Arduino Nano Project One: Thermometer

Page: 1

Introduction

This document is designated to be Public Domain
Author: Lewis Balentine, October 2013

This all began as | was searching Amazon for a thermometer that would record the day’s highs and low
temperature. All the reviews that | read pointed out various problems with the devices from being off by a
number of degrees to infantile mortality. As | read those reviews it occurred to me that it would be very
advantageous if | could send that temperature to the computer that | have sitting in a closet upstairs. Still that
data would have to be accurate to be of any value. Accurate thermometers that can communicate with a
computer turn out to be very expensive. Then it occurred to me how hard could it be to build one: a simple
microcontroller board, a sensor, some wire and bit of code. An easy and cheap solution well not exactly.

This document goes through all the steps | went through in starting from scratch. | am NOT a programing GURU
and | have never professionally written “C” programs. | do have three decades of experience in information
technology and some programing back ground but not in the “C” language. Thus this was a journey into the
unchartered wilderness for me. The reason this became an ‘expensive’ thermometer is because | made a several
wrong turnings. | have left those out or explained why they were wrong. This is written from the viewpoint of
“assume nothing”. Hopefully it may provide a path for others to follow (that will be somewhat less expensive
than the path(s) followed).

End Product:

What you end up with is an Arduino microcontroller programed to be a sophisticated thermometer that can
report its readings back to a computer via a standard USB connection. These reports may be generated at
periodic times from one minute to 24 hours. The device is “user” calibrated and may be programed to report
any combination of raw readings, Celsius readings or Fahrenheit readings. The device may be used in a “self-
storage mode” where it is run from an alternate power source (battery) and stores from 440 to 7,040
consecutive readings in its internal memory (estimated real capacity is 3,520). Both “wear leveling” and “data
reduction” are implemented to conserve storage space and extend the life of the internal EEPROM. Over 30
commands have been defined and implemented to allow the connected computer to control the device via a
standard terminal program. All software is provide with full source code and fully commented. Source code files
may be downloaded from http://www.keywild.com/arduino.

Legal Disclaimer:

The author makes no representation or warranty, either expressed or implied, with respect to the data files and/or software,
their quality, accuracy, or fitness for any specific application. Therefore the author shall have no liability to any person or any
entity with respect to any liability, loss, or damage caused or alleged to have been caused directly or indirectly by the use of
the data files and/or software. This includes, but is not limited to, interruption of service, loss of data, loss of consulting or
anticipatory profits or consequential damages from the use of these data files and/or software.

All files unless otherwise noted are the original work product of the author. Unless otherwise noted these files are placed into
the Public Domain for the unrestricted use by anyone for any purpose. Placing these files in the public domain shall in no way
be construed as an obligation of the author (or his heirs and/or assigns) to maintain the web site, web pages, files, data or
software. Further it shall in no way limit the author’s (or his heirs and/or assigns) options to make, produce or use versions of
the software, data files, CAD objects or other material posted under the URL in any other commercial or non-commercial
venture.

In the event of a legal dispute the court is requested to use a “reasonable person’s” interpretation of the “clear intent” of this
disclaimer.

The use of these data files and/or software constitutes acceptance of this disclaimer.

Page: 2

http://www.keywild.com/arduino

Table of contents:

QT T 1F Tt o o 2
30T o oo [0 PP SO PR PPUROE 2
=Y == DT Yol - 1 =Y PR PSRRI 2

JLIE 1oL =0T ot 41 =T 3

[T LU T =Tt 01T 1 3 RN 10

ACCESS 10 @ WOIKING COMPUEET: ..oiiiiiiiiiiiiee ettt ettt e e e et e e e e e st e e e e e esaatbaaeeeeeaantaeeeeeeeannssaeeeesesnnssenns 10
Arduino Compatible Development BOArd:c..uuiiiiiiiiiiiiiee e ecciiteee et e e e e e s e e s sabae e e e e e e s abree e e e s e snsaeees 10
O 2 0] o [PPSO PP 10
(MY R =T e a] o T=T - (UL = INY=T o I] PO P RSO UPPPPPPPPTIRt 10
Bread Board, 175 Tie POINTS civiiiiciiiiieeiiciiieee ettt e e ettt e e e e ettt e e e e e sb b e e e e e e s abteeaeeessaabbeaaeeeesansseaeaesesnnsseees 10
Three Bread Board jumpers, 1-1/2 t0 2 iNChES [ONG ...cuviiiiiiiee ettt et 10
THEIMIOMETEL ...ttt ettt et st e bt e bt s bt e et et e b et s be e e abe e e beesabeeeabeeeabeesabeeebeesneeeas 10
ACCESS 10 thE INTEINET: oottt e e st e e s bt e e s bt e e e s sabe e e sabeeesbeeeesnneeesnbeeas 10
(@] oXu o] g T I ole] gaY oo T aT=T o | -3 UESUPRPRRPRR 11
Small Ceramic Disk CAP@CitOruueiiiiiiiiiiiiee et e e e e e s ere e e e e e st b e e e e e eesaabaeeeeaeesassaeeeaeesnnssnnes 11
3.5mm stereo female jack, PCB MoUNT, 3 CONTACESccoiieuiiiiiiiiiiiiieeeeeeeeee e e e e e e eeeeeeeeeeeeeaaaararrrarereeeeeeees 11
3.5mm stereo male plug, solder terminal, 3 CONtACESccccuuiiiiiiiiiiiiee s 11
3.5mMm Stere0o eXtENSION CABIE ...c...eiiiiiee e 11
22 K Ohm 1/4 watt resistor, SOIAEI [RAAS ...covuveiiiei ittt ettt ettt e e e s sttt e e e s s sbb b b e e e e s sssaaaaeeeens 11
(0] oXulo] b 1B Wo ol I Y=To [1T =T 0 0 =T 0] o ESSPUPRRPR 11
L = o] U o =T PP PP 11
Y 1 a1 Y] (o [T g T oY= 1o T o PP PPPP 11
Small quantity of electrical/electroniC SOIARYei ittt et e e e aree s 11
Magnifying Glass O EYE LOOPuuiiiiiii ettt et e e e e e ettt e e e e e et ae e e e e e saabteeeeeeesnnbaaeeeeesnnnsanes 11
TWEEZEIS .ttt ettt et e e e e e e e e e e a et et e et e e e e e e e e e e e e e e s eeas 11

Microcontroller: Meet the Arduino NaNO........ccccciiiiiiiiiiiiiii s 12

Arduino Development ENVIFONMENTccceuiiiiiiiiiiiiiiiiieieiireeeesseenenesseenesessennsssssesnsssssennsssssennssssssnnssssssnnes 17
Arduino Programing ENVIFONMENT:.......uuiiiii ittt et estt e e e s s s bra e e e e s ssabaeeeeeesssbtaeeeessssnsraneaessannns 17
Setting UP the ArdUINO IDE:cco e s e e e s e saebbesstaaaareeeeeaeaaeaaaaeaeeesannen 18

Arduino IDE: Compile and Upload...........cceeeeiiiieeeiiiieiiiirecrerrreeeesrreneesseenesessennssssreensssssennsssssennssssssnnssssnennes 22

Enter, Save, Serial Monitor: “Hello Word” iieiiiiiiiiiiriiineicrencrenerenseesesesnssesessessasesensesensssensssnnsens 28

Funny Math: Bits, Nibbles and Bytes.........cccceuiiiiiieiiiiiiceriieeereeeeeeserenseeseensseesernsssssennsssssennsssssennssssssnnssssees 32
Zeroes and Ones (Decimal, Binary and HexXxadeCimal)cccoicciiiiiei ittt e e e e vrae e e e e 32
DiVide DY ZEI0 (YES WE CAN) .eeiiieiiieiiiieeeiiieeeitieeesitteeesstteeeestteeessteeesstaeesssseeeassesessstaseeassseeasnssesssnsasessssesssnsseenns 39
Special NUMbDErS (TrUE OF FAlSE?)eeiiiiei e e e e e e e ettt e e e e e e e eatt e e e e e e s esanreeeeeeeenanrenes 49

Page: 3

Memory: FLASH, SRAM, EEPROIMccuuuiiiiiiiiiiiiieniinnnrinnreeesnn e nsnseeaess s e s essaaassssss s s s s ssnassssssssssessnnnasnes 50

SRAM: HEO WOId 0017002cocvieeiieeiieeitteeiteeeitteeeteeesteeestaeestteestaeesabeesaseessseessseasaseessseessseesssesssseessreessseesssenans 52
FLASH: HEllo WOTd 003/004 ...ttt ettt eeeteeeeeeeeseseessessessassasssssssssassssseseeseeseeseeseessssssssessssssssasssnssnsenns 53
EEPROM: Hello Word 005/006 (WIte, REAA)cccveiiiiiieieiteeeeeieeee et eetee et e et e e e etve e eentaessenteeeesnbeesssnreeeens 57
EEPROM: EEPROM_DUMP, EEPROIM_EFSE ...ceetiiiiiiiiiiieeiieaeeeiee e e ettt ee e et e e eeeaeaaaeeeeseessssaannnnnnnnnnes 65
Building @ Library: The @aSy WAycccceeeiiiiiieceiiinnnieritnnesereennseeseensssesssnssssserssssssesnssssssnnsssssennssssssnnssssssnnssssees 69
Functions: Passing Parameters and RETUIN ValUES...........uviiiiiiiiiiiiiic ettt e e sare e e e e saaanee e 69
Library HexDec: DevelOping FUNCLIONSiiii ittt ettt e s st e e s e st re e e e s s ssataeeeeessnstraeeeessnnsnaeneeean 73

(R1 T T A S [D L=Tor @ 1= ¢ [T=To L] o= SRR 78
Library HeXDEC: ASCH Tabl@.......uuiiiiiei ittt e e et e e e e ettt e e e e e e et b e e e e e eesataaeeeesenassaaeaeessnnsaneeeenn 79
Library HeXDecC: EEPROIMIDUMIP .. .uuttiiiiiiiittteeesiititeteesssitateeeesssussseeeessssssssaeeessssssssseeesssssssssesesssnssssseesssssnssseeeeen 80
Library HexDec: Creating the LIDraryottt e e e ettt e e e et e e e e e e ataa e e e e e e e nnsaanaeean 81
Library HexDec: TeStiNg the LiDraryc.uueeii ittt et e e e et e e e e s aar e e e e e snnabaaeeesesnnnaaeeaeas 83
AVR Internal TEmMPerature SENSONciiiieeeiiiiiemniiiiiemiiriieniiiiieseisiiessisitesssisirsssistssssssssssssssssssssssssssssssssssnes 85
UsSIiNg the ChipTeMP LIDIAry ...ttt e e et e e e e e et a e e e e e e e sttt e e e e e eeanssaaeeeeeeanssaeeseesannnsaeneaaas 85
DeVvelop AVE TEMPEIATUIE FUNCLIONS.uuiiiiiiiieeiiereeeeeeeeeeeeeeeeeeeeeeessessieetsassssssssssaseeereeteseeeeaeeeeeeeeeesssssssssssssssssnns 89
Storing Calibration Constants (EEPROIM).........ooiiiiiiiiiiiee ettt e e ettt e e e e e ettt e e e e e e eearae e e e e e eeasraeeaaeeenanraes 93
THErmMOMEter Programi.... ... iciiiieiiiiiiieeiiieniieeieiensisinsistseseresssseasessnssssnssssnsssssnssssnsessnssssnsssenssssnsssssnssssnsssannes 98
20T 0T u uTaY -4 o) o o] [PPSR 98
Thermometer Program, Plan “A” ... iieiiiiiiieniiieereiieiensieeesensistnsesenssssnsssssssesenssssnsssenssssnssssnsssssnsssens 102
MAIN FIl8 FUNCLIONS ettt ettt ettt e st e st e s bt e s b e st e e et e e e abeesabeesabeesabeesaneeeanes 103
GlODAl DECIArAtIONS «..eeiieiiee ettt sttt e sttt e e st e e s abe e e sabe e e s ab e e e s sabeeeseabeeeearaeesaaraeeseanres 103
SEEUP() FUNCHION 1ottt e e e ettt e e e e e e et e e e e e e e e abbaeeeeeeeeasbaaeaaeeeansaaeeaaeaaansraneaaeeeansraneas 103
[IoToT o § I SV 1ot 4] o SR UUPRt 103
(00T | 2 feTol Ty Yo T | I SV 1 o1 £ Lo o R U TSSO PO 104
HEIPIME() FUNCEION oottt e e ettt e e e e ettt e e e e e eetbbeeeeeeeaabaaeeaaeeasssaseaaeaaasssaeeaaeeaasssaaaaaesaases 104
PrintSeperatorLing() FUNCLIONviiii ettt e e et e e e e e ettt e e e e e e seattaeeeeeeeansraaeeeesannees 104
ReadTWOCKHAracters (JFUNCLIONcccciiieciieeeciee ettt et e e et e e et e e e et e e e sateeesasteeessseeesnsseeesssesesssanennns 104
DrainCmMdTermiantors() FUNCHIONoic ettt ettt e e ettt e e e e e ettt a e e e e e eeabbaeeeeeeesasraeeeaeeennees 104
DebugPrintCharacters() FUNCLIONcoi ettt e et e e ettt e e e e e e sttt e e e e e e senbtaeeeessennsraneeaesennnes 105
Thermometer FUNCEIONS FilE ...c...ooiiiiiiiiie e et 105
ENABIEADC() FUNCEION.uiiiiiee ettt ettt e e e e ettt e e e e e e et b e e e e e e eettaeeeaesesstsaseaaeseasssssseaeeeasraseaaesannses 105
Read_Calibration_Data() FUNCHIONcoocuiiieie ettt e ettt e e e e e e et e e e e e e seatraeeeeesenbraneeeeeenees 105
Write_Calibration_Data() FUNCLIONcccciiiiciie ettt e e s e e e st e e e st e e e staeeeebsaeesnseeaennns 105

