenh = true; PrintOKStr();}
 else if (cmd[1]=='F') {RtnFahrenh = false; PrintOKStr();}

 else PrintNotRecognized();
 }

//--
void SetReportMode()
 { // check for "T" or "F", true of false

 if (cmd[1]=='T') {ReportMode = true; PrintOKStr();}
 else if (cmd[1]=='F') {ReportMode = false; PrintOKStr();}
 else PrintNotRecognized();
 }

//--
void ToggleDebugMode()

 { // toggle Debug mode
 if (DeBug == true) DeBug = false;
 else if (DeBug == false) DeBug = true;

 PrintOKStr();
 }

//--
void SetAvrInternalMode()
 { // check for "T" or "F", true of false
 if (cmd[1]=='T') {RtnAvrRead = true; PrintOKStr();}
 else if (cmd[1]=='F') {RtnAvrRead = false; PrintOKStr();}
 else PrintNotRecognized();
 }

//--

void ToggleRoundMode()
 { // check for "T" or "F", true of false
 if (RoundMode) {RoundMode = false; PrintOKStr();}

 else {RoundMode = true; PrintOKStr();}
 }

//--
void NewReportTime()

 { // set report Minutes
 if (cmd[1]=='1') { MinuteTarget = 1; Report_Reset();}
 else if (cmd[1]=='2') { MinuteTarget = 2; Report_Reset();}
 else if (cmd[1]=='3') { MinuteTarget = 3; Report_Reset();}

 else if (cmd[1]=='4') { MinuteTarget = 4; Report_Reset();}
 else if (cmd[1]=='5') { MinuteTarget = 5; Report_Reset();}
 //---- the timings below have not been tested ---------------
 else if (cmd[1]=='6') { MinuteTarget = 10; Report_Reset();}
 else if (cmd[1]=='7') { MinuteTarget = 15; Report_Reset();}
 else if (cmd[1]=='8') { MinuteTarget = 20; Report_Reset();}

 else if (cmd[1]=='9') { MinuteTarget = 30; Report_Reset();}
 else if (cmd[1]=='0') { MinuteTarget = 60; Report_Reset();}
 else if (cmd[1]=='A') { MinuteTarget = 120; Report_Reset();}
 else if (cmd[1]=='B') { MinuteTarget = 240; Report_Reset();}
 else if (cmd[1]=='C') { MinuteTarget = 360; Report_Reset();}

Page: 244

 else if (cmd[1]=='D') { MinuteTarget = 480; Report_Reset();}

 else if (cmd[1]=='E') { MinuteTarget = 720; Report_Reset();}
 else if (cmd[1]=='F') { MinuteTarget = 1440; Report_Reset();}

 // max=86,400,000 milliseconds and that is why we use four byte variables

 else if (cmd[1]=='T') Serial.println(F("; TT XX")); // not implimented
 else PrintNotRecognized(); // not recognized
 }

//--

void Report_Reset()
 { // this force the current data to be reported
 // and reset our clock using the new time
 unsigned long SaveMe=SecondsTarget;

 PrintOKStr();
 Serial.println (F("; Report Timing reset"));
 // calculate seconds between report lines
 // SecondsTarget=MinuteTarget*SecondsMinute;
 // we have to "cast" the two word values or we will get a word value for the result
 SecondsTarget=(long(MinuteTarget)*long(SecondsMinute));

 if (SecondsTarget != SaveMe) newflg = newflg | B00010000;
 // Serial.print (F("Got Here: report reset, milliseconds to wait= "));
 // Serial.println (SecondsTarget);

 Accumalator = 0; // reset report parameters
 CycleCount = 0;

 RptTrigger = millis() + SecondsTarget;
 RptStartTime= millis();
 // Serial.print (F("Got Here: report reset, trigger= "));

 // Serial.println (RptTrigger-millis());
 }

//--
void NewIdString()
 { // New Location ID String
 // Serial.println("got here: NewIdString");
 // set time out to 5 seconds
 unsigned long timelimit = millis() + (5000);
 boolean timeout=false;

 char c= -1;
 byte n= 0;

 while ((c != 0) && (c != 10) && (c != 9) && (c != 13) && (n<EEidsize) && (timeout==false))
 { delay(10);
 c = Serial.read();

 if (c > 31) IdString[n++]=c;
 // check for timeout

 if (millis()>timelimit) timeout=true;
 }
 while (n<EEidsize) IdString[n++]=0;

 if (timeout) Serial.println (F("; L: aborted due to timeout"));
 else
 { IdString[EEidsize]=0; // make certain last charater is null
 newflg = newflg | B00000001;

 // Serial.println (IdString);
 PrintOKStr();
 }
 DrainCmdTermiantors();
 }

//--
void PrintDegreeOffsetEffect(float NewOffset)
 { // new offset must be in Degrees Fahrenheit
 boolean SaveRoundMode;
 SaveRoundMode=RoundMode;

Page: 245

 while (CycleCount<50) ReadRawTempA1();
 DegreeOffset=0;

 RoundMode=false;
 Convert(Accumalator/CycleCount);

 DegreeOffset=NewOffset;
 Serial.print (F("; Offset(F):\t"));
 Serial.println (DegreeOffset);

 Serial.print (F(";Fahrenheit:\t"));
 Serial.println (Fahrenheit);

 Serial.print (F("; Adjusted:\t"));
 Fahrenheit=Fahrenheit+NewOffset;
 if (SaveRoundMode) Fahrenheit=nearesthalf(Fahrenheit);
 Serial.println (Fahrenheit);

 //---
 Serial.print (F("; Celsius:\t"));
 Serial.println (Celsius);
 Serial.print (F("; Adjusted:\t"));
 Celsius=Celsius+(DegreeOffset/1.8000);
 if (SaveRoundMode) Celsius=nearestquater(Celsius);

 Serial.println (Celsius);
 newflg = newflg | B00000010;
 RoundMode=SaveRoundMode;
 PrintOKStr();
 }

//--

void ValueNotAccepted()
 { Serial.print("; ");
 Serial.print(cmd);

 Serial.print(" invalid/no input");
 }

//--
void NewDegreeOffset()
 { // New Degree Offset
 float tempfloat=0;
 delay (2000);
 tempfloat=Serial.parseFloat();
 if (tempfloat!=0)

 { if (abs(tempfloat)<0.010) tempfloat = 0;
 PrintDegreeOffsetEffect(tempfloat);

 newflg = newflg | B00000010;
 }
 else ValueNotAccepted();

 DrainCmdTermiantors();
 }

//--
void CalculateDegreeOffset(float tempfloat)

 { // calculate a new degree offset, TempF is Temperature in degrees Fahrenheit
 // get the current raw reading
 boolean SaveRoundMode;

 Serial.println (F("; Calculating new Degree offset"));
 while (CycleCount<50) ReadRawTempA1();
 // set the current offset to zero so that it
 // does not affect the Conversion
 DegreeOffset=0;
 SaveRoundMode=RoundMode;

 RoundMode=false;
 Convert(Accumalator/CycleCount);
 RoundMode=SaveRoundMode;
 PrintDegreeOffsetEffect(tempfloat-Fahrenheit);
 }

Page: 246

//--
void FahrenheitEquals()

 { // sets offset according to current reading and input Fahrenheit
 float tempfloat=0;

 float deltaR;
 word RawReading;
 // Serial.println (F("Got Here: FahrenheitEquals"));

 delay (2000);
 tempfloat=Serial.parseFloat();

 if (tempfloat != 0) CalculateDegreeOffset(tempfloat);
 else ValueNotAccepted();
 DrainCmdTermiantors();
 }

//--
void CelsiusEquals()
 { // sets offset according to current reading and input Fahrenheit
 float tempfloat=0;
 float deltaR;

 word RawReading;
 // Serial.println (F("Got Here: CelsiusEquals"));
 delay (2000);
 tempfloat=Serial.parseFloat();
 if (tempfloat != 0) CalculateDegreeOffset((tempfloat*1.8)+32);

 else ValueNotAccepted();
 DrainCmdTermiantors();

 }

//--

void NewRefVolt()
 { // New Degree Offset
 float tempfloat=0;
 delay (2000);
 tempfloat=Serial.parseFloat();
 if (tempfloat!=0)
 { // Serial.println(tempfloat,4);
 // Serial.println(RefVoltage,4);
 RefVoltage=tempfloat;
 // Serial.println(RefVoltage,4);

 newflg = newflg | B00000100;
 PrintOKStr();

 }
 else ValueNotAccepted();
 DrainCmdTermiantors();

 }

//---
void RestoreFromBackup()
 { char TempString[EEwdsize];

 byte i;
 // read the backup copy
 for (i=0; i<EEwdsize; i++) TempString[i]=EEPROM.read(StorageBackup + i);
 // write working copy

 for (i=0; i<EEwdsize; i++) EEPROM.write(StorageWorking +i, TempString[i]);
 newflg=0;
 Read_Calibration_Data();
 Report_Reset();
 }

//--
void OverwriteBackup()
 { char TempString[EEwdsize];
 byte i;
 // read the working copy

Page: 247

 for (i=0; i<EEwdsize; i++)

 TempString[i]=EEPROM.read(StorageWorking + i);
 // write backup copy

 for (i=0; i<EEwdsize; i++) EEPROM.write(StorageBackup +i, TempString[i]);
 PrintOKStr();

 }

//===

void TestData1()
 { // These sets were picked for testing

 // so that one set look like the another set.
 char temp[]="(1)tst data,Nano ";
 //...........1234567890123456
 byte i;

 Serial.println(F("; Test Data one being written to EEPROM"));
 // clear the EEPROM report storage area
 ClearStorage();
 for (i=0; i< EEidsize; i++) IdString[i]=temp[i];
 // Insert null terminator at end
 IdString[EEidsize]=0;