(O =TT R oY T=L=T | I VT s ot o] o PP UUR 105
EEMOAEFIAGSEL() FUNCLION....ccii ittt e e e et e e e e s ettt e e e e e e e e aataeeeeeseabtaeeeeesennsraeeaeeeannses 105
EEMOAEFIAgCIEar() FUNCLION ..ocieiiie ettt e e e e e e et e e et e e e s tte e e sabeeeesbeeesnsaeesnseeesnssaeennns 106

[g gTeTe FoY ol oY= I L T UV ot o [P PRPNE 106

(0l TTol S =3 =1 2@ Y/ I LU T Vo o o H SR 106
Print_IAdSTrING() FUNCHION ...veiiieieiieiiee ettt ettt e e e ettt e e e e e e ettt e e e e e e s eattaeeaeesenstaeseeesenssraneaaesannses 106
PriNTTrUEFAISE() FUNCLION «oiiiieieii ettt e e ettt e ettt e e e e e e e s s e e aas bbb b b aaseesaeeseeeeeeeaeaeaeeeeeessensnnnns 106
REPOISTATUS() FUNCLION «.eviiiieii ettt ettt e e e e ettt e e e e e e e eetbeeeeeeeesttsaseaaeeeaassaesaaeeeansraaeaaesannses 106
AVIRAWTEMP() FUNCHION coeiieiiiiee ettt et e e e et e e e e e e sttt e e e e e e e aatbaeeeeesennbbeeeeeeeansraeeeesesnnsseneas 106
CONVEIT(JFUNCEION oottt ettt e e et ettt e e e et b b e e aeeeeeeeeeaaaeeeeeeeeeesessssassssssssrssrsssaarereereeeeaeens 106
2] oo T) I 0 13T £ o] o TSRS 106
O TN Tol =T ITa Y QIR 0T o) I 106
REPOrT2EEPROMI() FUNCHION coiiieiieiee ettt ettt ettt e e e e ettt e e e e e ettt e e e e e e s sasttaeeeeesannttaeeaeseennsraneaessannses 106
DTN e o Ry oY= V==Y | N ST o Vot o o TP R SURR 107
AT e (O] d I S [aTox o) o PR 107
PrintNOTRECOZNIZE()FUNCLION .. .viiieeiieeciiee ettt ettt ettt e e ettt e e tre e e e sat e e e s sabeeestteeesbteeesssaeessseeesssanennns 107
PrintNotImplemented() FUNCLIONcii ettt e e ettt e e e e ettt a e e e e e eeabbeeeeeeeeensraaeeaeeennnes 107
SHUTDOWN() FUNCEION.....coiiiiiiiiiiciittteeteeeee e e e et e et ettt e et e e e e e aaba b b aaaeeseeeeeeeaeeeeeaeeeeeseesesesssssssssssssssennes 107
SOFEWAre_RESET() FUNCLION .eiiuiiie ettt e e et e e e st e e e e s abe e e esatae e eeataeeeenbaeeeantaeeesasaeaeansees 107
SetRAWREAAMOAE() FUNCHIONuviiiii ittt e e e e et e e e e e e et a e e e e e e eeabbeeeeaeeeeansaeeaaeeennnraeeas 108
SetFahrenheitMode() FUNCLIONoiii it e e ettt e e e e e e etee e e e e e e eaata e e e e e e eanraseeaeeennneaneas 108
SEtCelSIUSMOUE() FUNCLION. .. ittt et e e ee ettt ettt eeee e e saaabbbbaabeaaaeereeeeseeaeeeeeseeeeseeessssssssssssssssranes 108
SEtREPOITMOE() FUNCEIONttt et e e ettt e e e e e e eaba e e e e e e e s abaeeeeeeesastaeeeaeeeansraeeaaeeennsraneas 108
ToggleDebugMOode() FUNCLIONiiii et e e et e e e e e et ta e e e e e s e abtaeeeeeseabtseeeeesennssaneeessannnes 108
NEWREPOITIME() FUNCLION ...eeiiiiie et ettt ettt et e et e etre e e et e e e sate e e eateeesssaeesnsteeessseeesssesesssaeesssnnennns 108
REPOIT_RESEE() FUNCHION ..uviiiieieiiiiee ettt e ettt e e e e ettt e e e e e e s ettt aeeeeessttsaseaaeeeasssassaaeeeassraaeaaesannnes 108
N AV Fo R T oY= I VT o T £ o o PP RUPRt 108
NEWOTTSEEL() FUNCLION ceeiiiiiiiieeeeeeeeee et e e e e e e e e eeeeeeeeee s e e e s s tasaaabsasraaaresaessaeearesaaasaeeeeeeeseennnans 108
CelSTUSEQUAIS() FUNCLION ..oiiiiiiiieee ettt e ettt e e e ettt e e e e e e e abb e e e e e e e aabbaeeaeeeenssaeeaeeeeanssaeeaaeeennsraneas 109
FahrenheitEQUalS() FUNCLION ..ooo.eeiiiiie ettt e e e e ettt e e e e e s ettt e e e e e s seattaeeeeeeennsraeeeaesannses 109
NEWCEISTUS() FUNCLION ...tiiiiiiieeciieeeeitee e ctee et e ettt e e et e e e et e e e st e e e sabteeesaaeeesnsseeeansteseenssaeesssaeesssneesssneennes 109
NEWFAhrenh@It() FUNCHION.ci ittt e e e et e e e e e ettt e e e e e e e e tabeseaeeeeaastseseaeeeansraeeaaesaanees 109
RestoreFromBacKUP() FUNCHIONiiii ittt e e et e e e e e e ettt e e e e e e seabtaeeeeeeennsraaeeeesennses 109
OVErWHtEBACKUP() FUNCHION .. .tviiiiiiiiiiiriie ettt ettt eeere e e e e e e e e e e e bbbeeeeeeeesbaeeeeeesesnbraeeeeeeennsreneas 109
TESTDATAL() FUNCHION ottt e e e e ettt e e e e e eetteeeeeeeeeaabaaeeaaseaastsaseaaeeaasssssaaeeeaasssaeeaasaaanses 109
RE=S {D 1= A § 28 Tot T o U 109
(071 o] 1u oY o11Y FoTe 1= I SLUT s Vot o o NP SRR 109
void EepromDUMPAII() FUNCEION ..eiiiiiiiiiiie ettt e e e e ettee e e e e e et a e e e e e e eeabbaeeaeeeeeassaaeaaeeennnraneas 110
Temperature Calibration TREOIYcii it e e e et e e e e e sttt a e e e e e e e tbbaeeeesesasraeeeesesnnnseneas 110
Temperature Calibration ProCEAUIE..........uiiii ittt e e e e e s e e e e s s st b e e e e e s s abraeeeaeesnnsreeeas 111

Temperature Calibration Procedure: Observation POIiNt 1cccviiiiiiiiiiiiiiei e 112

Temperature Calibration Procedure: Observation POINt 3cocciiiiiiiiiiiiiiiiec e e e 112
Temperature Calibration Procedure: Observation POINt 2coooiiiiiiiiiiccrrrrrrrrre e 112
Plan “A”, Evaluation and SUMMAIYccuuiiiieiiiiieees ettt ssre e e e et e e e e e saaa e e e e e e s asbbaeeesessnnnsaeeeeeesnnsseneas 113
Thermometer Program, Plan “B”cciciiieiiiiiiiiniiieeiinieiensiieeerensistnsessnssssesssssssessnssssnsssenssssnssssnsssssnssssns 114
External TeEMPerature SENSOI: LIVIBAoooi ittt ettt e e te e e e e e st e e e e e e e ntbaeeeeeesnnnraeeeeeesnnnseneas 115
EEPROIM LaYOUT...oeiiiiiiiiiieieee ettt e ettt e ettt s s s e s e e e eeaeaeaba bt e s e e eeeeeeeeaesessassasaseeeeeeeesesnssssnnnnnnneseeaenens 118
Global Variables and CONSTANTScoiiuiiiiiiiieeee ettt e et e e st e e s sbe e e s sabee e s sabeeeesnreeesneeeesan 119
Main Program File FUNCHIONS.........uiiii ettt e e ettt e e e e e et e e e e e e e anba e e e e e e e antbeeeeeeeannnraeeeeeesnsseneas 121
Y= A0 1 o] N 201 ot To T TP PSR 121
[ToToY o] 1 51812 et Lo o TSNS 121
(ol Te | o Yol=Ty o] {101 0T £ o] o TR 121
HEIPIMIE() TUNCEION 1eveeeieeeiieeee ettt e ettt e e e e e et b e e e e e e setbaeeeeeesettbaseeeesenatseeeeeesenstreseeeesanntes 121
PrintSeperatorLing() FUNCLIONviiii ettt e e e e et e e e e e e e e ttreeeeeeeeabbeeeeaeeessraaeaaeeennees 122
ReadTWOChAracters() FUNCHIONcooiiiieeeeeee ettt aa e e e e e e eeeeeeeeeeeeeeseesannns 122
DrainCmMATermiantors() FUNCLIONiiiiiciiiiie ettt e e e e etbee e e e e eeatbeeeeeeeenstreseeeesennnes 122
DebugPrintCharacters () fFUNCHIONoocciiiee ettt e e e e ettt e e e e e e e eeabreeeeeeeeeaaraeeeaeeennnes 122
Thermometer FUNCLIONS FIluii it e e s s e e s ee e semne e e smneee s 123
Read_Calibration_Data() fUNCLIONccoi it e e s st e e e e e e sabrr e e e e e esenbraaeeaeeennes 123
Write_Calibration_Data() fUNCHIONuiiiiii et e e e e e e et e e e e e e e eabrae e e e e e e eanraeeas 123

(O =TT Oy oY= T=L=T § I (0] a1 £ Lo o PRSI 123
EEMOAEFIABSEL() FUNCLION ...vviieiiie ettt ettt et e e ettt e e et e e e et e e e sateeesatteeeesaaeesssaeesnseeesnssaeennns 123
EEMOAEFIagCIEar() FUNCLION ..ottt ettt e ettt e e e e e ettt e e e e e e ettbaeeeeeseassaeeeaeeeansraeeaaeeannses 123

[g gYoTo F= oY= I} I (W] o Yot 4 o) o RPNt 123
Check_EEPROMY() FUNCLION . ..uviiiiiee ettt s et e e e ettt e e e e st aa e e e e e st a e e e e e s nnbaaeaeeeasnsraaeaeeessnssnneas 123
Print_IAdSTFNG() fUNCHION ...veiiii ettt e e e e e e e ettt e e e e e e e e ttbaeeeeeseetsaeeeaeeeassraeeeaeeannnes 123
PrINTTIUEFAISE() TUNCHION ...cii ittt et ettt e e e e et e e e e e bbb b e aaeereeereeeeeeaaeaaeeeeeeeesensnnnns 123
REPOITSTATUS() FUNCLION L.iiivieeeiiiee ettt et e ettt e e ettt e e st e e e et e e e eataeesateeesasaeeenstaeeenstaeesssaeesssneesnssnnennes 123
AVITEMPEIAtUIE() FUNCLION ...ttt e e e e et e e e e e e e et a e e e e e e eeaaraeeaaeeesanraeeaaeeennsraneas 123
REadRAWTEMPAL() TUNCHION ...ttt e e e et e e e e e et e e e e e e s eattaeeeessesbtaeeeeeeennsraneeeesannses 123
Convert(word RaWREAdING) FUNCLION........ccciiiiiiie ettt e et e et e e e et e e e e ebae e e abaeeeeasaeaeeasees 123
NEAreStQUATEr () TUNCHION . ..uiiiiie et e ettt e e e e e et e e e e e e e e abbaeeeaeesansseeeaeeanssaeeeaaann 124
T =i o g = I (0T ot o T o FR SRR 124
20 oo T IR0] ot 1o o U PSR 124
QUICKBIINK() FUNCEION ..ttt ettt e ettt e e e et a e e e e e e e tra e e e e e e s aabsaeaaeeeanbbeeaaeeaanssaneaaeesanssannas 124
(20T oo w2 2L 3 g 3@ 1Y/ I {0 Yo o o U URPE 124
DUMPSTOrage() FUNCHION ..eeetiie ettt et e e et e e e et e e e s ate e e eateeesabeeesasteeeestaeesssesesssesesssaeennes 124

[RUeTY o ToT aE=T I 1] ot 4 o o P PRPPE 124

ST aT @]] o ol 1 (VT a Tt 4 o I USRS 124
PrintNOtReCOZNIZEA() FUNCLIONuiieiiie et e e et e e e e e et e e e e e e seabraeeeeesennsraseeaesennnes 124
PrintNotImplemented() FUNCLION........ooi e er e e e e s eabrr e e e e e s e enbraaeeeeesnees 124
SHUEDOWN() TUNCHION <.ttt ettt e e e e et e e e e e e et e e e e e e e e abbaeeaeeeeaabtaeeaeeeeansraeeaaeeennsrannas 124
SOFtWAre_RESET() FUNCLIONeiiiiiei e e e e et e e e e e et e e e e e e e nbte e e e e e s e asraeeeeeesnnssaneas 124
SetRAWREAAMOE() TUNCLION ...ttt eeeeeeeeeeaeeeeeeeeeeesesesssassnnssssssnrenes 124
Y (L IO AV, oo =T R 18 Vg Vo o o T SRRt 124
SetFahrenheitdMOdE() FUNCEIONuvueiiiiiiiiieieeeeeeeeeee e e e e e e e e e e e eeeeeeeseeeessensssssssrsreenes 124
YAt oTeTd 1Y foTe [T) I U] o Yot 4] o NP PRSP 124
ToggleDebugMOode() FUNCLIONoiiiiiecee et e et e et e e st e e e at e e e ssreeessteeeenstaeesnnreeennns 124
SetAVIINTErNaIMOdE() FUNCEION ...eeiiiiiiiiiiiieeeeeeeeeeeeee et e e e e e e e e e e eeeeeeeseeessssssssssssrsrennes 124
ToggleRoUNAMOAE() FUNCLION . .uviiiiiiie ettt e e et e e et e e e st e e e e abeeesbteeessbaeeeanbaeessreeennns 124
NEeWREPOITIME() TUNCHIONcci e e ettt e e e e et e e e e e e e e tbaeeeeeeeeatbaeeeaeeeesrsaeeaeeennnes 125
(20T o o) o A =Ty I8 0T Vot o o [P UUPNE 125
NIV o Ry AT oY= I o Lot o TR USRSt 125
PrintDegreeOffSetEffect() FUNCHION e et e e e e e et e e e e e e e e eaaraeeeeeeenees 125
ValueNOtACCEPTEA() TUNCHIONuiiiii et e et e e e e e et bee e e e e e eeabta e e e e e e esanraeeeeeeennsraneas 125
NewDegreeOFffSet() FUNCLIONc..uieeiee e e e e e e e st ra e e e e e s sabraeeeeesenasraaeeaeesnnees 125
CalculateDegreeOffSet() FUNCLIONuviiie ettt et e e e e et e e e e e e et ba e e e e e e e abraeeaaeeenanraneas 125
FahrenheitEQUalS() TUNCHION ...coc..eeiieiee et e e e e e ettt e e e e e e s eabtaeeeeeeennbraeeeeesennnes 125
CelSTUSEQUAIS() TUNCLION ...viiiiiiie ettt e e et e e e et a e e e aba e e s abaeeeeataeeeensaeeeansaeeeassaeeeansees 125
NEWREFVOIE() FUNCEION ...ttt e e et e e e e e e tte e e e e e e esbtaaeeeaeseaassaseeaaeeansraseaaesannses 125
RestoreFromBackup() FUNCLIONeiii it e e e e e ettt e e e e e e sentreeeeeeeeensraaeaeeeenees 125
OVerwriteBackUp() FUNCHIONveiiiie e e e e e e st e e e e e s aba e e e e e e e s abbaeeeeeesnnsseneas 125
TeSTDATAL() TUNCHION ... ettt e e e ettt e e e e e ettt e e e e e eetbaaeeeeeestbbaseeeeeaasssssaeeesaasssaseaasaaannes 125
TESTDATAZ() FUNCHION . .eiieiiiiiiieie et e e e et e ettt et e st e e e s s bbbt bbb e aaarseereeeeraaeeeeeeeseeeesenenanans 125
(071 o] 1 oY a11Y foTe 1= I (V] o Yot o o PR 126
EepromDUMPAI)TUNCHION ..oooiieeeeeeeee ettt e e e e ettt e e e e e e e e ttbaeeeaeeeattraeeeaeeesasraeeaaeeannnes 126
Temperature SENSOr CaliDratioNnoocciiiiie et e e e et e e e e e e etbr e e e e e e e abbaeeeesesasraeeeeeesnnsrnneas 128
(07111 o] = Te] T I s [=To] 27 TSP 128
Calibration IMETNOM 1eeeiiiee et et e e st e e s ab e e s b e e s aar e e e e sabeeesamreeeesareeessanes 128
Calibration MEhOT 2ooeiieee ettt e st e st e s bt e st e st e e sabeesateesaree e 128
Temperature SENSOr EXtENSION Cable........uviiiiiiiiiiiiie e e e e s s s e e e e s ssabraeeeessennes 128
Plan “B”, EValuation @nd SUMIMATIY..........uuiiiiiiiiiiiiieeieeeee e e eeseeeeecec ettt e e e e s e e e e eeeaaaaaaaeesessessssaasnnnsnnssnsnnnns 130
Thermometer Program, ATIVIEGALBS..........cccceeeeiiiemeeiiienneirrennesseenssesssenssessrenssessesnssssssansssssesnsssssennssssssnnns 131
Arduing DEDUGEING ..ccuveeniiiiiiiiiiiiiiiiiiieteeittnereeneerenereaserensessasesensessassssassessnssssnsesenssssnsssssssessnsssensesensessnsnsee 132

ComMMON €FOIS t0 100K FOF:. . uiiiiiiie ittt et e bt e e st e e s s bb e e s sabee e e sbbeeesnbeeesbeeeesans 132
(018 =T o o T | TP TUP O PPROPRRON 132
RS232 Serial IMONITOFuuuiiii s s s s s s s s s s 134
oY= F Ty (ol @] 3 Y o 11 =T ot 134
Serial POrt MONITON PrOSIAM ...ociiiiiciiiieee e ettt e e e e ettt e e e e eettte e e e e e eettteeeeeeseattaeeeeesaasaseeeeesanssseeeessaasraneeessannses 137
PC AIErNAtIVES: IMICIOSOTE. ... eeeieiieiie ettt s e bt s b s b e e b e sneesneeeanes 141
PC AIternatives: NON-IMICIOSOTE.....cccuiiiiiiiie ettt et e e s e e s ab e e e snreeessaneeesnreeeas 141
LAY RV S £ =T=] 2 7 T PP 142
ArduinOTherMOMETEr.EXE..ccuiiiiiiiiiiiiiiiiiiitiiieititeettreteterererreeeeerereestsrstssnnnnns 143
Strip SEMICOION LINES ULITITY .uvveeeiiiiiiiiiee ettt e e e e e sttt e e e s seabee e e e e s sssnbteeeeesessnsseaeeessannse 145
ReCEIVEr IMOGIfICATIONS ... ettt sttt st s e st e et e e bt e st e e s bt e sabeesabeeeanes 147
0o T3 Vo 10 1o T S 152
POSSIDIE ENNANCEMENTSt e e st e e st e e s e e s nbe e e snr e e e sanneeesnreeean 152
TOMPEIATUIE ACCUIACY .uuieiiiiiieiieiiiiiieiee e e e e e ettt teutaba i aaaeeeeeeeeeaeaestasa s aaeeeeeeeeeeensssssansseeeeeeeenenessssnnnnnsesesaeanens 152
EEPROM StOrage IMOEuviiieiiiiiiiiee s ceciiteee e e ettt e e e e ettt e e e e e eabtr e e e e e saaabtaeeaeesssssaeeaeesannsteaeeesssanssaneaassannses 152
NUMDEE OF SENSOIS ..ttt et e st e e st e e s bt e e e sbbe e e sasbe e e sabeeeesnreeesaneeeesaneenenans 152
REMOtE Data CollECTIONccueiieiiiiie ettt e e st e e st e e s b e e e snr e e e sneeeesneeeesane 152

(@D I DT 1Y] - 1Y TSP PPPE 152

GV o} (=T - Lol PP O PR PPPP 152

[g Yo] (o X =1 | =T o RNt 154
AppendixX: AtMEl IMIPU Tableiieiieeiiieeiiiicerieeereneereeereeneeeaserenseesasesnssesenssssnsesensessnsssssssesassssenssssnsessnsanee 158
Appendix: Arduino Check SPEEM...... ...ttt reeeeereasteeereaseseasssenssssnsssssssesensssensssensasannanns 160
Appendix: AVR ADC SENSOr REZISEErS....civuiiiiiiiieiiiiiiiiiirteiiteiitnisienisieeerensssrnsssenssssasssssssssssssssnssssnsssannssss 163
AppendixX: ADC FUNCLION TESt...cccuuiiiiieiiiiiiririeiieiereierereseerenessssrenesssssenssssssenssssssenssssssensssssennssssssnnssssnennes 165
Appendix: Disabling AUtO ReSEt.......ccceiiiiiiuiiiiiiiiiiiiiiiiiiieiiieirisreeaissresassssiesssssssesssssssessssssssssssssssnes 170
Appendix: Arduino EfDUMPuiiiieiciieiccrrenecerereeieseeesessesnsssssenasssssenssssssenssssssenssssssensssssennssssssnnssssnennns 172
APPENdiX: ArdUINO RECEIVET ...ccuuiieeiieeiiieeiitietrieerenettteereasettnserensseressssnssesessessnsssensessnsssssssesassesensesensessnsnne 177
APPENdiX: THEIMOMEEEI. EXE . ivuuiiiiiiuiitiiniiitittiieiteaiietteaisttenssistesssssstessssstesssssssesssssssessssssssssssssssssssssssnes 180
Y YT o d =T 0 o Yo [PPSRt 180
GIODAI VArIi@BIES ...ttt sttt e st e st e s s bt st e s ar e s esr e e sree e 180
ThErMOMETEr FUNCHIONS ... ittt ettt e st e e st e e s b et e e sbee e e snbe e e smreeesanreeesanneeesnrenens 182

T T 11 oY\ =TT o T o o =4 = o U RPP 196

O L] FE Y oo ={ =T o o R PPP 198
Appendix: Thermometer One Program €Code (PIan “A”) ... i iiieciiiiicicreieeeereeaeeeeeeaneeesennsesseenssesssenssessennns 205
Thermometer One Main Program FilEii ittt e st e e e e e et e e e e e e snbra e e e e e e s anrneeas 205
Thermometer One FUNCEIONS MOGUIEoiiiiiiiiieie et st e e st e e s e e s i e e sabeeesareee s 210

Appendix: Thermometer One Program Code (Plan “B”).....ccccirierereeeneeecierieenennsssseessseeeesnnssssssssseessssnnsssssssses 226

Thermometer One Main Program FilEceii ittt tree e e e e s sbree e e e e s sabrae e e e e e snnreeeas 226
Thermometer One FUNCEIONS MOUIEcooiiiiiiiie e s e 232
Appendix: Thermometer ATIMIEEAL68.......c..cceiieuiiiirmeiererenierenesierenessesrensssssrenasssssenssssssenssssssensssssssnsssssennns 249
Main Program File (ATIMIEEA168).....cccceicuriiiieeeiciiiieeeeeeectee e e e e e eettte e e e e e s abbaeeeeeeeaabaeaaeeaassbeeaaeeeaassraseaesesansseneas 249
Thermometer FUNCLION ATMEEALE8 FilE.....ccciiiciiiiiiee ettt e e s rree e e e e et e e e e e e e s abra e e e e e e s nnrneeas 253
APPENIX: ASCH TabI@ ... et rrreee e eererese s s erasssssenasssssenasssssenasssssensssssennsssssennsssssennssssnennes 268
Appendix: Celsius vs. Fahrenheit Tableccciiiuiiiiiiiiiiiiiiiiiiiniesreeessreseissresssssssesssssssessssssssnes 273
Appendix: LM34 Data SREEtciveiiiiiiiiiiiireiireireecreeirtne s snessensssnesssenssseasssenssssnssssssssssnsssensssensssannnns 277
Appendix: MS takes Bow Shot at console applicationscccceeeeiiiiieiiiiiiiiiirc e e s e enees 282

Page: 9

Requirements:

No Arduino’s were harmed or damaged in the development of this application. That statement actually has
more meaning that it may appear. The goal was for there to be no external components, any additional wiring or
soldering required for this project. Unfortunately reality stepped in and there is now one external component
and 3 wires required.

Access to a working computer:

All the project software is open source and runs under Windows and Linux operating systems. Most of
the software will also operate on a MAC computer.

Arduino Compatible Development Board:
These can purchased for as little as $9 from sources on Amzazon.com and Ebay.com. | recommend the
Nano but any Arduino with an ATmega328P (or ATmega328) and a USB port should work. (The “Pro
Mini”, “Lilo” and “Lillypad” do NOT have USB ports. The Micro might work but | have had problems with
that model).

USB Cable
Used between the Arduino microcontroller board and the computer. Sometimes this will be provided
with the Arduino board.