 DegreeOffset=0;
 RefVoltage =1.075;
 MinuteTarget=1;
 newflg=0XFF;
 Write_Calibration_Data();

 }

//---
void TestData2()
 { char temp[]="(2)tst data, UNO ";

 //...........1234567890123456
 byte i;
 Serial.println(F("; Test Data two being written to EEPROM"));
 // clear the EEPROM report storage area
 ClearStorage();
 for (i=0; i< EEidsize; i++) IdString[i]=temp[i];
 // Insert null terminator at end
 IdString[EEidsize]=0;
 DegreeOffset=0;
 RefVoltage =1.1000;

 MinuteTarget=1;
 newflg=0XFF;

 Write_Calibration_Data();
}

//---
void CalibrationMode()

 { // used for calbration, reduces time between report lines to 5 seconds
 // there should be about 40 samples per report which will still give a good average

 if (SecondsMinute==5000)
 {
 Serial.println(F("; Exiting 5 second calibration mode <<<"));
 SecondsMinute=60000;

 }
 else
 {
 Serial.println(F("; Entering 5 second calibration mode >>>"));
 SecondsMinute=5000;
 }

 MinuteTarget=1;
 DeBug=false;
 EepromMode=false;
 ReportMode=true;
 RtnRawRead = true;

Page: 248

 RtnCelsius = true;

 RtnFahrenh = true;
 Report_Reset();

 }

//---
void EepromDumpAll()
 { char buffer[60]; // allocate buffer

 word addr=0; // set start address
 PrintSeperatorLine();

 Serial.println(F("; Dump all EEPROM in Hex and ASCII")); // inform the user
 while (addr < E2END) // run until we reach the end
 { for (byte i=0; i<16; i++) // process 16 bytes at a time
 { buffer[i]=EEPROM.read(addr++); // read EEPROM

 }
 Serial.print ("; ");
 Serial.println(formatRamDump(addr-16, buffer)); // print formatted string
 }
 PrintSeperatorLine();
 PrintOKStr();

 }
// =================== end of thermometer functions code ====================== //

Page: 249

Appendix: Thermometer ATMega168

Main Program File (ATMega168)

/* ThermometerOne, ATMEGA168 Version */

/* Release 1.0.0, October 2013, Public Domain */

#include <avr/sleep.h> // needed for shutdown function

#include <EEPROM.h> // needed for EEPROM read and write

// EEPROM Address Constants
const word EEmask = 0; // 1 byte location of EEPROM storage mode mask
const word EEflag = 1; // 1 byte location of EEPROM storage mode flag
const word EErefvolt= 2; // 2 byte location of RefVoltage
const word EEoffset = 4; // 2 byte location of DegreeOffset
const word EEminutes= 6; // 2 byte location of Report Target Minutes
const word EEunused0= 8; // 2 byte location -- reserved -- unused
const word EEunused1= 10; // 2 byte location -- reserved -- unused

const word EEunused2= 12; // 2 byte location -- reserved -- unused
const word EEunused3= 14; // 2 byte location -- reserved -- unused

const word EEidtring= 16; // ID string w/o termiantion size (16)
const word EEidsize = 16; // 24 byte location of IdString

const word EEwdsize = EEidtring+EEidsize; // Working data storage size (32)
//----------------------------- ---- ---- // -- This area reserved for Table based system --
const word EEtable = 32; // 40 word location of converion table
const word EEtbsize = 80; // Working data storage size (80)
//----------------------------- ---- ---- // -- This area reserved for Table based system --

const word StorageWorking=EEmask; // EEPROM start for working calibration data

// EEPROM start for backup copy of constants
// note we have to add 1 to the value
// Becasue addresses begin with zero not one
const word StorageBackup =((E2END-(EEwdsize))+1);

// EEPROM addresses variables // begin storage for report data
word StorageBegin =StorageWorking+EEwdsize+EEtbsize;

word StorageMark =StorageBegin; // marks start of current segment
word StorageEnd =StorageBackup; // marks end of current segment
word StorageIndex =StorageBegin; // index for next EEPROM write

// Conversion Factors/Calibraton Data
float RefVoltage; // Analog Sensor Reference Voltage
const float CovrtFactorV= 8192;

float DegreeOffset; // Fudge factor to adjust output
const float CovrtFactorO= 1024;
char IdString[EEidsize+1]; // ID/Location string for this device

word MinuteTarget = 1; // Number of minutes between report lines
byte newflg=0; // used to indicate new factors in memory

float Celsius; // Last conversion to Celsius Temperature
float Fahrenheit; // Last conversion to Fahrenheit Temperature

// Global operational mode Variables // set default operation modes
boolean ReportMode = true; // True = reporting, False = Command Mode
boolean RtnRawRead = true; // True = include Raw
boolean RtnCelsius = true; // True = include Celsius
boolean RtnFahrenh = true; // True = include Fahrenheit
boolean DeBug = false; // True = extended reporting for debugging
boolean EepromMode = false; // True = write data to EEPROM on next run
boolean RoundMode = true; // True = round output to nearest 1/4 or 1/2

// Global work Variables // There are 1000 milliseconds in a second

// word SecondsMinute = 10000; // --- to speed things up a bit for debugging
word SecondsMinute = 60000; // added so calibraton timining can be reduced
unsigned long SecondsTarget = 0; // Number of seconds between report lines

Page: 250

unsigned long RptStartTime = 0; // Time between report lines

byte gap = 0; // used to increase gap between reads
unsigned long RptTrigger = 0; // Target Time for report

unsigned long CycleStart = 0; // Target Time for report
unsigned long CycleTime = 0; // Target Time for report

unsigned long Accumalator = 0; // Accumalate temperature reads
unsigned long CycleCount = 0; // Cycles per Report line

char cmd[] = {0,0,0}; // used to store two character command
char prevcmd[] = {0,0,0}; // used to store previous two character command

word LastRead = 0; // Stores previous RawRead Average
byte Consecutive = 0; // used to count consective equal readings

//===
void setup()
 { char c;
 Serial.begin (9600);
 pinMode(13, OUTPUT); // so we can blink it later during writes

 EnableADC(); // enables the ADC and set ADC clock factor
 delay (1000); // let serial library complete setup
 while (Serial.available()>0) // drain any data from the serial buffer
 c=Serial.read();
 Read_Calibration_Data(); // read and set conversion factors from EEPROM

 Check_EEPROM(); // see if we are writing to EEPROM vs Serial
 // calculate seconds between report lines

 // we have to "cast" the two word values or we will get a word value for the result
 SecondsTarget=long(MinuteTarget)*long(SecondsMinute);
 //delay (5000); // allow PC 5 seconds to get setup

 if (EepromMode==false) ReportStatus(); // report default parameters
 Accumalator = 0; // set startup parameters
 CycleCount = 0;
 RptTrigger = millis() + SecondsTarget;
 RptStartTime= millis();
 }

//---
void loop()
 { char c1, c2;

 word wtemp;

 // ---- This is where we check for command input
 if ((Serial.available()>2) && (EepromMode==false))
 { if(ReadTwoCharacters()) CmdProcessor();}

 // ---- This is where we collect our temperature data

 // gap is used to increase the amount of time between reading sampling the ADC.
 // This Insures that we will not miss any data transmitted on the serial port.
 if (gap++ == 9)

 { gap=0;
 // cycle times are only used if debugging is turned on
 if (DeBug == true) CycleStart= millis();
 ReadRawTempA1();

 if (DeBug == true) CycleTime = CycleTime+(millis()-CycleStart);
 }

 // ---- This is where we output the teperature data
 // The time required to read 64 samples is about 119-120 milliseconds. If we get
 // within 150 milliseconds of the Report Trigger Time then we wait for it.

 // With the these timing numbers there are 500 reads of
 // 64 virtual 12 bit samples per minute.
 // Added condition for millis exceeding report trigger (possible with long commands)
 if (((RptTrigger-millis())< 150) || (millis()>RptTrigger))
 { // Serial.println ("Got here: RptTrigger ");

Page: 251

 while (millis() < RptTrigger);

 // We want the new trigger time set as close as possible to when the previous trigger
 // went off --- so we put ti first.