LM34 Temperature Sensor
This is a Texas Instrument/National Semiconductor series of part for measuring temperature in degrees
Fahrenheit. The specific part number recommended is a LM34DZ. Alternately any other IC from this line
can be used. For those outside the US you may want to consider the LM35 series that is calibrated in
Celsius. | paid too much for mine. You should be able to get these for about US$2.50.

Bread Board, 175 Tie points
This is just to have something so the Nano’s pins do not sit directly on the desktop. It also allows the
temperature sensor to be connected without any soldering. These can be purchased for about $5. A 300
or 400 tie point bread board will also work and allow some expansion for somewhat more advanced
projects.

Three Bread Board jumpers, 1-1/2 to 2 inches long
You will need three breadboard jumpers between 1-1/2 to 2 inches long. Alternatively you can make
your own from insulated 22 to 28 AWG single conductor wire (Cat 5 or Cat 6 LAN cable is an excellent
source).

Thermometer
This is not an absolute requirement. These are used to calibrate the digital thermometer. A bi-metal dial
thermometer, cooking thermometer, wall thermometer or glass tube thermometer may be used. The
task of finding an ‘accurate’ thermometer to use as a reference may be the biggest challenge in this
project.

Access to the internet:
Not actually required after the software is downloaded but highly recommended. There are imbedded
links throughout the text to references on the internet. These URLs are shown as underlined blue text:
Example: http://www.keywild.com/arduino

Page: 10

http://www.keywild.com/arduino

Optional components

Small Ceramic Disk Capacitor

Atmel recommends placing a capacitor on the Analog reference pin. | used a 22 Pico Farad ceramic disk
capacitor but | cannot say that it made any real difference.

3.5mm stereo female jack, PCB Mount, 3 contacts

3.5mm stereo male plug, solder terminal, 3 contacts

3.5mm stereo extension cable

22 K Ohm 1/4 watt resistor, solder leads
These can be used to separate the sensor from the breadboard. Once that is done any 3.5mm stereo
cable can be used or the sensor can be plugged directly into the board. A stereo jack with 5 to 11
contacts may be used as an alternative (the 3 contact jacks are hard to find). The resistor may be a 1/2
watt or 1/4 watt of any precision and is in fact optional. If it is used then it needs to go inside the
3.55mm stereo plug so the smaller the better.

Optional Tool Requirements

Wire cutter
IF you want a really neat breadboard then you will need something to cut the wire and strip insulation
from it. Alternatively one may use pre-manufactured breadboard jumpers. At least three of these about
1-1/2 to 2 inches long will be required.

Small soldering iron
Small quantity of electrical/electronic solder
If decide to use an extension cable for the sensor then some very minor soldering will be required.
Mounting the sensor in the stereo plug requires soldering. As a starting place, for most small electronics
soldering, 1/32 inch (.03) rosin-cored, 60/40 (tin-lead) or 63/37 solder should work fine. Rosin-cored
lead-free is fine, too. For a god reference on electronic soldering see the URL:
http://store.curiousinventor.com/guides/how to solder/kind of solder/

Magnifying Glass or Eye Loop
Tweezers

Some of us with somewhat less than perfect vision may find a magnify glass or eye loop helpful. A set of
tweezers are not a bad idea either.

Page: 11

http://store.curiousinventor.com/guides/how_to_solder/kind_of_solder/

Microcontroller: Meet the Arduino Nano

The goal here is to produce a device that reports the current temperature back to a computer over a USB port
using the minimum about of inexpensive hardware. We will in fact only be using a single piece of hardware.

The first question was: “what microcontroller to use?” | had done a little work in the past with PICs and Basic
Stamps so | first went looking microcontroller board that implemented a form of the basic language. There are
several good offerings available. Among these are Parallax Basic Stamp and Basic Micro’s Nano series. | also
read about other microcontroller offering and ran across information about the Arduino line. This is a series of
microcontroller boards based on “open design” standards that are not encumbered by proprietary copyrights,
licenses (hardware or software) and the associated extra cost of these items. An “official” Arduino
microcontroller board can be obtained for less than $20(US). A “clone” Arduino microcontroller board can be
obtained for less than $10(US). One can be “scratch” built by downloading the appropriate files and obtaining
the raw hardware though | question that being less expensive or more practical that buying a mass produced
board for a “one-of-kind” project.

The Arduino line uses a form of the “C” language. | am not a great fan of the “C” language. | find the simplicity of
Basic to be much more appealing for non-professional programmers. The complex array of files, rules,
structures, pointers and non-intuitive syntax that accompanies “C” and its derivatives may seem friendly to
people that work with it on a regular basis but to someone that only uses it occasionally it can be an excruciating
experience. However in recent years the popular Visual Basic implementation has been “improved” by
Microsoft such that it now conforms to much the same standards as “C”. That “improvement” has also
destroyed most of its simplistic advantages. The Arduino team has done an excellent job of isolating the user
from the some of the complexity in their implementation of the language. One can still delve into the
complexities of “C” to use standard tools and make files to produce Arduino programs but most users will not
need to go beyond the simple user interface of Arduino IDE (Integrated Development Environment). | decided to
give up my preference for Basic and use an Arduino based board.

There are 19 “official” Arduino microcontroller boards and derivatives too numerous to count. | chose the
“Nano” design (developed by Gravitech of Claremont, CA, USA) as a starting point because:

1) It has more or less the same functionality of the larger Arduino Duemilanove

2) Small size: slightly smaller than 3/4 x 1-3/4 inches

3) 8 Analog Inputs (10 bits = 1024 steps)

4) Available with or without header pins

5) Uses either the Atmel ATmegal68 (v2.3) or ATmega328 (v3.0) AVR microcontroller
6) Builtin USB port (USB Mini-B)

7) 5 Volt operation (low power projects can be powered by USB port)

8) Availability from numerous suppliers (many listed on Amazon.com and Ebay.com)
9) Cost: $S35(US) from Gravitech down to $9(US) various clones

Page: 12

http://www.gravitech.us/arna30wiatp.html

o ’ -3, -.a

312’311519")'9 b8 07 "06 "’05 04 "m 07 GNDRST

" D13 3U3RESF AB

= "
& =B =0
P - - —

D12 D11 8410 Do

D13 3U3 REF A®

. £
D13 3V3RzF AO.A1 A2

.’,/ D o

7 ARDUINO.CC

e
®

‘;:"_. quh
J
B O]

A7 SV RST GNOVIN

- p o
LA @ s
.“‘\ i -

*%
ot

*
Fll AZ A3 A4+ AS A6

- -

.- --d

r o Y
> 'm

X0

4
’ X—“‘.s
. [R .

xc)
:o

dMd
Sl’l‘H33.I.I

EE’ a%xw
ONUN

ONTNO¥Y

o

-s —g: —’r -.¢ —’g —'I -.' -0 N .
— -

pe D7 D6, D5 D4 "bla Dlz GND RST RX® TX1

7

/FIRDUINO.CC
24017
Ol

A1 A2 A3 A4 A A6 A7

A3 A4 AS ﬂ6

O & csp

_|
o
>
o)
=
_|
oo
%I
C
(7]

ONINddY

EJ ok

n
5U RST GND VIN

COCONE

GﬁD RST RX0 TXl

T ®
- 'SU "RST GND VIN

_COOUOOOOOQQQQQQ

Top Image is a Gravitech Nano board version 3.0 (although it has an ATMega168-20AU).
Middle image is the board layout showing the top traces
Bottom Image is a Chinese clone Nano board version 3.0 (although it has an ATMegal68-20AU).

9

"A
A4

' T

Top Image is a Gravitech Nano board version 3.0
Middle image is the board layout showing the bottom traces
Bottom Image is a Chinese clone Nano board version 3.0

ARDUINO NANOQ Version 3.0 Pin Layout

RS232:TX

RS232:RX,

INTERRUPT,

PVWM, INTERRUPT,
I12C:SDA,

PWM, 12C:SCL,
PVWM,

PWM,

PWM, SPI:SS,
PWM, SPI:MOSI,
SPI:MISO,

, DIGITAL 01 (01)
DIGITAL 00 (02)
RESET (03)
GROUND (04)
DIGITAL 02 (05)
DIGITAL 03 (06)
DIGITAL 04 (07)
DIGITAL 05 (08)
DIGITAL 06 (09)
DIGITAL 07 (10)
DIGITAL 08 (11)
DIGITAL 09 (12)
DIGITAL 10 (13)
DIGITAL 11 (14)
DIGITAL 12 (15)

O QO0R O
O QOO0 WO

QOrx ARDUINO G0)
Orst V10 RTQ
Qo 'Y o]
85 [48
Ow 0 Q)
Qu [T] mQ
O 24 Q
O 2 Q)
Qo 2 Q)
Qo 2 Q
(¢ JIE Q)
Ono rRer Q)
Qv wiQ
O)
) USB @
—— | Mini-B

(30) SUPPLY VOLTAGE IN (7-12 VOLTS DC)
(29) GROUND

(28) RESET

(27) +5.0 VOLTS

(26) ANALOG 07

(25) ANALOG 06

(24) ANALOG 05

(23) ANALOG 04

(22) ANALOG 03

(21) ANALOG 02

(20) ANALOG 01

(19) ANALOG 00

(18) ANALOG REFERENCE VOLTAGE
(17) +3.3 VOLTS

(16) DIGITAL 13, LED, SPI:SCK

You will probably note a lot of references to the term “AVR”(Appendix: Atmel MPU Table). The microcontroller
used on Arduino boards is an Atmel AVR chip. Atmel is the manufacturer’s name and AVR is the product name
for this series of chips. Per Atmel:

“Atmel® AVR® 8- and 32-bit microcontrollers complement Atmel's ARM® microcontrollers and microprocessors to deliver a
unique combination of performance, power efficiency and design flexibility. Optimized to speed time to market, they are based
on the industry's most code-efficient architecture for C and assembly programming.”

Just to put things in perspective: In 1982 the Commodore VIC-20 was the best-selling computer of the year, with
800,000 machines sold. One million had been sold by the end of the year and at one point, 9000 units a day were

being produced. This little device

has more memory and computing power than a Commodore Vic 20.

That is a SainSmart Nano clone in the blue ellipse.

Page: 15

http://en.wikipedia.org/wiki/Commodore_VIC-20

Another interesting alternative is the Teensy 3.0 boards development board. This has a much more powerful 32 bit ARM Cortex-M4 48
MHz CPU with 128K FLASH, 16K RAM, 2K EEPROM, 14 each 13 bit Analog Inputs and 34 Digital inputs. It also has the advantage of an on

board clock (but requires crystal and battery). All of this is packed onto a board (1.4 x 0.7 inches) that is even smaller than the NANO.
Also available from SparkFun: https://www.sparkfun.com/products/11780

Page: 16

http://pjrc.com/store/teensy3.html
https://www.sparkfun.com/products/11780

Arduino Development Environment

_The primary goal of this project is to report to the attached computer the temperature over the USB/RS232
communications port. The computer shall provide the user interface and final processing of the data. Thus we
actually have to create software for both sides.

Arduino Programing Environment:

For the Arduino we will use the Arduino IDE (Integrated Development Environment) and its subset of the “C”
language. Although this may seem like an obvious choice there are a number of alternatives that could be used
such as:

1) the avr-g++ environment used to developed, build and run the Arduino IDE.

2) mikroBasic PRO for AVR, mikroPascal PRO for AVR or mikroC PRO for AVR

3) ICCV8 for AVR

4) Atmel AVR Studio (good tutorial here: http://hekilledmywire.wordpress.com/2010/12/04/22/)
5) codebender (online code development for Arduino)

6) MariaMole

7) NextEdge android /iPhone Arduino Compiler (then you have to get it to your Arduino)

8) Microsoft Visual Studio (configured Arduino with plugins)

9) BASCOM-AVR

10) SmallC for AVR

Most of these use C or use GCC in the background. The Arduino IDE was chosen because it works, it works across
platforms (Windows, Linux, Mac) and it is free. There is also implementation of the GDB/INSIGHT debugger for
the AVR line (not covered in this document).

Arduino Web Site: http://arduino.cc/en/
Arduino Download: http://arduino.cc/en/Main/Software
Arduino Forum: http://forum.arduino.cc/

Another interesting alternative is AttoBasic from:

http://www.cappels.org/dproj/AttoBasic Home/AttoBasic Home.html

“AttoBasic is an on-chip resident interactive Basic interpreter loosely based on memories of NASCOM Tiny Basic. AttoBasic interprets
single lines from a terminal or an entire program stored in memory without the delay of compiling and loading an entire program.”

One disadvantage is that if you use this in a “commercial” environment then you have to get a license.

Page: 17

http://www.mikroe.com/mikrobasic/avr/
https://www.imagecraft.com/devtools_AVR.html
http://hekilledmywire.wordpress.com/2010/12/04/22/
http://hekilledmywire.wordpress.com/2010/12/04/22/
http://codebender.cc/
http://dalpix.com/mariamole
http://arduino.cc/en/
http://arduino.cc/en/Main/Software
http://forum.arduino.cc/
http://www.cappels.org/dproj/AttoBasic_Home/AttoBasic_Home.html

Setting up the Arduino IDE:

Download the software from the official ARDUNIO web site:
http://arduino.cc/en/Main/Software.
Then follow the direction for installing the software according to your operating system.

There are several ‘alternative’ IDEs for the Ardunio. One that includes a complete rework of the ‘standard’ Arduino package can be found
in this Arduino Forum msg: http://forum.arduino.cc/index.php?topic=118440.0

There are a few things that you can do to make the Arduino IDE a bit more efficient and user friendly. When you
install Arduino IDE it should create a directory in your documents folder. On Windows this will be:

C:\Users\<User Name>\Documents\Arduino (Windows 7)
or
C:\Documents and Settings\<User Name>\My Documents\Arduino (XP)

It will also create a directory where it installs the actual software. On Windows this will be (hereafter called <app
path>):

C:\Program Files (x86)\Arduino (64 bit Windows)
or
C:\Program Files\Arduino (32 bit Windows)

It will also create a directory for its “preferences file”. On windows this will be:

<User Home>\AppData\Roaming\Arduino (Windows 7)
or
<User Home>\Application Data\Arduino (XP)

This location of this last directory is an unfortunate choice because it is normally hidden from the user. You need
to be able to edit the file in this directory. In Windows Explorer Browse to you home directory. It should be
something like “C:\Users\<your name>”" or “C:\Documents and Settings\<your name>" (consistency is not one
of Microsoft’s strong points). Then select “Tools”, “Folder Options”. Then select the “View” tab at the top. Pick
the radio button “Show hidden files, folders, and drives”. Then click on “OK” (you can change it back later ... or
not). You should now be able to see several more folders and files. One of those will be “AppData”.

File Edit View Tools Help

s flrolder ptions] ames

. kindle kindle

| thumbnais General | Viz# | Search| :

| Classic PDF Editor Files ~ Falder views ! thumbniails
HContacts You can apply the view [such as Details or lcons) that AppData

yau are using for this folder o all folders of this type.

mbeskiop - 7 Application Data
#Downloads Apply to Folders | Reset Faolders

b Favarites J Classic PDF Editor Files
':Ink; " Advahced settings: T Contacts

-y Bneuments " Files and Folders =] [# Cookies

WMy Music Always show icons. never thumbnails "

. =My Pictures Alvwaps show menus # Deskiop
3 My videos Display file izon on thumbnails £ Dowrloads
Roaring Display il size information in folder tips ;)
e Ganes Display the full pathin the title bar [Classic theme only) | ir Favorites
. Hidden files and folders PLinks
£i5earches Q) Don't show kidden files, folders, or drives
. SpawnApps & Show hidden files, folders, and dives |Ed} Local Settings
Broadband2Ga.log [Hide empty diives in the Computer folder =
@BroadbandeoSetup‘msi [Hide extensions for known file types | My Documents
[Hide protected operating system files [Recommended) LI [# My Documents

| crash_report.tut

|_|5aiTE session

Restore Defaults

0K I Cancel I Apply

! My Music
=My Pictures
& My Videos

In this directory you will find a folder named “Roaming”. In that directory will a folder named “Arduino” with a
single file named “preferences.txt”. Now that you can see the file let us go back up to our <user home>\My

Page: 18

http://arduino.cc/en/Main/Software
http://forum.arduino.cc/index.php?topic=118440.0

Documents\Arduino directory. Create a new directory there named “preferences”. In that directory right click

you mouse and select “New”, “ShortCut”. In the dialog box choose the “Browse” button and navigate to the file:
<User Home>\AppData\Roaming\Arduino\preferences.txt

Select that file and click on “OK”, “Next” and “Finish”.

Users' lewis.balentine.KEYWILD\Documents', Ardui

‘Q()v| - My Documents « Avddino - Preferances

v 23 [search Preferences

File Edit Wiew Tools Help
Sharewith v E-mal hew folder =~ 0 @
AppData |
@ Application Data
Classic PDF Editar Files

Organize =

| oate modied [rype

ri Create Shortcut

P
_J # CreateShortcut

Mame “

i Contacts
{7 Cookies
jm Desktop What item would you like to create a shortcut for?
4. Downloads
kr Favorites This wizard helps you to create shartcuts to local ar netwark programs, files, folders, computers, ar
i Links Internet addresses,

[# Local Settings
~| My Documents Type the location of the iterm:

_ap I

_ATAT Wireless_Data

_Chase

Brawse... I

|
_comeast

_email_Info Select the target of the shorteut below:

_MNeeds_Sorted

_sUnkrust 51 fppDats -

{Lewis Shortcutsy Lacal

{Quick_Documents} Lacallow J

BB7A_iwaxmirtls) Roaming

1208Ne0ga 2BrightSparks

Across Crosswords Across Lite 2.0 Lcell
Add-in Express Adobs

Amazon Downloader Logs Amazon

Arduino Apple Computer

Build = Arduing

Cade_Snips || preferences.tzt

libraries | ARES Commander Edition

[T — | ARES Commander Edition x&4

Project_One_Temp_Senst a L ATl | _’lll

sketches i
Mew shortout Date modfied: /17 e iz Folder | ok | conel |
Sharteut Size: 194 |

Double clicking on this file should open the preferences.txt file in notepad (or your default system text editor if
you have replaced notedpad). You can now go back and change the “Show hidden files ...” if you like.

Normally when the Arduino IDE compiles a new program it creates a working directory in your personal temp
folder. The path will be something like:
C:\Users\<user home>\AppData\Local\Temp\build2572074991509959449.tmp

This is inconvenient for two reasons. First at some point one may want to take a look at the files in “build”
directory. Second, and most importantly, the Arduino IDE does a very poor job of cleaning up after itself. You
will eventually have dozens of these working directories taking up space and generally making a garbage dump
of your machine. We can fix that (unfortunately it turns out that the IDE creates numerous other temp
directories that it does not delete as well). First create another new folder named <user home>\My
Documents\Arduino\Build. Now double click on your new “preferences.txt” short cut. Insert a new line in the
file:

build.path=C:\Users\<your name>\Documents\Arduino\Build

Page: 19

Be sure that you change <your name> to the actual name your system uses. To answer the more advanced users
question: No, the Arduino IDE does not recognize the environmental variable %5HOMEPATH% or %HOME%.

I Mame ~ =] preferences ket Jl 21 Mame ~
1 noard=nano3zs Decopd
build2661 35643448431 6812.tmp 2 browser.linux=nozilla =
. 3 huild.path=C:iUsersilewis.balentine.KEYWILDA\DOCURENTSYArdUINOLBUT 1d || CDC.epp.c
build3383154567 1 74745455, tmp 4 sketchbook.path=C:\Usersileuis.balentine.KEYWILD\DocunentsyArduing Jeorea
build361 7637 66455460350. 5 settings.path=C:\Usersileuis.balentine.KEVKILD\Docunents\ArduinoiPreferences HardwarsSsrial.comd
o i 4 settings.path.fallback=c:\Usershleuis.balentine.KEYNILD\Docunents\Arduino — Mardwareserishenn
build3691 782566988407581 kmp 7 build.verhose=true || HardwareSerial.cpp.o
8 console=true] Helloworld_ono.cpp.d
build43173949561 11744715, tmp 9 console.auto clear=true

build4476188222571992133.kmp

18 console.error.file=stderr.txt
11 console.length=588

|| Hellaworld_000.cpp.eep
[Hellowerld_00o.cpp.elf

build4741 108441 78594 3440, tmp 12 console.lines=4 | Hellowaorld_000.cpp. hex

13 console.output.file=stdout.txt HelloWorld_D00.cpp.a
build5419534854 114335919, tnp 14 editor.antialias=false - d_

; 15 editor.caret.blink=true L] HIC.cp.
buildS5484454 315864637570, trnp 16 editor.divider.size-8 | HID.cpp.o
build5&341 720066565604 76, tmp 17 editor.divider.size.uindous=2 | IPAddress.cop.d

18 editor.external=false IPrddress.cop.o
buildé149562956212803578. tmp 19 editor.font=Envy Code R,plain, 18 = d :

20 editor.font.macosx=Maonaco,plain,l@ L_| main.cpp.
build&419846200287133433. tnp 21 editor. indent=true P e —
build73226375840323891 05, tmp Eeditor. invajid-false [malloc.c.d

23 editor.keys.alternative_cut_copy_paste=true
build7519652855005 260586, tmp 24 editor.keys.alternative_cut_copy_paste.macosx=false Lmaloc.c.o

) 25 editor.keys.home_and_end_travel_far=false | new.cpp.d
build7737356597 318501534, tmp 26 editor.keys.hone_and_end_travel_far.nacosx=true —
build78094 5B635759546 7. tp 27 editor.keys.shift_backspace_is_delete=true Pritcp.d

28 editor.languages.current= =
build3 15061 5099681032880, tmp 29 editor.tabs.expand=true || Print.cpp.o

) 30 editor.tahs.size=2 realoc.c.d
builds 1 76859657 145301512, tmp 31 editor.update_extension-true ~

[realoc.co

32 editor.uindow.height.default=688
build85259455231 95642585, tmp 33 editor.uindou.height.nin=298 L stream.cpp.d
bl NS4 79008 2904 CTO0D bear 34 editor.uindow.width.default=588 __| Stream.cpp.o
| | 35 editor.uindou.yidth.min=488 =l Tone.coo.d

You might have noticed the next line in the preferences.txt file is the path to your SketchBook (where the

Arduino IDE stores your projects). Many (not all) of these options are documented in the file:
<app path>\Arduino\lib\preferences.txt

This file has a number of inaccuracies in it. Note lines 5 and 6 above in preferences file. Those are totally ignored
by the Arduino IDE.

There is one option that is helpful and does work. We can change the font used by the editor. The default font is

“editor.font=Monospaced,plain,12”. First of all there is no font for Windows with the name “monspaced”. The
IDE appears to be using “Courier New” but in that font there is very little difference between parenthesis and
curly braces. The Arduino code uses these lot and we really need to be able to see the difference easily.
Microsoft does not provide any good monospaced fonts. We have to look elsewhere. One font that works well is

“Envy Code R”. You can download it here

http://damieng.com/blog/2008/05/26/envy-code-r-preview-7-coding-font-released

Another font that works well is “Source Code Pro”. You can download it here:
http://sourceforge.net/projects/sourcecodepro.adobe/files/

Page: 20

http://damieng.com/blog/2008/05/26/envy-code-r-preview-7-coding-font-released
http://sourceforge.net/projects/sourcecodepro.adobe/files/

Download the font of your choice and double click on the file. It should install automatically. Then change the

line in your preferences file to:
editor.font=Envy Code R,plain,16 or

editor.font=Source Code Pro,plain,16

©aFonts | Arduino 1.0.5

File Edit Sketch Tools Help

II!!!!!II!
/* FONT EXAMPLE =

editor.font=Monospaced, plain, 16
(font gize waz ilncreased from 12 to 16)

=10]x

Default font parentesiss 9]
Default font curly braces {1}

|
*/

Baisketch_aug17a | Arduino 1.0.5

File Edit Sketch Tools Hel

_
/* FONT EXAMPLE [+

=1a1x]

editor.font=Envy Code R,plain,lé

Default font parentesise {)
Default font curly braces §3%

*f

Envy Code R Font:
1234567890

ABCDEFGHIJKLMNOPQRST
(O {3 [1 <& lEssxrer

12345678986
ABCDEFGHIJKLMNOPQRST
() {3 [] <> !p#$%7&*

1234567890
ABCDEFGHIJKLMNOPQRST
O 3 [1© 1e#suner

One thing to note: Do NOT edit the preferences.txt file while you have the Arduino IDE running. It will

overwrite your changes when it exits.

This is what my “My Documents\Arduino” directory looks like:

Mame «

J Build
) Code_5

rips

, Docurments

J libraries

| Preferences

| sketche
| Utilities
[ﬁ' Arduino
(& Arduino
(& Arduino

]

Farum
reference {on line)

reference

[ﬁ' Arduinoi Plavground

You already know what the folders: “Build” and “Sketches” are for. “Code_Snips” is for storing bits of code that |
might want to use later or something that | have found on the internet that | want examine closer at some point
when | have time. “Documents” is where | store related documentation ... like this document that | am writing in
Word. “Libraries” is created by the Arduino IDE install program for storing users supplied/produced libraries
(code shared among several sketches). “Utilities” holds small programs to do other things relative to Arduino
environment. So far the only thing in it is a program to produce an assembly code listing from the from the ELF
file produced by the Arduino IDE. The actual work is done by the utilities that come with the IDE but this
program simplifies using them as they require some really long command lines (about 260 characters). The four
shortcuts at the bottom should be self-explanatory. You may note that | have two shortcuts for the “Reference
Guide”. There are sometimes differences between the on-line version and the one that comes with the IDE.