 RptTrigger= (millis() + (SecondsTarget));
 Report();

 }
 }

//==
void CmdProcessor()

 {// this function is the main command handler
 // not many comments because I think the code is obviuos
 if (DeBug == true)
 { Serial.print (F("; Command Processor "));

 DebugPrintCharacters (cmd[0],cmd[1]);
 }
 if ((cmd[0]=='C') && (cmd[1]=='=')) CelsiusEquals();
 else if ((cmd[0]=='D') && (cmd[1]=='B')) ToggleDebugMode();
 else if ((cmd[0]=='D') && (cmd[1]=='O')) NewDegreeOffset();
 else if ((cmd[0]=='E') && (cmd[1]=='+')) EEmodeFlagSet();

 else if ((cmd[0]=='E') && (cmd[1]=='C')) ClearStorage();
 else if ((cmd[0]=='E') && (cmd[1]=='D')) DumpStorage();
 else if ((cmd[0]=='E') && (cmd[1]=='-')) EEmodeFlagClear();
 else if ((cmd[0]=='F') && (cmd[1]=='=')) FahrenheitEquals();
 else if ((cmd[0]=='I') && (cmd[1]=='D')) {Serial.print(F("; ")); Print_IdString();}

 else if ((cmd[0]=='L') && (cmd[1]=='L')) HelpMe();
 else if ((cmd[0]=='L') && (cmd[1]==':')) NewIdString();

 else if ((cmd[0]=='R') && (cmd[1]=='V')) NewRefVolt();
 else if ((cmd[0]=='S') && (cmd[1]=='S')) ShutDown();
 else if ((cmd[0]=='S') && (cmd[1]=='T')) ReportStatus();

 else if ((cmd[0]=='W') && (cmd[1]=='W')) Write_Calibration_Data();
 else if ((cmd[0]=='W') && (cmd[1]=='+')) OverwriteBackup();
 else if ((cmd[0]=='W') && (cmd[1]=='-')) RestoreFromBackup();
 else if ((cmd[0]=='?') && (cmd[1]=='?')) HelpMe();
 else if ((cmd[0]=='!') && (cmd[1]=='!')) software_Reset();
 else if ((cmd[0]=='0') && (cmd[1]=='0')) ToggleRoundMode();

 else if (cmd[0]=='C') SetCelsiusMode();
 else if (cmd[0]=='F') SetFahrenheitdMode();
 else if (cmd[0]=='P') SetReportMode();

 else if (cmd[0]=='R') SetRawReadMode();
 else if (cmd[0]=='T') NewReportTime();

 // ATMEGA186 does not have internal temperature senor
 else if ((cmd[0]=='I') && (cmd[1]=='T')) PrintNotImplemented();

 else if ((cmd[0]=='I') && (cmd[1]=='F')) PrintNotImplemented();

 // example of application specific command implimneted
 // this command writes default data to the EEPROM working storage
 else if ((cmd[0]=='Z') && (cmd[1]=='1')) TestData1();

 }

//--

void HelpMe()
 { // We need to seriously reduce the size of this function
 // Reduced by: 1,922 bytes
 Serial.println(F(
 "; AtMega168 Temperature Sensor 1.0\n"
 "; ID ST RT RF FT FF F= CT CF DO RV\n"

 "; T# PF PT DB 00 L: WW W+ W- E+ E-\n"
 "; EC ED LL SS !! Z1"));
 PrintSeperatorLine();
 }

Page: 252

//---

void PrintSeperatorLine()
 { Serial.print("; ");

 for (byte i=0; i<36; i++) Serial.print('-');
 Serial.println();

 }

//==

boolean ReadTwoCharacters()
 { char c1=0,c2=0,c3=-1;

 byte m=0;
 boolean EOC=true; // End of Command Terminator
 boolean OurReturn=false;

 // It is not to be believed how much effort went into creating this simple function to read
 // two characters. I noted a bit of problem reading characters from the serail port when
 // the loop was too fast therefore I have added a bit of a delay to insure the serial port
 // library can keep up. Worst case senario this function can take more than 250 milliseconds.
 // Normally when this functionis called we expect the htree bytes we need to be in the buffer
 // but if there is noise on the line or a parrot randomly pecking at the keyboard it could

 // take a bit longer.
 //
 // by defintion we are looking for two characters followed by a terminator
 // we define a command terminatore to be a carriage return, new line or null character
 // --- for good measure we are including the tab character and space as well

 // space was added because it is impossible to send a tab character from the Ardunion IDE
 // we will accept any combination of those characters as a single terminator

 // we will accept the last two printable ASCII characters before a terminator for our command
 // we keep reading until we get a terminator, but we will only read for a short period

 // but before we do anything else we are going to save the rpevious command for posterity
 prevcmd[0]=cmd[0]; // actually we are saving it so that shutdown
 prevcmd[1]=cmd[1]; // and reset can check it before they execute

 while ((c3 != 13) && (c3 != 10) && (c3 != 9) && (c3 != 0) && (c3 != 32) && (m<25))
 { // if we have a valid ASCII character for c3 then roll the charaters down
 if (Serial.available()>0)
 { c3=Serial.read();
 if (c3>32) {c1=c2; c2=c3;}
 }

 // we need a bit of a delay to let the serial interface catch up
 // after 25 empty reads we give up

 else { delay (10); m++;}
 }
 // DebugPrintCharacters (c1,c2,c3,m);

 // we are very liberal about what we will accept for a command terminator

 // but we insist on having one.
 if ((c3 != 13) && (c3 != 10) && (c3 != 9) && (c3 != 0) && (c3 != 32)) EOC= false;
 // we need to drain any remaining command terminator characters from the serail buffer

 else DrainCmdTermiantors();

 // now check for valid ASCII charaters and End of Line
 if ((c1>32) && (c2>32) && EOC)

 { // OK... we have something to work with
 // Convert lower case to UPPER case excpet "w"
 // DebugPrintCharacters (c1,c2,c3);
 if ((c1 != 'w') && (c1 >96) && (c1 <123)) c1 = (c1 -32);
 if ((c2 != 'w') && (c2 >96) && (c2 <123)) c2 = (c2 -32);
 // DebugPrintCharacters (c1,c2);

 cmd[0]=c1;
 cmd[1]=c2;
 OurReturn=true;
 }
 // whatever it was that was sent did not meet our criteria

Page: 253

 // inform the parrot that he or she must do better

 else Serial.println(F("; ?? ??"));
 return OurReturn;

 }

//--
void DrainCmdTermiantors()
 { char c3=0;

 // removed leading command terminators from serial buffer
 delay (10); c3=Serial.peek();

 while ((c3==13) || (c3==10) || (c3==9) || (c3==0) || (c3 == 32))
 { c3=Serial.read();
 delay (10);
 c3=Serial.peek();

 }
 // c3 should at this point should be -1 unless there are more commands/charaters in the
buffer
 }

//==

// overloaded debugging function for debugging the above input routine
void DebugPrintCharacters (char c1, char c2, char c3, byte m)
 {
 if (DeBug == true)
 { Serial.print ("Received: ");

 Serial.print (c1);
 // Serial.print (" ");

 Serial.print (c2);
 Serial.print (" ");
 if (c3 != 0)

 { Serial.print (c3, DEC);
 Serial.print (" ");
 }
 if (m != 0) Serial.print (m, DEC);
 Serial.println ();
 }
 }
void DebugPrintCharacters (char c1, char c2, char c3)
 { byte m=0;
 DebugPrintCharacters (c1,c2,c3,m);

 }
void DebugPrintCharacters (char c1, char c2)

 { byte m=0;
 char c3=0;
 DebugPrintCharacters (c1,c2,c3,m);

 }

//----------------End of Main File------------------------------

Thermometer Function ATMega168 File

// cbi and sbi are standard (AVR) methods for setting,

// or clearing, bits in PORT (and other) variables.
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

//--
void EnableADC()
 { // This is probably not needed but
 // set system clock devisor to 128

 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.

Page: 254

 sbi(ADCSRA, ADPS2); // bit 2 of ADCSRA, system clock devisor

 sbi(ADCSRA, ADPS1); // bit 1 of ADCSRA, system clock devisor
 sbi(ADCSRA, ADPS0); // bit 0 of ADCSRA, system clock devisor

 cbi(ADCSRA, ADATE); // bit 5 of ADCSRA, disable auto trigger mode
 sbi(ADCSRA, ADEN); // bit 7 of ADCSRA, enable ADC

 }

//--

void Read_Calibration_Data()
 { byte i=0, j=0;

 word TempWord;
 char c;
 char sign;

 // detect a virgin device --- well at least try
 if ((EEPROM.read(EEminutes)==0xFF) &&
 (EEPROM.read(EEminutes+1)==0xFF))
 TestData1();

 // Get Degree Offset

 TempWord= EEPROM.read(EEoffset)<<8;
 TempWord= (TempWord + EEPROM.read(EEoffset +1));
 sign= 1;
 if ((TempWord>>12) == B1000) sign= -1;
 // strip the sign bit

 TempWord=(TempWord<<1)>>1;
 // now we need to convert it to a fraction

 DegreeOffset=(float(TempWord)/float(CovrtFactorO)) * sign;

 // Get the RefVoltage factor;

 TempWord= EEPROM.read(EErefvolt)<<8;
 TempWord= TempWord + EEPROM.read(EErefvolt +1);
 // now we need to convert it to a fraction
 RefVoltage = float(TempWord)/CovrtFactorV ;

 // ID String -------------------------------------
 i=0; c=1;
 while (c!=0,i< EEidsize)
 {c=EEPROM.read(EEidtring + i); // read the ID string
 IdString [i++]=c;

 }
 IdString [EEidsize]=0; // just in case

 // Set MinuteTarget from default minutes
 MinuteTarget=(EEPROM.read(EEminutes)<<8) + EEPROM.read(EEminutes +1);

 if (MinuteTarget<1)MinuteTarget=1;

 // this is a bit flag to indicate when the current constants
 // in memory are different from those stored in working storage
 newflg=0;

 }

//--

void Write_Calibration_Data()
 { word i=0;
 // float saveflt;
 word TempWord;
 char c=-1;
 byte sign;

 // New location
 if ((newflg & B00000001) == B00000001)
 {
 for (i=0;i<EEidsize; i++) {EEPROM.write((EEidtring +i), IdString[i]);}

Page: 255

 }

 // New Degree Offset

 if ((newflg & B00000010) == B00000010)
 { sign = 0;

 if (DegreeOffset <0) sign = B10000000;
 TempWord=word(abs(DegreeOffset) * CovrtFactorO);
 EEPROM.write(EEoffset , highByte(TempWord)|sign);

 EEPROM.write(EEoffset +1, lowByte (TempWord));
 }

 // New Reference Voltage
 if ((newflg & B00000100) == B00000100)
 { TempWord = word(RefVoltage * CovrtFactorV);
 EEPROM.write(EErefvolt , highByte(TempWord));

 EEPROM.write(EErefvolt +1, lowByte (TempWord));
 }

 // New MinuteTarget
 if ((newflg & B00010000) == B00010000)
 {

 EEPROM.write(EEminutes , highByte(MinuteTarget));
 EEPROM.write(EEminutes +1, lowByte (MinuteTarget));
 }

 // write the unused word(s)

 i=EEunused0;
 while (i<EEidtring)

 {if (EEPROM.read(i)!= 0xFF) EEPROM.write(i, 0xFF);
 i++;
 }

 // clear the EEMODE flag
 EEmodeFlagClear();

 // note newflg is reset by Read_Calibration_Data
 Read_Calibration_Data();
 // PrintOKStr(); is sent by Report_Reset
 Report_Reset();
 }

//---
void ClearStorage()

 { // this is used to clear/erase the EEPROM data storage (except for constant areas)
 word addr;
 byte b;

 for (addr=(StorageBegin); addr<StorageBackup; addr++)
 { if (EEPROM.read(addr) != 0xFF) EEPROM.write(addr,0xFF);

 } // note: each byte requires 6-8 machine cycles
 PrintOKStr ();
 }

//---
void EEmodeFlagSet()
 { // toggle the flag forthe next run to write to EEPROM

 // does not affect current run
 // Here is the thing. We have setup wearleveling for our EEPROM data storage
 // but modeflag gets hit twice for every EEPROM run. So it will wearout
 // long before the bulk of the storage. We could just increment the byte and
 // look for odd or even values but that would continuelly toggle the low bit
 // wearing it out before there rest. As it turns out it is writing a zero to

 // a bit that wears then out. So we want to minimize the zero bit writes.
 // We are going to move a zero bit right to left. This extends our life by a
 // factor of eight. At that point you need to swap the backup and working
 // data locations by changing the EEPROM address locations and reprograming
 // the Arduino. That would double the life (2 * 8 = 16).

Page: 256

 //

 byte flag;
 if(EEmodeFlagTF()==false)

 {
 // make them not equal

 // shift left and add a one to the right
 flag=EEPROM.read(EEflag);
 // Serial.println(flag);

 flag=(flag<<1)+1;
 // Serial.println(flag);

 // if we have all ones start over again at the right
 if (flag==B11111111) flag=B11111110;
 // Serial.println(flag);
 // now save it

 EEPROM.write(EEflag,flag);
 }
 PrintOKStr();
 }

//---

void EEmodeFlagClear()
 { byte flag;
 if(EEmodeFlagTF())
 { // make them equal
 flag=EEPROM.read(EEflag);

 EEPROM.write(EEmask,flag);
 }

 if (EepromMode==false) PrintOKStr();
 }

//--
boolean EEmodeFlagTF()
 { // returns true if EEmodeFlag is set
 byte flag,mask;
 flag=EEPROM.read(EEflag);
 mask=EEPROM.read(EEmask);
 if(flag==mask) return false;
 else return true;
 }

//---
void Check_EEPROM()

 { byte b[4],i;
 word w;
 word addr;

 EepromMode=false;

 if (EEmodeFlagTF())
 {
 EepromMode=true;

 // clear the flag
 EEmodeFlagClear();
 // disable serial reporting and debug mode
 ReportMode=false;

 DeBug=false;
 // we need to find the beginning of EEPROM that has not been used
 // we need at least four bytes to begin a new section.
 // so we need to find the first place where there are four bytes with FFh
 // zero our test pattern
 for (i=0; i<4; i++) b[i]=0;

 addr=StorageBegin;
 while ((addr<StorageBackup) && ((b[0]!=0xFF) || (b[1]!=0xFF)
 || (b[2]!=0xFF) || (b[3]!=0xFF)))
 { b[0]=b[1];
 b[1]=b[2];

Page: 257

 b[2]=b[3];

 b[3]=EEPROM.read(addr++);
 }

 // did we read until the end ??
 if (addr >= StorageEnd) StorageMark=StorageBegin;

 // we found 4 bytes that have not been written to
 else StorageMark=addr-4;
 // in either case we clear the storage

 ClearStorage();
 // mark the beginning

 EEPROM.write(StorageMark,0);
 EEPROM.write(StorageMark+1,0);
 // set then beginning and end of the current segment
 StorageIndex=StorageMark+2;

 StorageEnd=StorageBackup;
 // definitive notice of mode
 for (i=0; i < 30; i++) {QuickBlink(); delay (250);}
 }
 }

//---
void Print_IdString()
 { // Serial.print(F("; ")); // pefix
 Serial.println(IdString); // print it
 }

//---

void PrintTrueFalse(byte T)
 { // used to report True or False for boolean Globals
 if(T == 0) Serial.println(F("False"));

 else Serial.println(F("True"));
 }

//---
void ReportStatus()
 { // report settings
 PrintSeperatorLine();
 Serial.print (F("; Report:\t"));
 PrintTrueFalse (ReportMode);
 Serial.print (F("; Debug:\t"));

 PrintTrueFalse (DeBug);
 Serial.print (F("; Raw:\t"));

 PrintTrueFalse (RtnRawRead);
 Serial.print (F(";Fahrenheit:\t"));
 PrintTrueFalse (RtnFahrenh);

 Serial.print (F("; Celsius:\t"));
 PrintTrueFalse (RtnCelsius);

 Serial.print (F("; Round:\t"));
 PrintTrueFalse (RoundMode);

 Serial.print (F("; Minutes:\t"));
 Serial.println (MinuteTarget, DEC);
 Serial.print (F("; Voltage:\t"));
 Serial.println (RefVoltage, 4);

 // single sensor, no prefix needed
 Serial.print (F("; Sensor ID:\t"));
 Print_IdString ();
 Serial.print (F("; Offset:\t"));
 Serial.println (DegreeOffset, 4);

 if (newflg != 0)
 Serial.println (F(";Parameters not saved"));
 if(EEmodeFlagTF())
 Serial.println (F(";EEPROM Mode Flag Set"));

Page: 258

 PrintSeperatorLine();

 }

//---
// ---- Below is the function the read the External LM34DZ Temperature Sensor ----
//---

void ReadRawTempA1()
 { // Read ADC for Pin A1 (connected to LM34DZ Temperature Sensor)

 // Cycle time is aproximately 124 miliseconds
 unsigned long RawSum=0; // used to sum samples for averaging
 word RawTemp=0; // used to accumalate 10 bit ADC readings
 word test=0; // used to count samples

 // Just in case ...
 // The INPUT mode explicitly disables the internal pullup resistors.
 pinMode(A1,INPUT);

 // turn on internal reference, right-shift ADC buffer,ADC channel = ADC1 (pin A1)

 // B11000000: AMUX Voltage reference = Internal 1.1 volt (bits 7,6)
 // B00000000: AMUX Right Shift ADC Buffer (bit 5)
 // B00000001: AMUX Input Source= pin A1 (bits 3,2,1,0)
 ADMUX = B11000001;
 delay(10); // wait for the things to stabilize

 while (test++ < 1024) // oversampling loop (for averaging)

 { ADCSRA |= _BV(ADSC); // start the conversion
 while (bit_is_set(ADCSRA, ADSC)); // ADSC cleared when complete
 RawTemp = (ADCL | (ADCH << 8)); // collect the reading

 RawSum += RawTemp; // add it to out total
 }
 Accumalator += ((RawSum)>>10); // averag and add to Accumalator
 // LSBs are lost
 CycleCount++; // used by functions to average readings
 }

//---
void Convert(word RawReading)
 { // converts Raw Reading to Celsius and Fahrenheit

 // New plan: offset will only be used for minor correction
 // SCALE is actual voltage that is supposed to be 1.1 but reads 1.067

 // This temperature sensor reports in Fahrenheit 1 milivolt per degree
 // We need the correct voltage !!!
 // Covrt2Fahrenheit=1.067;

 Fahrenheit = (float(RawReading)/1024)* RefVoltage *100;
 Fahrenheit = Fahrenheit + DegreeOffset;

 if (RoundMode) Fahrenheit= nearesthalf(Fahrenheit);
 // Consistancy is next to godliness.
 // We are working in Fahrenheit.

 // In our case Celsius is a function of Fahrenheit.
 // Thus we always complete our Fahrenheit cals first.
 // That inludes rounding.
 Celsius = (Fahrenheit-32)/1.8;

 if (RoundMode) Celsius=nearestquater(Celsius);
 }

//---
float nearestquater (float ValueIn)
 { // Return value rounded to nearest quater (0.25)

 byte sign=1;
 float fraction;
 if (ValueIn , 0)
 {
 sign = -1;

Page: 259

 ValueIn=abs(ValueIn);

 }
 fraction =ValueIn-long(ValueIn);

 if (fraction >= 0.875) fraction=1.00;
 else if (fraction >= 0.625) fraction=0.75;

 else if (fraction >= 0.375) fraction=0.50;
 else if (fraction >= 0.125) fraction=0.25;
 else fraction=0;

 return (long(ValueIn)+fraction) * sign;
 }

//---
float nearesthalf (float ValueIn)
 { // Return value rounded to nearest half (0.50)

 byte sign=1;
 float fraction;
 if (ValueIn , 0)
 {
 sign = -1;
 ValueIn=abs(ValueIn);

 }
 fraction =ValueIn-long(ValueIn);
 if (fraction >= 0.750) fraction=1.00;
 else if (fraction >= 0.250) fraction=0.50;
 else fraction=0;

 return (long(ValueIn)+fraction) * sign;
 }

//---
void Report()

 { word AvgSumRead;
 AvgSumRead = Accumalator/CycleCount;
 if (EepromMode) Report2EEPROM(AvgSumRead);
 else if (ReportMode)
 { Convert (AvgSumRead);
 Serial.print ('0');
 if (RtnRawRead)
 { Serial.print (AvgSumRead);
 Serial.print (char(9));
 }

 if (RtnCelsius)
 { Serial.print (Celsius,2);