Page: 21

Arduino IDE: Compile and Upload

First thing that we need to do is learn how to enter, compile and upload a program in the in the Arduino IDE.
Once the software is installed it must be configured for the ARDUNIO that is being used. From the top menu
select “Tools”, “Board”, “Arduino Nano w/ATmega328".

e& sketch_sepl5a | Arduino 1.0.5

File Edit Sketch Tools Help
o o ‘ Auto Format Chrl+T
Archive Sketch
sketch_seplsa Fix Encoding & Reload
Serial Monitor Crl+Shift+HM

Serial Pork

Prograrnmer]
Burn Bootloader

=0l]

Arduino Uno

Arduino Duemilanowve wy ATmega3zs

Arduino Diecimila or Duemilanove wf ATmegalss
Arduino Mano v ATmega32g

Arduino Mano wf ATmegal6s

Arduino Mega 2560 or Mega ADK

Arduino Mega (ATmegal280)

Arduino Leonardo

Next we have to tell the software where to find the Nano. Because we are using a USB hosted device that

creates a “virtua

III

com port we can be certain that the port will not be COM1 or COM2. When the Nano is

plugged into the computer Windows should automatically search for and find the device driver. If not then you
can download the driver from:
http://www.ftdichip.com/FTDrivers.htm.

If you open “Device Manager” then you should be able to Identify the COM port in Device Manager.

Completing the Found New
Hardware Wizard

The wizard has finished instaling the software far:

g USB Serial Comverter

Click Finish to close the wizard.

< Back I Finigh I

Cance |

[+ J Mice and other poinking devices
[+ EEh Metwork adapters
=7 Ports (COMaLPT)

- 5 Communications Port {COM1)
ry Communications Port (COME)
5 Printer Port (LFT13
o G USE Serial Port (COM4)
[]--ﬂ Processors
E]--@é 551 and RAID controllers
£
£

-8, Sound, video and game controllers

H-- by System devices
I'_—'I--é Universal Serial Bus controllers

; Generic USE Hub

IntelR) 5237 1AB/EE PCI ko USE Universal Host Controller
Standard Enhanced PCI ko USE Host Contraller
LISE Composite Dewvice
USE oot Hub
USE oot Hub
USE Serial Converter

From the top menu select “Tools”, “Board”, “ComXX” where XX is the appropriate port number.

File Edit Skekcl | Tools delp

ea sketch_sepl5a | Arduino 1.0.5

° ° 1 Auta Farmat Chrl+T
archive Sketch
sketch_sept16a Fix Encoding & Reload
Serial Monitor Chrl4-Shift-+HM

=0l

Rnard

Prograrnmet
Burn Bootloader

Page: 22

http://www.ftdichip.com/FTDrivers.htm

Most (if not all) Arduino boards have an LED (Light Emitting Diode) attached to pen 13. There is a small program
to make this LED turn on and off. This program (it is often called “Blinky”) is used to verify the configuration and
that you have a working Arduino board. From the top menu select “File”, “Examples”, “01. Basics”, “Blink”. This
will open up a new Arduino window. You can close the previous blank one (this is one of the things that | do NOT

like about this IDE).
=10l x| =loiz

|File Edt Sketch Tools Help

_

i =
Blink
Turns on an LED on for one =second, then off for one second, repeatedly.

Thig example code iz in the public deomain.
*

// Pin 13 ha= an LED connected on most Arduine hoards.
/7 give it a name:
int led = 13;

// the setup routine runs once when you press reseb:
veid setup() {

// initialize the digital pin as an output.
5 pinMede (led, OUTPUT) ; _.,j

We need to compile the source code. Arduino programs are called “sketches”. From the top menu select

“Sketch”, “Verify/Compile”.

@@ Blink | Arduino 1.0.5 ‘_l_nlll

File Edit |Sketch Tools Help
Verffy [Comple Ctr4+R
Show Sketch Folder Ctri4+K

Blink

-
|»

Page: 23

http://en.wikipedia.org/wiki/Light-emitting_diode

In the area between the top and bottom panes of the program you will see a message telling you “Compiling
Sketch”. To the right will be a progress bar. That itty-bitty number down in the lower left corner is the current
line number. It is very useful when you are trying to debug a program. After the compile is completed the
message will change to “Done Compiling”. In the bottom pane will be the results of the compile. In this case it
tells us how big our program is. If there had been a problem like bad “syntax” then there would be error
messages in this pane. Note also that at the bottom right the software shows the target board and com port.

©@Blink | Arduino 1.0.5 =10] x|

File Edit Sketch Tools Help

O
Blink

-

led = 13;

1 setup () {

aflad. NIIMTDIIMY

Arduino Nano w/ ATmegai68 o

@@ Blink | Arduino 1.0.5

File Edt Sketch Tools Help

_
=

=10l x|

led = 13;

setup () {

flad. NIITREIITY =

Arduino Nano w ATmega328

It is time to upload the program. From the top menu select “File”, “Upload”. The Arduino software will compile
the sketch again and automatically upload it to the Nano over the USB connection. After a moment the LED

should begin blinking.

©@ Blink | Arduino 1.0.5

[File Edit Sketch Tools Help

New Ctrl+N
Open... Ctrl+O
Sketchbook »
Examples »
Close Cri+w

Save Ctr+S

Save As... Ctri+Shift+S
Upload Ctri+U
Upload Using Programmer Ctrl+Shift+U
Page Setup Ctri+Shift+P
Print Crl+P
Preferences Ctri+Comma
Quit ctr+Q

=101

|»

Page: 24

When you select “compile” or “upload” the Arduino IDE actually uses several industry standard open source
programs to turn the source code into an executable file and upload it to the Nano (avr-gcc, winavr, avdude).
For a detailed explanation see one of these URLS:

http://arduino.cc/en/Hacking/BuildProcess

https://code.google.com/p/arduino/wiki/BuildProcess

http://openhardwareplatform.blogspot.com/2011/03/inside-arduino-build-process.html

Now let us take a look at the Actual source code for this sketch.
J,-'?r
Blink
Turns on an LED on for one second, then off for one second, repeatedly.

Thiz example code iz in the public domain.
*f

A4 Pin 13 has an LED connected on most Arduino boards.
A4 give 1t a name:
int led = 13:

A4 the setup routine runs once when you press reset:
vold setupi) {
4 initialize the digital pin as an output.
pinMode(led, OUTPUT):

A4 the loop routine runs owver and ower again forewver:
woid loopi() {
digitalWlrite(led, HIGH): A/ turn the LED on (HIGH is the woltage lewvel)

delay(1000) ; A4 wait for a second
digitallWrite(led, LOW) 2 A5 turn the LED off by making the woltage LOW
delay (10007 ; A4 wait for a second

Notice that “key words” are color coded in the code window. In the “C” language and the Arduino environment

there are two ways to put in comments. One way is to place matching delimiters “/*” and “*/” around a section.
We see this method used at the beginning of the sketch where the program is described. The second method is

to use “//”. Anything on the line after two forward slashes is ignored by the compiler. We see that method used
where the code explains Pin 13. Comments may appear anywhere in the program listing. Next we have our first

line of code.

int led = 133

This is a declaration of an “integer” variable with the name “led” that is initialized to be equal to “13”. All this
does is to make the program code easier to read later on. Statements in “C” code are terminated with a
semicolon “;” (think of it like a period that ends a complete sentence). If we had another LED on pin 14 we could
change the variable in the program so as to blink either LED. As there is only the one then a constant (a value
that does not change during the execution of the program) could have been used. That declaration would look
like this:

const int led = 13;

Page: 25

http://arduino.cc/en/Hacking/BuildProcess
https://code.google.com/p/arduino/wiki/BuildProcess
http://openhardwareplatform.blogspot.com/2011/03/inside-arduino-build-process.html

Next we have our first function.
// the getup routine runs once When you press recet:
void setup() {
J/ 1nitialize the digital pin as an output.
pinMode{led, OUTPUT);

:

All functions take the form of:

Type Name (Parameters) {
Program Code;

3

“Type” The data type of the returned value from the function. The keyword “void” indicates
that “setup” will not be returning a value.

“Name” The name of the function that is used to call it from other sections of the program code.
The “setup” function is the first of two functions required by all Arduino sketches. This
function runs once when the program first begins.

“Parameters” A coma delimited list of values that are passed to the function when it is called. This list

“Program Code”

is always enclosed in parentheses “()”. The “setup” function is called without
parameters.

The program statements that are to be executed by the function. These are always
enclosed in braces “{ }”. In this case the keyword “pinMode” is used to set Pin 13 to a
digital output (“led” was set to equal 13 in the declare statement above). We only need
to do this once so setup is the appropriate place.

The “setup” function is followed by the second required function named “loop”.
// Tthe loop routine runs over and over again forever:
yoid Toop() £
digitalWrite{led, HIGH); /4 turn the LED on (HIGH is the voltage Tevel)

delay(1888); ffowait for a second
digitalWrite(led, LOW); JF turn the LED off by making The voltage LOW
delay{1e88}; ff ualt for a second

L

Note that this function, like the “setup” function, returns nothing and gets no calling parameters. This function is
what programmer’s generally try to avoid ---- an endless loop, but here it serves a purpose. It will run until the
end of time, the Nano is reset or power is removed. The comments following each statement explain what the

statement does.

Page: 26

Just for completeness here is a sample of the disassembled machine code for this program.

// the loop routine runs over and over again forever:
void loop() §{

digitallWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

100: 80 91 00 01 1ds re24, 0x0100

104: 61 €0 1di re2, exol HE!

186: Be 94 b8 061 call 0x370 ; 0x378 <digitallrite>

delay(1008); // wait for a second

10a: 68 ee 1di re2, OxEs ; 232

lec: 73 €@ 1di re3, exe3 ; 3

10e: 80 e0 1di re24, 0xe0 ; 0

110: 90 €0 1di re5, 0xe0e ; 0

112: e 94 e5 066 call Oxlca ; Bxlca <delay>

digitallrite(led, LOW); // turn the LED off by making the voltage LOW

116: 80 91 00 01 1ds re24, 0x0100

l1a: 60 e 1di re2, 0xee ; @

1lc: e 94 b8 01 call 0x370 ; 0x370 <digitallrite>

delay(1008); // wait for a second

120: 68 ee 1di re2, OxEs8 ; 232

122: 73 e@ 1di re23, exe3 ; 3

124: 80 €@ 1di re4, 0x00 ; 0

126: 90 eB 1di re5, 0xee ; @

128: e 94 e5 00 call Oxlca ; Oxlca <delay>
3

12c: 08 95 ret

0000012e <setup>:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {
// Initialize the digital pin as an output.
pinMode(1ed, OUTPUT);

12e: 80 91 @0 01 lds r24, 0x010e

132: 61 ed 1di re2, exel !

134: ge 94 79 01 call ox2f?2 ; 0x2f2 <pinMode>
3

138: 88 95 ret

Page: 27

Enter, Save, Serial Monitor: “Hello Word”

The classic first program for any system is called “Hello World”. Open the Arduino IDE and type the following
seven lines into the editor window (this is about as simple as it gets - caution: “C” is case sensitive):
void setup()
{ Serial.hegin(9688);
t
void loop()
{ serial.printin{"Hello World!");
delay (1888);
I

Note the two functions Serial.begin and Serial.printin. These two functions belong to a special “class” library that
is part of the Arduino base system. The class member names (begin and printin) are separated from the name of
the library class (Serial) by a dot “.”. This library is only included in the final program when one of its functions is
used. It adds about 1,750 bytes to the size of final program file. The “Serial.begin” function is called a
“constructor” function. It constructs a new “instance” of the serial class that the other members can use. It must
be called before any of the other class members can be called. In this case it is initializing the default TTL
(transistor to transistor level) serial port at a speed of 9,600 baud . Serial.println sends a line of text to the serial
port with a terminating character. The default serial port use RS-232 serial protocol (this is one of several
protocols the Arduino can use). This allows the Arduino to communicate with the computer via a serial terminal
program.

Now from the top menu select “File”, “Saves As”. When prompted for a name use “HelloWorld_000”. Notice
that the Arduino IDE automatically creates a new folder for the sketch with the same name that you gave the
file. This is your “project” folder. In that folder you should find a file with the name “HelloWorld_000.ino”. This is
a plain text file that can be opened with any text editor except for Microsoft Windows Notepad (consider
replacing notepad with something like Notepad++). The Microsoft convention is that all lines end with a
combination of carriage return and line feed (ASCII 13, 10). The Arduino editor uses the Linux convention of
terminating lines with only a line feed (ASCII 10). ASCII stands for American Standard Code for Information
Interchange. See http://en.wikipedia.org/wiki/Ascii for more information on ASCII character codes.