 Serial.print (char(9));
 }
 if (RtnFahrenh)

 { Serial.print (Fahrenheit,2);
 Serial.print (char(9));

 }
 if (DeBug)
 { Serial.print (CycleTime/CycleCount);

 Serial.print (char(9));
 Serial.print (CycleCount);
 Serial.print (char(9));
 Serial.print (millis()-RptStartTime);

 RptStartTime=millis();
 }
 Serial.println();
 }
 Accumalator = 0;
 CycleCount = 0;

 CycleTime = 0;
 LastRead=AvgSumRead;
 }

//--

Page: 260

void QuickBlink()

 { // on the UNO 1 mullisecond will surfice
 // adjusted up to 3 for Nano

 digitalWrite(13, HIGH); // turn on LED
 delay(3);

 digitalWrite(13, LOW); // turn off LED
 }

//--
void Report2EEPROM(word AvgSumRead)

 { // We are implimenting both data compression and wearleveling.
 // Our data is only 12 bits. Becuase we should never get a reading
 // over 2047 in our high bit will always be zero.
 // We are going to use the top four bits to count consecutive equal

 // readings. In that manner we may be able to store 16 readings in
 // a singal word value.
 word makeword;
 QuickBlink();

 // Serial.println(F("Get here: Report2EEPROM"));

 // send this string for testing: EC EE ST !! !!
 // we need to skip the firs pass because we have nothing to work with
 if (LastRead !=0)
 { if (LastRead == AvgSumRead) Consecutive++;
 if ((Consecutive == 15) || (LastRead != AvgSumRead))

 { // Serial.println(F("Get here: Report2EEPROM, write record"));
 // we are going to try two blinks everytime that there is a write

 makeword = (Consecutive <<12)+LastRead;
 EEPROM.write (StorageIndex++, highByte(makeword));
 EEPROM.write (StorageIndex++, lowByte(makeword));

 Consecutive=0;
 // now we need to check our storage space
 if ((StorageEnd-StorageIndex)<2)
 { // folks there is Trouble in river city !
 if (StorageMark==StorageBegin)
 {prevcmd[1]=prevcmd[0]=cmd[1]=cmd[0]='S'; ShutDown();}
 if (StorageEnd ==StorageMark)
 {prevcmd[1]=prevcmd[0]=cmd[1]=cmd[0]='S'; ShutDown();}
 // OK, start at the beginning
 StorageIndex=StorageBegin;

 StorageEnd=StorageMark;
 }

 delay (50); // force a bit of a delay so both blinks can be seen
 QuickBlink();
 }

 }
 LastRead == AvgSumRead;

 }

//--

void DumpStorage()
 { // print data stored in eeprom
 byte b1, b2, c;
 word reading;

 word countreading=0;
 word countwords=0;
 boolean savemode;
 // save the current reporting mode
 savemode=ReportMode;
 // find the beginning of the data defined to be two zero bytes

 b1=1;
 b2=1;
 while ((StorageIndex<StorageBackup) && ((b1!=0) || (b2!=0)))
 { b1=b2;
 b2=EEPROM.read(StorageIndex++);

Page: 261

 }

 StorageEnd=StorageBackup;
 StorageMark=StorageIndex-2;

 // 4 high bits are the count, low 12 bits are the reading
 PrintSeperatorLine();

 Serial.println (F("; Begin EEPROM data dump"));
 Serial.println (F("; Raw Reading\tCelsius\tFahrenheit"));
 while (((StorageEnd-StorageIndex)>=2) && ((b1 != 0xFF)||(b2 != 0xFF)))

 { b1=EEPROM.read(StorageIndex++);
 b2=EEPROM.read(StorageIndex++);

 //----------------- debuggin code
 // Serial.print ("; Location: ");
 // Serial.print (StorageIndex);
 // Serial.print (", ");

 // Serial.print (b1,HEX);
 // Serial.print (", ");
 // Serial.print (b2,HEX);
 countwords++;
 // two bytes of FFh will mark the end
 if ((b1 != 0xFF) || (b1 != 0xFF))

 { Consecutive=b1>>4;
 reading= ((b1 & B00001111)<<8)+b2;
 Convert(reading);
 //----------------- debuggin code
 // Serial.print (", ");

 // Serial.print (Consecutive);
 // Serial.print (", ");

 // Serial.print (reading);
 // Serial.println();
 // while (Serial.available() ==0);

 // c=Serial.read();
 // the logic here is we need to print every reading at least once ...
 // that is when it is zero. When we subtract one from zero we get 255
 while (Consecutive<255)
 { countreading++;
 Serial.print (reading);
 Serial.print (char(9));
 Serial.print (Celsius,2);
 Serial.print (char(9));
 Serial.print (Fahrenheit,2);

 Serial.println ();
 Consecutive--;

 }
 // now check the addresses
 if ((StorageEnd-StorageIndex)<2)

 { if (StorageMark != StorageBegin)
 { StorageEnd = StorageMark;

 StorageMark = StorageBegin;
 StorageIndex = StorageMark +2;
 }

 }
 }
 }
 PrintSeperatorLine();

 Serial.println (F("; End EEPROM data dump"));
 Serial.print (F("; Readings:\t"));
 Serial.println (countreading, DEC);
 Serial.print (F(";Storage Words:\t"));
 Serial.println (countwords, DEC);
 PrintSeperatorLine();

 // restore the current reporting mode
 ReportMode=savemode;
 }

//--

Page: 262

void Responce (char str[])

 {if (EepromMode == false)
 { // we do not want to get hung up

 // this just serves to reduce command responce memory usage a bit
 // trying to wrtie to seomthing that is not connected

 Serial.print (F("; "));
 Serial.print (cmd);
 Serial.print (F(" "));

 Serial.println (str);
 }

 }

//--
void PrintOKStr ()

 { // command was accepted and processed
 Responce ("OK");
 }

//--
void PrintNotRecognized()

 { // command was Not Recognized
 Responce ("??");
 }

//--

void PrintNotImplemented()
 { // command was Not Recognized

 Responce ("XX");
 }

//---
void ShutDown()
 { // Note that no provision is made to wake up.
 // This is as close to shutdown as we can get.
 // Because of the inefficent voltage regulator this
 // mode still draws a lot of power (about 10mA).
 // A standard 9 volt battery may last about 16 hours.

 // Serial.println(prevcmd);
 if ((prevcmd[0]=='S') && (prevcmd[1]=='S'))

 { Serial.println (F("; SHUTDOWN"));
 // give device time to send string

 for (byte i=0; i< 25; i++)
 { QuickBlink();
 delay (100);

 }
 cbi(ADCSRA, ADEN); // bit 7 of ADCSRA, disable ADC

 noInterrupts();
 set_sleep_mode(SLEEP_MODE_PWR_DOWN);
 sleep_enable();

 sleep_mode(); // all execution should stop here
 while(0==0); // endless loop (belts and suspenders)
 }
 else PrintOKStr(); // first time through only

 }

//--
void software_Reset()
 { // Restarts program from beginning but
 // does not reset the peripherals and registers

 // as we are not doing anything with the the
 // timers or peripherals or registers this
 // should be adequate (will not support updating)

 // Serial.println(prevcmd);

Page: 263

 if ((prevcmd[0]=='!') && (prevcmd[1]=='!'))

 { Serial.println (F("; RESETTING"));
 // give device time to send string

 delay (1000);
 asm volatile (" jmp 0");

 }
 else PrintOKStr(); // first time through only
 }

//--

void SetRawReadMode()
 { // check for "T" or "F", true of false
 if (cmd[1]=='T') {RtnRawRead = true; PrintOKStr();}
 else if (cmd[1]=='F') {RtnRawRead = false; PrintOKStr();}

 else PrintNotRecognized();
 }

//--
void SetCelsiusMode()
 { // check for "T" or "F", true of false

 if (cmd[1]=='T') {RtnCelsius = true; PrintOKStr();}
 else if (cmd[1]=='F') {RtnCelsius = false; PrintOKStr();}
 else PrintNotRecognized();
 }

//--
void SetFahrenheitdMode()

 { // check for "T" or "F", true of false
 if (cmd[1]=='T') {RtnFahrenh = true; PrintOKStr();}
 else if (cmd[1]=='F') {RtnFahrenh = false; PrintOKStr();}

 else PrintNotRecognized();
 }

//--
void SetReportMode()
 { // check for "T" or "F", true of false
 if (cmd[1]=='T') {ReportMode = true; PrintOKStr();}
 else if (cmd[1]=='F') {ReportMode = false; PrintOKStr();}
 else PrintNotRecognized();
 }

//--

void ToggleDebugMode()
 { // toggle Debug mode
 if (DeBug == true) DeBug = false;

 else if (DeBug == false) DeBug = true;
 PrintOKStr();

 }

//--

void ToggleRoundMode()
 { // check for "T" or "F", true of false
 if (RoundMode) {RoundMode = false; PrintOKStr();}
 else {RoundMode = true; PrintOKStr();}

 }

//--
void NewReportTime()
 { // set report Minutes
 if (cmd[1]=='1') { MinuteTarget = 1; Report_Reset();}

 else if (cmd[1]=='2') { MinuteTarget = 2; Report_Reset();}
 else if (cmd[1]=='3') { MinuteTarget = 3; Report_Reset();}
 else if (cmd[1]=='4') { MinuteTarget = 4; Report_Reset();}
 else if (cmd[1]=='5') { MinuteTarget = 5; Report_Reset();}
 //---- the timings below have not been tested ---------------

Page: 264

 else if (cmd[1]=='6') { MinuteTarget = 10; Report_Reset();}

 else if (cmd[1]=='7') { MinuteTarget = 15; Report_Reset();}
 else if (cmd[1]=='8') { MinuteTarget = 20; Report_Reset();}

 else if (cmd[1]=='9') { MinuteTarget = 30; Report_Reset();}
 else if (cmd[1]=='0') { MinuteTarget = 60; Report_Reset();}

 else if (cmd[1]=='A') PrintNotImplemented(); // not implimented

 else if (cmd[1]=='B') PrintNotImplemented(); // not implimented
 else if (cmd[1]=='C') PrintNotImplemented(); // not implimented

 else if (cmd[1]=='D') PrintNotImplemented(); // not implimented
 else if (cmd[1]=='E') PrintNotImplemented(); // not implimented
 else if (cmd[1]=='F') PrintNotImplemented(); // not implimented
 else if (cmd[1]=='T') PrintNotImplemented(); // not implimented

 else PrintNotRecognized(); // not recognized
 }

//--
void Report_Reset()
 { // this force the current data to be reported

 // and reset our clock using the new time
 unsigned long SaveMe=SecondsTarget;
 PrintOKStr();
 Serial.println (F("; Report Timing reset"));
 // calculate seconds between report lines

 // SecondsTarget=MinuteTarget*SecondsMinute;
 // we have to "cast" the two word values or we will get a word value for the result

 SecondsTarget=(long(MinuteTarget)*long(SecondsMinute));

 if (SecondsTarget != SaveMe) newflg = newflg | B00010000;

 Accumalator = 0; // reset report parameters
 CycleCount = 0;
 RptTrigger = millis() + SecondsTarget;
 RptStartTime= millis();
 }

//--
void NewIdString()
 { // New Location ID String

 // Serial.println("got here: NewIdString");
 // set time out to 5 seconds

 unsigned long timelimit = millis() + (5000);
 boolean timeout=false;
 char c= -1;

 byte n= 0;
 while ((c != 0) && (c != 10) && (c != 9) && (c != 13) && (n<EEidsize) && (timeout==false))

 { delay(10);
 c = Serial.read();
 if (c > 31) IdString[n++]=c;

 // check for timeout
 if (millis()>timelimit) timeout=true;
 }
 while (n<EEidsize) IdString[n++]=0;

 if (timeout) Serial.println (F("; aborted due to timeout"));
 else
 { IdString[EEidsize]=0; // make certain last charater is null
 newflg = newflg | B00000001;
 // Serial.println (IdString);
 PrintOKStr();

 }
 DrainCmdTermiantors();
 }

//--

Page: 265

void PrintDegreeOffsetEffect(float NewOffset)

 { // new offset must be in Degrees Fahrenheit
 boolean SaveRoundMode;

 SaveRoundMode=RoundMode;

 while (CycleCount<50) ReadRawTempA1();
 DegreeOffset=0;
 RoundMode=false;

 Convert(Accumalator/CycleCount);
 DegreeOffset=NewOffset;

 Serial.print (F("; Offset(F):\t"));
 Serial.println (DegreeOffset);
 Serial.print (F(";Fahrenheit:\t"));
 Serial.println (Fahrenheit);

 Serial.print (F("; Adjusted:\t"));
 Fahrenheit=Fahrenheit+NewOffset;
 if (SaveRoundMode) Fahrenheit=nearesthalf(Fahrenheit);
 Serial.println (Fahrenheit);
 //---
 Serial.print (F("; Celsius:\t"));

 Serial.println (Celsius);
 Serial.print (F("; Adjusted:\t"));
 Celsius=Celsius+(DegreeOffset/1.8000);
 if (SaveRoundMode) Celsius=nearestquater(Celsius);
 Serial.println (Celsius);

 newflg = newflg | B00000010;
 RoundMode=SaveRoundMode;

 PrintOKStr();
 }

//--
void ValueNotAccepted()
 { Serial.print("; ");
 Serial.print(cmd);
 Serial.print(" invalid/no input");
 }

//--
void NewDegreeOffset()
 { // New Degree Offset

 float tempfloat=0;
 delay (2000);

 tempfloat=Serial.parseFloat();
 if (tempfloat!=0)
 { if (abs(tempfloat)<0.010) tempfloat = 0;

 PrintDegreeOffsetEffect(tempfloat);
 newflg = newflg | B00000010;

 }
 else Serial.println (F("; value not accepted"));
 DrainCmdTermiantors();

 }

//--
void CalculateDegreeOffset(float tempfloat)

 { // calculate a new degree offset, TempF is Temperature in degrees Fahrenheit
 // get the current raw reading
 boolean SaveRoundMode;

 Serial.println (F("; Calculating new offset ..."));
 while (CycleCount<50) ReadRawTempA1();

 // set the current offset to zero so that it
 // does not affect the Conversion
 DegreeOffset=0;
 SaveRoundMode=RoundMode;
 RoundMode=false;

Page: 266

 Convert(Accumalator/CycleCount);

 RoundMode=SaveRoundMode;
 PrintDegreeOffsetEffect(tempfloat-Fahrenheit);

 }

//--
void FahrenheitEquals()
 { // sets offset according to current reading and input Fahrenheit

 float tempfloat=0;
 float deltaR;

 word RawReading;
 delay (2000);
 tempfloat=Serial.parseFloat();
 if (tempfloat != 0) CalculateDegreeOffset(tempfloat);

 else ValueNotAccepted();
 DrainCmdTermiantors();
 }

//--
void CelsiusEquals()

 { // sets offset according to current reading and input Fahrenheit
 float tempfloat=0;
 float deltaR;
 word RawReading;
 // Serial.println (F("Got Here: CelsiusEquals"));

 delay (2000);
 tempfloat=Serial.parseFloat();

 if (tempfloat != 0) CalculateDegreeOffset((tempfloat*1.8)+32);
 else ValueNotAccepted();
 DrainCmdTermiantors();

 }

//--
void NewRefVolt()
 { // New Degree Offset
 float tempfloat=0;
 delay (2000);
 tempfloat=Serial.parseFloat();
 if (tempfloat!=0)
 { // Serial.println(tempfloat,4);

 // Serial.println(RefVoltage,4);
 RefVoltage=tempfloat;

 // Serial.println(RefVoltage,4);
 newflg = newflg | B00000100;
 PrintOKStr();

 }
 else ValueNotAccepted();

 DrainCmdTermiantors();
 }

//---
void RestoreFromBackup()
 { char TempString[EEwdsize];
 byte i;

 // read the backup copy
 for (i=0; i<EEwdsize; i++) TempString[i]=EEPROM.read(StorageBackup + i);
 // write working copy
 for (i=0; i<EEwdsize; i++) EEPROM.write(StorageWorking +i, TempString[i]);
 newflg=0;
 Read_Calibration_Data();

 Report_Reset();
 }

//--
void OverwriteBackup()

Page: 267

 { char TempString[EEwdsize];

 byte i;
 // read the working copy

 for (i=0; i<EEwdsize; i++)
 TempString[i]=EEPROM.read(StorageWorking + i);

 // write backup copy
 for (i=0; i<EEwdsize; i++) EEPROM.write(StorageBackup +i, TempString[i]);
 PrintOKStr();

 }

//===
void TestData1()
 { // These sets were picked for testing
 // so that one set look like the another set.

 char temp[]="(1)tst data,Nano ";
 //...........1234567890123456
 byte i;
 Serial.println(F("; Load Default Parameters"));
 // clear the EEPROM report storage area
 ClearStorage();

 for (i=0; i< EEidsize; i++) IdString[i]=temp[i];
 // Insert null terminator at end
 IdString[EEidsize]=0;
 DegreeOffset=0;
 RefVoltage =1.075;

 MinuteTarget=1;
 newflg=0XFF;

 Write_Calibration_Data();
 }

Page: 268

Appendix: ASCII Table

 ASCII characters are equivalent to the first 126 characters of UTF-8. (Some notable ASCII omissions are the
British pound sterling character "£", the copyright symbol "©" and registered trademark symbol). ASCII does not
define characters codes above 127. Those characters above 127 in the table below are from the true type font
"MS Linedraw" that came with early MS Windows operating systems (replicates the MS DOS extended character
set). As current versions of Microsoft Word have this font disabled these pages have been inserted as “pictures”.