Page: 28

http://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
http://en.wikipedia.org/wiki/Baud
http://en.wikipedia.org/wiki/RS-232
http://notepad-plus-plus.org/
http://en.wikipedia.org/wiki/Ascii

il o= sketch_auglla | Arduino 1.0.5

File Edit Sketch Tools Help

sketch_auglla g

void setup() {Serial.printin{"Hello World!");3}

void lToop() {3}

B save sketch folder as... =
Save in: I . sketches j G _? 3 '
Mame = |v| Date modified |v| Tvpe |v|
.. ArduinoExplorer 8/6/20139:13PM File folder
. Blink. gf11/2013 7:26 PM File folder
. BlinkMine §/6/2013 §:58 PM File folder

.. EEPROM_read
. EEPROM _write
. Helloworld

.. ProgMem

8/11/2013 9:33 &AM File folder
8/11/2013 9:33 &AM File folder
8/11/2013 9:36 &AM File folder
8/3/2013 10:34 PM File folder

i

File name:

Save I

Save as bype: IAII Files [

Cancel |
y/

A Open an Arduino sketch... x|
Look in: I . sketches j @ _? 3 '

Mame = | v| Date modified | v| Tvpe | v|
4 | ArduinoExplorer 8/6f2013 213 PM File folder
. Blink. 3/11/2013 7:26 PM File folder
. BlinkMine g/6f2013 356 PM File folder
L . EEPROM_read B/11/2013 933 AM File folder
.. EEPROM_write 8/11/2013 9:33 AM File folder
- Hellowyorld 3/11/2013 9:36 AM File folder
‘H Hellowworld_ooo 8/11/2013 7:53PM File folder
.. ProgMerm 3/9/2013 10:34 PM File folder

| | i

File name: I j Open |

Filesoftyps: [allFiles (") =l Cancel

2

=lol=|

Warning: The Arduino IDE is very picky about file names: Sketch names may only include basic letters and

numbers (ASCII only) with no space. Sketch names may not begin with a numeric character.

Ignoring sketch with bad name

The sketch "avrTemperatureSensor{168)" cannok be used,
@ Sketch names must contain only basic letters and numbers
(ASCI-only with no spaces, and it cannot skark with a number),
Ta get rid of this message, remaove the sketch From
CiiUserstlewis, balentine, KEWILDYDocumentsi Arduino sketcheshAvr TemperatureSensor 1 68Y,Avr TemperatureSensor 168).ino

x|

Page: 29

Compile and upload the program to the Nano. So you are saying to yourself “Nothing is happening”. From the
top menu select “Tools”, “Serial Monitor”.

10/
File Edit Sketch | Tools Help
Auto Format Ctri+T
Archive Sketch
Fix Encoding & Reload
Serial Monitor Ctrl+Shift+M

Board »
Serial Port »

Programmer »
Burn Bootloader

Now you should see the Nano printing Hello World once a second until the end of time (or when you disconnect
it).

e@Hellovorld_000 | Arduino 1.0.5 -0l x|

File Edit Sketch Tools Help

Helowor_u00' -Ioix]
void setup() | send |
{ Serial.beqgin(9680); T T TT WO s =]
I Hello World!
void Toop() Hello World!
{ serial.printin{"Hello World!")s 1110 World!
delay (1888);

Hello World!
Hello World!l
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!l
Hello World!l
Hello World!
Hello World!
M |Hello World!

3

-
| | EiN
[autoscroll Mo line ending j IQEDD baud LI

Arduine Nano w ATmega32s on COMAZ

Whenever the computer opens the serial connection to Arduino the device is automatically “reset”. It has a
special program called a “boot loader” that is run when the device is reset. That program waits for a few
moments listening to the serial port. If it receives a special set of codes from the computer then it begins the
process to upload a new program. Otherwise it starts the program that was previous uploaded. That is how the
Arduino IDE is able to load new programs and communicate with the device over the same serial connection.

Page: 30

A brief word about my personal programing style (or lack thereof):

| tend to try to make program code as easy as possible for someone who is not familiar it with to read. Thus there will be
lots of verbose comments. | also have a tendency to try to get a single concept into a space where it can be seen and
comprehended without paging back and forth or digging through multiple files. This happens to be in direct conflict with
conventional “C” programing style. There will also be examples of structures and functions that are supported by the
language but are frowned upon by the many professional level programmers. Same experienced and/or professional “C”
programmers are going to be offended by some of the code presented here. So be it.

The concept is for a person with absolute no knowledge or experience with the “C” language to build enough of a basic
understanding of the language to get the task accomplished. It is NOT a dissertation aimed at producing the optimum “C”
language program.

One must learn to walk years before they can enter the trials for Olympic Sprinters.

Some of the code shown will be in the form of screen captures because formatting code segments in Microsoft Word is a
time consuming pain in the southern most region.

Page: 31

Funny Math: Bits, Nibbles and Bytes

Zeroes and Ones (Decimal, Binary and Hexadecimal)

Have heard that computing is all about “zeros and ones”? More likely you heard it was all about “ones and
zeros” but zero should always come before one. Regardless of order the concept is true and that leads to some
different ways of doing math. Input the following code into a new sketch called “Bits_and_Bytes01”.
void setup () // note this is shown in properly formatted “C” style

Serial .begin (9600);
word w = Ox000F;

Serial.print ("w: ");

Serial.print (w, DEC);

Serial.print i

Serial.print (w, HEX);

Serial.print Yy

Serial.print (w, BIN);
3

void loop() §
3} // do nothing

We use the HEX input format “Ox000F” for the initializing the word variable “w”. The “Ox” (that is a zero not an
upper case O) indicates the HEX format. The characters that follow it must be in the set “0123456789ABCDEF”
(lower case alpha characters can be used but generally not). A word is a 16 bit unsigned number. Bytes are eight
bits and nibbles are four bits. Our variable “w” is two bytes or four nibbles or sixteen bytes long. Each HEX
character represents one nibble. Because the first three nibbles are zero we could have written “OxF”.

Notice that we have used a different member of the Serial class. Serial.print is like Serial.printIn but it does not
send a newline termination. The DEC, HEX, OCT and BIN keywords tell the Serial.print function how to format
the variable “w” when it is printed. It should be obvious but we “try” to never assume:

DEC = format as decimal (number base 10) format

HEX = format as hexadecimal (number base 16) format

OCT = format as octal (number base 8) format ... (rarely used)

BIN = format as binary (number base 2) format

The Arduino IDE has a special function “Auto Format” feature under the tools menu to format your code in
proper “C” style. | find it inconsistent. Notice in the setup function that it drops the open parenthesis to the first
characters of the next line. The loop function has the open parenthesis appended to the end of the line where
the function is declared. | find such inconsistences irritating (consistency in next to godliness). That is another
reason you will find that my code is often NOT properly formatted.

=10l
|| Send |

w: 15, F, 1111 :1

That is not all very impressive, but we are going to make it more interesting ... after we create a function to print
the value of a word variable in all three formats on a single line. Open the Arduino IDE and start a new project
named “Bits_and_Bytes01”. We are going to create an additional file for this project.

We want to add a file to the project. That option is not part of the IDE’s menu system. We must use an idiotcon

Page: 32

for that. It is in the top left corner and looks like an upside down triangle. Click on that you will have a menu.
Select “New Tab”. The IDE will prompt you for a file name: use “functions”. Then click on the “OK” button.

=101 x|

E
New Tab Ceri+Shift+N

—-

=101

Rename
Delete

Previous Tab Ceri+Ak+Left
Next Tab Cri+Ak+Right

Bits_and_Bytes02

4 o

Name for new file: |Functions oK | Cancel |

Arduino Nano w ATmega168 on COM4

Now you should now have two tabs for the IDE editor window including one named “functions”. The file is saved
in the same directory of your sketch. The IDE will open any addition “.ino” files it finds in the sketch directory
when you open the project sketch.

©0 Bits_and_Bytes02 | Arduino 1.0.5 =10 x|

File Edit Sketch Tools Help

(9600)

Arduino Nano w/ ATmega168 on COM4

Open the new tab and enter the following code (hint ... you can copy and paste).

Serial
Serial
Serial
Serial
Serial
Serial
Serial

.print
.print
.print
.print
.print
.print
.print

(5);

© -

(u,
(w:

(w:

void printdhb (char c, word n)

The keyword “void” tells the compiler that our user defined function named “printhdc” will not be returning a
value. In the parameter section we tell the compiler to expect two variables: a single character variable “c” and a
two byte word variable “n”. These variables will ONLY be visible inside the function. Note that we had to add
one line to print the incoming character. Now go back to first tab and enter a line to call our new function.

word w

void setup ()

Serial.begin (9600);
0Xx000F;

Page: 33

printdhb ('w*, w);

void loop() §
3} // do nothing

When you run this program the output should look the same as the previous one. Now add some more values.

void setup ()
{

Serial.begin (9600);
word v = 0x0000;
word w = Ox000F;
word X OX00FF;
word y = OXOFFF;
word z = OXFFFF;
printdhb (*'v', w);

printdhb (‘w*, w);
printdhb (*x*, x);
printdhb ('y*, y);
printdhb (*z*, z);

3

void loop() §{
3 // do nothing

By creating the function we avoided all that extra typing to enter the print statements for the new values.

R

Send |

wi: 15, F, 1111 =
x: 255, FF, 11111111
v: 40%5, FFFP, 111111111111
z: 65535, FFFF, 1111111111111111

[
v Aukascroll INo lime ending LI IQSDDbaud ;I

This would be much easier to comprehend if the numbers were “right justified”. Even better would be to have
them zero padded. We can do that! Go back to the functions tab and enter this code (hint ... read ahead a bit).

{
byte i,s;
Serial.print (c);
Serial.print (": ");
if (n<10)
{
s=4;
3
else if (n<108)
{
s=3;
3
else if (n<1080)
{
s=2;
3
else if (n<10600)

void printdhb (char c, word n) // properly formatted “C” style code

// begin if then for decimal

Page: 34

3

i=0;

while (i < s)

{
Serial.print (' ');
i= i+1;

3

Serial.print (n, DEC);

Serial.print (", ");
if (n<ox10)
{
s=3;
3
else if (n<Bx100)
{
s=2;
3
else if (n<ox1000)
{
s=1;
3
else
{
s=0;
3
i=0;
while (i < s)
{
Serial.print ('0');
i= i+1;
3
Serial.print (n, HEX);

Serial.print ")
Serial.printin (n, BIN);

// end of if then for decimal

// begin while loop for decimal

// end of while loop for decimal

// begin if then for hex

// end of if then for hex

// begin while loop for hex

// end of while loop for hex

Obviously whoever determined the proper format for “C” code was getting paid by the number of lines of code
that they produced. Here is the (almost) human readable form with the binary formatting added as well.

void printdhb (char c, werd n)
{ byte i,s,v;
Serial.print (c);
Serial.print (": ");

if (n< 18) { s=4;%
else if (n< 108) § s=3;3}
else if (n< 1008) § s=2;%
else if (n<10608) { s=1;}
else { s=0;3
i=0;

while (i < s)
{ Serial.print (° ');

i= i+1;

3
Sserial.print (n, DEC);
Serial.print ")
if (n< 0x0010) §f s=3;3}
else if (n< @8x0108) § s=2;%
else if (n< 0x1000) f s=1;3}
else { s=0;3
i=0;
while (i < s)

// improperly formatted “C” style code

// begin if then for decimal

// end of if then for decimal

// begin while loop for decimal

// end of while loop for decimal

// begin if then for hex

// end of if then for hex

// begin while loop for hex

Page:

35

{ Serial.print ("0');
i= i+l;
3 // end of while loop for hex
Serial.print (n, HEX);

serial.print (", ");
/* the Arduino IDE/compiler has a problem with the binary format values larger than a byte
so we have to do this a byte at a time */
v = highByte(n);
if (v< BBOOBBA1B) {
else if (v< B@BOOB100) {
else if (v< Bo6BO100B) {
else if (v< B00GB16000B) {
else if (v< B0O1060OB) {
else if (v< B0160600B) {
else if (v< B16060600B) {
else {
i=0;
while (i < s) // begin while loop for binary high byte
{ Serial.print ("0');
i++;

3 // end of while loop for binary high byte
Serial.print (v, BIN);
Serial.print (" ");

v = louByte(n);

if (v< Bo00EBA1B) {
else if (v< Bo6eOB108) {
else if (v< Bo6BO100B) {
else if (v< B00GB100BB) {
else if (v< B0O1060OOB) {
else if (v< BO160600B) {
else if (v< B106000OB) {
else {
1=0;

while (i < s) // begin while loop for binary low byte

{ Serial.print (°0');
i= i+l;

3 // end of while loop for binary low byte

Serial.printin (v, BIN);

// begin if then for binary high byte

I
©O— N WHsUTOoN I
o o b o) o o o

n unununuwun unun

// end of if then for binary high byte

// begin if then for binary low byte

L L L [}
O~ N WwWaHsUTOoON
o b b o o e o

nuuuwunun unun

// end of if then for binary low byte

3

Obviously there are better ways to do this, but first we need to learn some funny math and other things. One of
those is “control structures”. A control structure is used where the program has to make a decision: “What do |
do next?” In this program we have our first control structure the “if then else” structure.

if (n 18) { s=4;3% // begin if then for decimal
else if (n< 100) § s=3;3}
else if (n< 1600) § s=2;}
else if (n<10808) § s=1;3}
else { s=0;% // end of if then for decimal

Usually a control structure has a criteria or condition to use in making its decision. The “if” keyword is followed
by that criteria enclosed within parentheses. In this case we testing the value of the variable “n” to see if it is less
than 10 by using the less than comparison operator “<”. If the condition within the parentheses is true then the
program executes the statements within the curly braces that follow. In this case we have only one statement so
| have written the entire sentence on one line to make it easier to read. If the condition within the parentheses
is false then the program skips those steps and goes to the next line. The “else” keyword ties our next line to the
previous “if” control. We increase the test by a factor of ten for each digit. The program executes the first line
that it finds to be true and skips the rest. We end to the structure with a simple “else” statement that is to be
executed if none of the test conditions preceding it were found to be true. In this case we are dividing our
decimal number by decimal ten to see how many zeroes we need to pad to the left of the number. If the

Page: 36

number is between 0 and 9 (inclusive) then we need 4 zeroes. We follow this same logic until we get to the point
where the number is greater than (or equal to 10000). In that case we do not need any extra zeroes. This is a
form of “fall through” logic. We fall through each test until we find a match. Then we come to our next control
structure:

i=0;
while (i < s) // begin while loop for decimal
{ Serial.print (* ');
i= i+l;
3 // end of while loop for decimal

This is called a “while” loop. It will execute the statements between the curly braces for as long as the test
condition is true. There needs to be some sort of statement within those braces to affect the test condition.
Otherwise the loop will execute forever (like the main loop required by the Arduino IDE). Here we use the
statement “i = i+1;” to increase the value of our variable “i”. Note that we set the value of “i=0;” before we
execute the while statement. If “s” is equal to zero then the while loop will not execute at all. We use this loop
to print the required number of space in front of the decimal value. Then we print the decimal value.