Page: 269

Page: 270

Page: 271

Page: 272

Page: 273

Appendix: Celsius vs. Fahrenheit Table

Celsius Fahrenheit Celsius Fahrenheit

Fahrenheit Celsius Fahrenheit Celsius

-40 -40.00 -39.5 -39.10

-40 -40.00 -39 -39.44

-39 -38.20 -38.5 -37.30

-38 -38.89 -37 -38.33

-38 -36.40 -37.5 -35.50

-36 -37.78 -35 -37.22

-37 -34.60 -36.5 -33.70

-34 -36.67 -33 -36.11

-36 -32.80 -35.5 -31.90

-35 -31.00 -34.5 -30.10

-32 -35.56 -31 -35.00

-34 -29.20 -33.5 -28.30

-30 -34.44 -29 -33.89

-33 -27.40 -32.5 -26.50

-28 -33.33 -27 -32.78

-32 -25.60 -31.5 -24.70

-26 -32.22 -25 -31.67

-31 -23.80 -30.5 -22.90

-24 -31.11 -23 -30.56

-30 -22.00 -29.5 -21.10

-22 -30.00 -21 -29.44

-29 -20.20 -28.5 -19.30

-20 -28.89 -19 -28.33

-28 -18.40 -27.5 -17.50

-18 -27.78 -17 -27.22

-27 -16.60 -26.5 -15.70

-16 -26.67 -15 -26.11

-26 -14.80 -25.5 -13.90

-25 -13.00 -24.5 -12.10

-14 -25.56 -13 -25.00

-24 -11.20 -23.5 -10.30

-12 -24.44 -11 -23.89

-23 -9.40 -22.5 -8.50

-10 -23.33 -9 -22.78

-22 -7.60 -21.5 -6.70

-8 -22.22 -7 -21.67

-21 -5.80 -20.5 -4.90

-6 -21.11 -5 -20.56

-20 -4.00 -19.5 -3.10

-4 -20.00 -3 -19.44

-19 -2.20 -18.5 -1.30

-2 -18.89 -1 -18.33

-18 -0.40 -17.5 0.50

0 -17.78 1 -17.22

-17 1.40 -16.5 2.30

2 -16.67 3 -16.11

-16 3.20 -15.5 4.10

-15 5.00 -14.5 5.90

4 -15.56 5 -15.00

-14 6.80 -13.5 7.70

6 -14.44 7 -13.89

-13 8.60 -12.5 9.50

8 -13.33 9 -12.78

-12 10.40 -11.5 11.30

10 -12.22 11 -11.67

-11 12.20 -10.5 13.10

12 -11.11 13 -10.56

-10 14.00 -9.5 14.90

14 -10.00 15 -9.44

-9 15.80 -8.5 16.70

16 -8.89 17 -8.33

-8 17.60 -7.5 18.50

18 -7.78 19 -7.22

-7 19.40 -6.5 20.30

20 -6.67 21 -6.11

-6 21.20 -5.5 22.10

-5 23.00 -4.5 23.90

22 -5.56 23 -5.00

-4 24.80 -3.5 25.70

24 -4.44 25 -3.89

-3 26.60 -2.5 27.50

26 -3.33 27 -2.78

-2 28.40 -1.5 29.30

28 -2.22 29 -1.67

-1 30.20 -0.5 31.10

30 -1.11 31 -0.56

Page: 274

Celsius Fahrenheit Celsius Fahrenheit

Fahrenheit Celsius Fahrenheit Celsius

0 32.00 0.5 32.90

32 0.00 33 0.56

1 33.80 1.5 34.70

34 1.11 35 1.67

2 35.60 2.5 36.50

36 2.22 37 2.78

3 37.40 3.5 38.30

38 3.33 39 3.89

4 39.20 4.5 40.10

5 41.00 5.5 41.90

40 4.44 41 5.00

6 42.80 6.5 43.70

42 5.56 43 6.11

7 44.60 7.5 45.50

44 6.67 45 7.22

8 46.40 8.5 47.30

46 7.78 47 8.33

9 48.20 9.5 49.10

48 8.89 49 9.44

10 50.00 10.5 50.90

50 10.00 51 10.56

11 51.80 11.5 52.70

52 11.11 53 11.67

12 53.60 12.5 54.50

54 12.22 55 12.78

13 55.40 13.5 56.30

56 13.33 57 13.89

14 57.20 14.5 58.10

15 59.00 15.5 59.90

58 14.44 59 15.00

16 60.80 16.5 61.70

60 15.56 61 16.11

17 62.60 17.5 63.50

62 16.67 63 17.22

18 64.40 18.5 65.30

64 17.78 65 18.33

19 66.20 19.5 67.10

66 18.89 67 19.44

20 68.00 20.5 68.90

68 20.00 69 20.56

21 69.80 21.5 70.70

70 21.11 71 21.67

22 71.60 22.5 72.50

72 22.22 73 22.78

23 73.40 23.5 74.30

74 23.33 75 23.89

24 75.20 24.5 76.10

25 77.00 25.5 77.90

76 24.44 77 25.00

26 78.80 26.5 79.70

78 25.56 79 26.11

27 80.60 27.5 81.50

80 26.67 81 27.22

28 82.40 28.5 83.30

82 27.78 83 28.33

29 84.20 29.5 85.10

84 28.89 85 29.44

30 86.00 30.5 86.90

86 30.00 87 30.56

31 87.80 31.5 88.70

88 31.11 89 31.67

32 89.60 32.5 90.50

90 32.22 91 32.78

33 91.40 33.5 92.30

92 33.33 93 33.89

34 93.20 34.5 94.10

35 95.00 35.5 95.90

94 34.44 95 35.00

36 96.80 36.5 97.70

96 35.56 97 36.11

37 98.60 37.5 99.50

98 36.67 99 37.22

38 100.40 38.5 101.30

100 37.78 101 38.33

39 102.20 39.5 103.10

102 38.89 103 39.44

40 104.00 40.5 104.90 104 40.00 105 40.56

Page: 275

Celsius Fahrenheit Celsius Fahrenheit

Fahrenheit Celsius Fahrenheit Celsius

1 105.80 41.5 106.70

106 41.11 107 41.67

42 107.60 42.5 108.50

108 42.22 109 42.78

43 109.40 43.5 110.30

110 43.33 111 43.89

44 111.20 44.5 112.10

45 113.00 45.5 113.90

112 44.44 113 45.00

46 114.80 46.5 115.70

114 45.56 115 46.11

47 116.60 47.5 117.50

116 46.67 117 47.22

48 118.40 48.5 119.30

118 47.78 119 48.33

49 120.20 49.5 121.10

120 48.89 121 49.44

50 122.00 50.5 122.90 122 50.00 123 50.56

51 123.80 51.5 124.70 124 51.11 125 51.67

52 125.60 52.5 126.50 126 52.22 127 52.78

53 127.40 53.5 128.30 128 53.33 129 53.89

54 129.20 54.5 130.10

55 131.00 55.5 131.90 130 54.44 131 55.00

56 132.80 56.5 133.70 132 55.56 133 56.11

57 134.60 57.5 135.50 134 56.67 135 57.22

58 136.40 58.5 137.30 136 57.78 137 58.33

59 138.20 59.5 139.10 138 58.89 139 59.44

60 140.00 60.5 140.90 140 60.00 141 60.56

61 141.80 61.5 142.70 142 61.11 143 61.67

62 143.60 62.5 144.50 144 62.22 145 62.78

63 145.40 63.5 146.30 146 63.33 147 63.89

64 147.20 64.5 148.10

65 149.00 65.5 149.90 148 64.44 149 65.00

66 150.80 66.5 151.70 150 65.56 151 66.11

67 152.60 67.5 153.50 152 66.67 153 67.22

68 154.40 68.5 155.30 154 67.78 155 68.33

69 156.20 69.5 157.10 156 68.89 157 69.44

70 158.00 70.5 158.90 158 70.00 159 70.56

71 159.80 71.5 160.70 160 71.11 161 71.67

72 161.60 72.5 162.50 162 72.22 163 72.78

73 163.40 73.5 164.30 164 73.33 165 73.89

74 165.20 74.5 166.10

75 167.00 75.5 167.90 166 74.44 167 75.00

76 168.80 76.5 169.70 168 75.56 169 76.11

77 170.60 77.5 171.50 170 76.67 171 77.22

78 172.40 78.5 173.30 172 77.78 173 78.33

79 174.20 79.5 175.10 174 78.89 175 79.44

80 176.00 80.5 176.90 176 80.00 177 80.56

Page: 276

Celsius Fahrenheit Celsius Fahrenheit

Fahrenheit Celsius Fahrenheit Celsius

81 177.80 81.5 178.70 178 81.11 179 81.67

82 179.60 82.5 180.50 180 82.22 181 82.78

83 181.40 83.5 182.30 182 83.33 183 83.89

84 183.20 84.5 184.10

85 185.00 85.5 185.90 184 84.44 185 85.00

86 186.80 86.5 187.70 186 85.56 187 86.11

87 188.60 87.5 189.50 188 86.67 189 87.22

88 190.40 88.5 191.30 190 87.78 191 88.33

89 192.20 89.5 193.10 192 88.89 193 89.44

90 194.00 90.5 194.90 194 90.00 195 90.56

91 195.80 91.5 196.70 196 91.11 197 91.67

92 197.60 92.5 198.50 198 92.22 199 92.78

93 199.40 93.5 200.30 200 93.33 201 93.89

94 201.20 94.5 202.10

95 203.00 95.5 203.90 202 94.44 203 95.00

96 204.80 96.5 205.70 204 95.56 205 96.11

97 206.60 97.5 207.50 206 96.67 207 97.22

98 208.40 98.5 209.30 208 97.78 209 98.33

99 210.20 99.5 211.10 210 98.89 211 99.44

100 212.00 100.5 212.90 212 100.00 213 100.56

Page: 277

Appendix: LM34 Data Sheet

The full datasheet (TI Literature Number: SNIS161B) is included herein by reference to last known valid TI URL:
 http://www.ti.com/lit/ds/symlink/lm34.pdf

When reviewing that document the reader may find the following sections to be of interest:

http://www.ti.com/lit/ds/symlink/lm34.pdf

Page: 278

DC Electrical Characteristics (Notes 2, 7)

Page: 279

 Note 2: Unless otherwise noted, these specifications apply: −50°F Tj + 300°F for the LM34 and LM34A; −40°F Tj +230°F for the LM34C and LM34CA; and

+32°F Tj + 212°F for the LM34D. VS = +5 Vdc and ILOAD = 50 μA in the circuit of Figure 2; +6 Vdc for LM34 and LM34A for 230°F Tj 300°F. These specifications
also apply from +5°F to TMAX in the circuit of Figure 1.
Note 3: Thermal resistance of the TO-46 package is 720°F/W junction to ambient and 43°F/W junction to case. Thermal resistance of the TO-92 package is 324°F/W
junction to ambient. Thermal resistance of the small outline molded package is 400°F/W junction to ambient. For additional thermal resistance information see table
in the Typical Applications section.
Note 4: Regulation is measured at constant junction temperature using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed
by multiplying the internal dissipation by the thermal resistance.
Note 5: Tested limits are guaranteed and 100% tested in production.
Note 6: Design limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to
calculate outgoing quality levels.
Note 7: Specification in BOLDFACE TYPE apply over the full rated temperature range.
Note 8: Accuracy is defined as the error between the output voltage and 10 mV/°F times the device’s case temperature at specified conditions of voltage, current,
and temperature (expressed in °F).
Note 9: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line over the device’s rated temperature
range.
Note 10: Quiescent current is defined in the circuit of Figure 1.
Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating
the device beyond its rated operating conditions (Note 2).

Note 12: Human body model, 100 pF discharged through a 1.5 kresistor.
Note 13: See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” or the section titled “Surface Mount” found in a current National
Semiconductor Linear Data Book for other methods of soldering surface mount devices.

Page: 280

Page: 281

Page: 282

Appendix: MS takes Bow Shot at console applications

With Windows 7 Microsoft took a bow shot at all console based applications. They reduced the functionality of
"SetConsoleCtrlHandler()" , "atexit()"' and "_onexit()" such that console based applications can no longer do a
proper shutdown when the OS closes the application. In all previous versions of the Windows operating system
programmers could use any of the above to determine that the Operating system was going to terminate the
console application. There was also a special key code that was generated. With Windows Vista they reduced
the application’s time to respond to that event to approximately two seconds. In Windows 7 (and later versions)
Microsoft has eliminated that capability entirely. The most disastrous result of this action is that console based
applications may be closed with the cached data never having been written to disk (the OS does NOT flush the
write buffers it is has implemented on behalf of the application).

Microsoft's response to this issue is for developer/programmer to rewrite the application as Windows based GUI
(even if they only use the GUI Window to launch a CUI window).

With one modification of the core operating system code Microsoft has seriously compromised the viability of
all console applications ever written as well as making it extremely difficult or at least overly complex to create a
viable console application for any future Microsoft OS. There seems to be some controversy if this was an
internal marketing decision or just a monumental goof on Microsoft’s part. Personally I think the answer to that
question is obvious.

	Introduction
	End Product:
	Legal Disclaimer:

	Table of contents:
	Requirements:
	Access to a working computer:
	Arduino Compatible Development Board:
	Three Bread Board jumpers, 1-1/2 to 2 inches long
	Optional components
	Small Ceramic Disk Capacitor
	3.5mm stereo female jack, PCB Mount, 3 contacts
	3.5mm stereo male plug, solder terminal, 3 contacts
	3.5mm stereo extension cable
	22 K Ohm 1/4 watt resistor, solder leads

	Optional Tool Requirements
	Wire cutter
	Small soldering iron
	Small quantity of electrical/electronic solder
	Magnifying Glass or Eye Loop
	Tweezers

	Microcontroller: Meet the Arduino Nano
	Arduino Development Environment
	Arduino Programing Environment:
	Setting up the Arduino IDE:

	Arduino IDE: Compile and Upload
	Enter, Save, Serial Monitor: “Hello Word”
	Funny Math: Bits, Nibbles and Bytes
	Zeroes and Ones (Decimal, Binary and Hexadecimal)
	Divide by Zero (yes we can)
	Special Numbers (true or false?)

	Memory: FLASH, SRAM, EEPROM
	SRAM: Hello Word 001/002
	FLASH: Hello Word 003/004
	EEPROM: Hello Word 005/006 (Write, Read)
	EEPROM: EEPROM_Dump, EEPROM_Erase

	Building a Library: The easy way
	Functions: Passing Parameters and Return Values
	Library HexDec: Developing Functions
	Library HexDec: Overloading
	Library HexDec: ASCII Table
	Library HexDec: EEPROMDump
	Library HexDec: Creating the Library
	Library HexDec: Testing the Library

	AVR Internal Temperature Sensor
	Using the ChipTemp Library
	Develop Avr Temperature Functions
	Storing Calibration Constants (EEPROM)

	Thermometer Program
	Reporting Protocol

	Thermometer Program, Plan “A”
	Main File Functions
	Global Declarations
	Includes
	EEPROM address
	Conversion Factors/Calibraton Data
	Global operational mode Variables
	Global work Variables

	Setup() Function
	Loop() Function
	CmdProcessor() Function
	HelpMe() Function
	PrintSeperatorLine() Function
	ReadTwoCharacters ()Function
	DrainCmdTermiantors() Function
	DebugPrintCharacters() Function

	Thermometer Functions File
	EnableADC() Function
	Read_Calibration_Data() Function
	Write_Calibration_Data() Function
	ClearStorage() Function
	EEmodeFlagSet() Function
	EEmodeFlagClear() Function
	EEmodeFlagTF() Function
	Check_EEPROM() Function
	Print_IdString() Function
	PrintTrueFalse() Function
	ReportStatus() Function
	avrRawTemp() Function
	Convert()Function
	Report() Function
	QuickBlink() Function
	Report2EEPROM() Function
	DumpStorage() Function
	PrintOKStr() Function
	PrintNotRecognized()Function
	PrintNotImplemented() Function
	ShutDown() Function
	software_Reset() Function
	SetRawReadMode() Function
	SetFahrenheitMode() Function
	SetCelsiusMode() Function
	SetReportMode() Function
	ToggleDebugMode() Function
	NewReportTime() Function
	Report_Reset() Function
	NewIdString() Function
	NewOffset() Function
	CelsiusEquals() Function
	FahrenheitEquals() Function
	NewCelsius() Function
	NewFahrenheit() Function
	RestoreFromBackup() Function
	OverwriteBackup() Function
	TestData1() Function
	TestData2() Function
	CalibrationMode() Function
	void EepromDumpAll() Function

	Temperature Calibration Theory
	Temperature Calibration Procedure
	Temperature Calibration Procedure: Observation Point 1
	Temperature Calibration Procedure: Observation Point 3
	Temperature Calibration Procedure: Observation Point 2

	Plan “A”, Evaluation and Summary

	Thermometer Program, Plan “B”
	External Temperature Sensor: LM34
	EEPROM Layout
	Global Variables and Constants
	Main Program File Functions
	setup() Function
	loop()Function
	cmdProcessor() function
	HelpMe() function
	PrintSeperatorLine() function
	ReadTwoCharacters() function
	DrainCmdTermiantors() function
	DebugPrintCharacters () function

	Thermometer Functions File
	Read_Calibration_Data() function
	Write_Calibration_Data() function
	ClearStorage() function
	EEmodeFlagSet() function
	EEmodeFlagClear() function
	EEmodeFlagTF() function
	Check_EEPROM() function
	Print_IdString() function
	PrintTrueFalse() function
	ReportStatus() Function
	AvrTemperature() function
	ReadRawTempA1() function
	Convert(word RawReading) Function
	nearestquater () function
	nearesthalf () function
	Report() function
	QuickBlink() function
	Report2EEPROM() function
	DumpStorage() function
	Response() function
	PrintOKStr () function
	PrintNotRecognized() function
	PrintNotImplemented() function
	ShutDown() function
	software_Reset() function
	SetRawReadMode() function
	SetCelsiusMode() function
	SetFahrenheitdMode() function
	SetReportMode() function
	ToggleDebugMode() function
	SetAvrInternalMode() function
	ToggleRoundMode() function
	NewReportTime() function
	Report_Reset() function
	NewIdString() function
	PrintDegreeOffsetEffect() function
	ValueNotAccepted() function
	NewDegreeOffset() function
	CalculateDegreeOffset() function
	FahrenheitEquals() function
	CelsiusEquals() function
	NewRefVolt() function
	RestoreFromBackup() function
	OverwriteBackup() function
	TestData1() function
	TestData2() function
	CalibrationMode() function
	EepromDumpAll()function

	Temperature Sensor Calibration
	Calibration Theory
	Calibration Method 1
	Calibration Method 2
	Temperature Sensor Extension Cable

	Plan “B”, Evaluation and Summary

	Thermometer Program, ATMEGA168
	Arduino Debugging
	Common errors to look for:
	Other Hints:

	RS232 Serial Monitor
	FreeBasic Compiler
	Serial Port Monitor Program
	PC Alternatives: Microsoft
	PC Alternatives: Non-Microsoft
	Why FreeBasic

	ArduinoThermometer.exe
	Strip Semicolon Lines Utility
	Receiver Modifications:

	Conclusion
	Possible Enhancements
	Temperature Accuracy
	EEPROM Storage Mode
	Number of sensors
	Remote Data Collection
	LCD Display
	GUI Interface

	Photo Gallery
	Appendix: Atmel MPU Table
	Appendix: Arduino Check Speed
	Appendix: AVR ADC Sensor Registers
	Appendix: ADC Function test
	Appendix: Disabling Auto Reset
	Appendix: Arduino ElfDump
	Appendix: Arduino Receiver
	Appendix: Thermometer.exe
	Main Program Code
	Global Variables
	Thermometer Functions
	Ini File for Main Program
	Utility Program

	Appendix: Thermometer One Program Code (Plan “A”)
	Thermometer One Main Program File
	Thermometer One Functions Module

	Appendix: Thermometer One Program Code (Plan “B”)
	Thermometer One Main Program File
	Thermometer One Functions Module

	Appendix: Thermometer ATMega168
	Main Program File (ATMega168)
	Thermometer Function ATMega168 File

	Appendix: ASCII Table
	Appendix: Celsius vs. Fahrenheit Table
	Appendix: LM34 Data Sheet
	Appendix: MS takes Bow Shot at console applications