Note: Conditional statements and/or control structures may be followed by a group of executable statements
but that is not always the case. If there is only a single statement then the curly braces are NOT required. These
two sections of code are both valid and equivalent:

if (n< 18) { s=4;% // begin if then for decimal

else if (n< 100) § s=3;}
else if (n< 1808) § s=2;3}
else if (n<10000) § s=1;}
else { s=0;% // end of if then for decimal

if (n< 18) s=4; // begin if then for decimal
else if (n< 180) s=3;
else if (n< 10080) s=2;
else if (n<10800) s=1;
s=0;

else // end of if then for decimal

Note: A while loop does NOT require executable statements.

n=0;

while (n<18) {n = n+1;3} // all three of these statements

while (n<18) n = n+l; // are valid

wvhile (n++<10); // and produce the same result

n=0;

while (n==08); // valid but generates an endless loop

while (n!=0); // valid, does nothing (may be ignored by the compiler)

Note: A while may use multiple conditions separated by commas.
byte a=13, b=0, c=1;
Serial.printin ();
while (a>0, b<5, cl=7) // multiple conditions specified for while loop
{ serial.print ("a=");
Serial.print (a--);

Sserial.print ", b=");
Serial.print (b++);
c=a-b;

Serial.print (", c=(a-b)=");
serial.print (c);
serial.printin ();
// the next statement waits for serial input
while (Serial.available()==8); // note that the executable statement is the parameter

Page: 37

The same type of logic is used for the hex and binary values. The difference is how we specify the value limits we
are testing. We use the hex notation for the hex values and binary notation for the binary values. The “B” in the
front of the number “BO0000010” tells the compiler to interpret the following digits as a binary number. Each
digit must be in the set “01”. Some programing languages have used a similar notation for HEX numbers (i.e.
“HOOFF”) and some assembly code system used postfix notation (i.e. “O0FFh”). You may see this form of hex
notation in notes, comments and documentation. Unfortunately consistency is not one of the “C” language’s
strong points. Because the IDE/compiler cannot handle the Binary format of more than one byte we must
introduce our first bit of funny math. The two keywords “lowByte” and highByte” (remember “C” is case
sensitive) are used to split our two byte word value into single bytes in the temporary byte variable “v”.

If you run the program with the new form of the function then it should be much easier to understand the
results.

JST=IE
I Send |

v n, 0o0oo, OOOOOOOO Qaoooooaoa =
W 15, 000Fr, 0OO0O0OOOOO 0OOOO1111

H: 255, 00FF, 00000000 11111111
&y
z

40%5, 0OFFF, 00001111 11111111
565535, FFFF, 11111111 11111111

4 il

v fAutoscral IND line ending LI IQGDD baud LI

Notice now all our highest values are odd numbers. In the everyday life zero has no value so you were probably
taught in kindergarten to count starting with one. Digital computers only have two numbers: zero and one. Thus
zero is very important. In “C” and most other programing languages we start counting at zero.

Side note:

Traditional Chinese weighing units was a hexadecimal system (like ounces in the English
system). Early Chinese suanpan abacuses with two ‘heaven’ beads and five ‘earth’ beads could
be used for either decimal or hexadecimal calculations.

The “C” language allows us to pass variables of the same size but of a different type to a function. It is up to the
programmer to be certain that the function will handle the variable passed properly. In the setup function
comment out the variable declarations and declare them to be integers. Then add the additional code at the
bottom.

void setup ()

Serial.begin (9600);
// wWord v = 0x0600;

// word w = 6x086F;
// Word x = 6X06FF;
// word y = OXO6FFF;
// word z = GXFFFF;
int v = 0x0000;
int w = 0x000F;
int x = Ox00FF;
int y = BX8FFF;
int z = OxFFFF;

printdhb (‘'v', w);
printdhb (‘w*, w);
printdhb ('x*, x);

Page: 38

printdhb ('y*, y);
printdhb ('z*, z);

serial.printin("");

w=-15;

Serial.print ("u: ")
Serial.print (w, DEC);
serial.print (" ");
Serial.print (w, HEX);
Sserial.print (" ");

Serial.printin (w, BIN);
printdhb ('w', w);
3

void loop() §
} // do nothing

ocomiz (ol x]
| _send_|
Ve 0, 0000, 0OOOOOOD OOOOOOOO =
W 15, 000F, O0OOOOOOOD OOOO1111

H: 255, O00FF, 00OO00COOO 11111111
Y
Z

4095, OFFF, 00001111 11111111
65535, FFFF, 11111111 11111111

W -15 FFEFFFFF1 111111111111111211211111111110001
w: 65521, FFF1, 11111111 11110001 |
[v Autoscral [Moline ending = | |9600baud =]

WOW! Look at all those ones. Our Arduino handles negative numbers as the “two's complement” (see
http://en.wikipedia.org/wiki/Two's complement). When the “C” compiler passed the parameters to our
function it checked the number of parameters and size but did not place limits on the type. Our function was
not designed to handle negative numbers and had no way of knowing that the passed parameter was supposed
to be a signed integer. The systems Serial.print function did a bit better in that it recognized that the number
was negative but it handled the number as signed long (four bytes). This is something to be very conscious of. If
you deal with negative numbers be sure that the functions that you use are provisioned for negative numbers.
The same thing applies for using unsigned numbers.

Side note:
The official ASCII character table is only 7 bits. However most ASCII character charts lists character
codes from 0 to 255 (8 bits). Note the definition of the char type in the Arduino reference:

The char datatype is a signed type, meaning that it encodes numbers from -128 to 127.

The second page (128-255) of the character chart should actually be listed as negative numbers, however
the way the two's complement works out .. it is the same thing (hint: -255 = 128 ~~~ funny math ~~~).

Save your work.

Divide by Zero (yes we can)

Copy the previous files to a new folder. Be sure that you rename the folder and the file “Bits_and_Bytes03” (and
do not forget to include the functions file). We are going to do some funny math. Before we do that let us take a
quick look at some simple normal math.

Page: 39

http://en.wikipedia.org/wiki/Two's_complement

16/2=8
8/2=4
4/2=2
2/2=1

2*2%2%2=16
4*4=16

16/16=1

16/0=22?
NOT ALLOWED!

You were probably taught that you cannot divide by zero. Well we can and by doing it different ways we can get

different answers.

void setup ()
{
word a,b,c;

a=0xFFFF;
printdhb ('a‘', a);

a=a/lé6;
printdhb ('a', a);
Serial.printin ("");

a=a/l6;
printdhb ('a', a);
Serial.printin ("");

a=a/lé;
printdhb ('a‘', a);
Serial.printin ("");

a=a/lé6;
printdhb ('a’', a);
Serial.printin ("");

a=0xFFFF;
b=16*16*16*16;
printdhb ('b', b);
a=a/b;

printdhb ('a', a);
Serial.printin ("");

3

void loop() {
} // do nothing

Serial.begin (9608);

Serial.printin ("");

Serial.print ("16=");
Serial.printin (16, HEX);
Serial.printin ("a/16=");

/* Bits, Bytes and Nibbles */

Serial.printin ("a=8xFFFF");

Serial.print ("16*16=");
Serial.printin (16*16, HEX);
Serial.printin ("a/(16*16)=");

Serial.print ("16*16*16=");
Serial.printin (16*16*16, HEX);
Serial.printin ("a/(16*16*16)=");

Serial.print ("16*16*16*16=");
Serial.printin (16*16*16*16, HEX);
Serial.printin ("a/(16*16*16*16)=");

Page: 40

oa COM12

=101

Send |

a=0xFFFF
a: 65535, FFFF, 11111111

1e=10
a/fle=
a: 4095, 0FFF, 00001111

16*16=100
a/ (1a*1a) =
a: 255, 00FF, 00000000

16*16*146=1000
a/ (la*le*la) =
a: 15, 000F, 0O0OCOOODOO

16*16*16*16=0
a/ (la*la*la*la) =
a: 0, 0000, oOOOOOOO

=8 0, 0000, oOOOOOOO
a: 653535, FFFF, 11111111

11111111

11111111

11111111

oooollil

ooooooon

ooooooon
11111111

There are no comments in this code because the print statements make it “self-documenting”. We start off with
word value set to its maximum value OxFFFF (all ones). We divide it four times by the number 16. According to
normal math that should be the same as dividing by (4*16) but such is not the case. Lastly we take the number
OxFFFF and divide it directly by zero. The last value returned is zero. The compiler does not object and returns
the original value (same as dividing by one). ~~~funny math~~~

What is actually happening we are hitting the upper and lower limits? When we divide by 16 we are shifting the
number to the right by one hexadecimal position. The ones on the right are discarded and the left is filled with
zeroes. When we do this four times all of the ones have been discarded. Thus the answer is zero.

Did you notice 16*16*16*16=0? We hit the upper limit and it rolled over to the beginning which is of course
zero. So why did directly dividing by zero return the original number. | do not have a good answer for that one. |
believe it is because integer division is actually done using the shift operator and subtraction. Shift left or right

zero positions does nothing.

The whole point to this exercise is that dividing a hex number by decimal sixteen is similar to dividing a decimal
number by decimal ten. In in hexadecimal notation the decimal value 16 = hexadecimal 10. All it is doing is
moving the number left or right one position. Computer processors have a special instruction for this that is
much faster than integer division. It is called the “shift” instruction. In “C” the operation is noted by bitwise shift

operator “>>".
XXXX >>0 isthe same as XXXX /1
XXXX >>1 isthe same as XXXX /2
XXXX >>2 isthe same as XXXX /4
XXXX >>3 isthe same as XXXX /8
XXXX >>4 is the same as XXXX / 16
XXXX >>5 isthe same as XXXX /32
XXXX >>6 is the same as XXXX / 64
XXXX >>7 is the same as XXXX /128
XXXX >> 8 is the same as XXXX / 256
XXXX >>9 isthe same as XXXX /512
XXXX >> 10 is the same as XXXX /1,024

(1)

(2)

(2*2)

(2%2*2)

(2%2*%2*2)
(2%2*%2%2*2)
(2%2%2%2%2%2)
(2%2%2%2%2%2%2)
(2%2%2%2%2%2%2%2)
(2%2%2%2%2%2%2%2%2)
(2%2%2%2%2%2%2%2%2%2)

Page: 41

XXXX >> 11 is the same as XXXX / 2,048
XXXX >> 12 is the same as XXXX / 4,096
XXXX >> 13 is the same as XXXX / 8,192
XXXX >> 14 is the same as XXXX / 16,384
XXXX >> 14 is the same as XXXX / 32,768
XXXX >> 16 is the same as XXXX / 65,536

(2%2%2%2%2%2*2*2*2*2*2)
(2%2%2%2%2%2*2*2*2*2*2*2)
(2%2%2%2%2*2*2*2*2*2*2*2*2)
(2%2%2%2%2*2*2*2*2*2*D*2*2%2)
(2%2%2%2%2*2*2****D*2*2*2%2)
(2%2%2*Q*Q*Q*Q*PXPXP*P* Q¥ Q¥ Q¥ %))

Hopefully you will have noticed an important pattern. This is handy for isolating a portion of a piece of data ...
just like the lowByte and highByte keywords we used earlier. Comment out the earlier code (/ hope that you
have found the “Edit, Comment/Uncomment” feature) so we can try something else. First let us modify our print

function a slightly.

// void printdhb (char c, word n)
void printdhb (char c[], word n)
{ byte i,s,v;
Serial.print (c);
// Serial.print (": ");
/// those three dots means the code

Is continued on as it was previously

All we are doing changing the function such that it can print a char array rather than a single character by adding
the array notation “[]”. The compiler now passes pointer to the array rather than trying to pass the entire array

itself. Serial.print knows the difference between

a pointer and char value. Now try this in setup.

/* Bits, Bytes and Nibbles */
void setup ()
t

Serial.begin (9660);

word a,b,c;
printdhb (" DHB values BxFFFF: ",
printdhb (" DHB values OxFFFF/16: ",

printdhb (" DHB values BXxFFFF >> 4: ",
Serial.printin ("");

printdhb (" DHB values BOxFFFF: ",
printdhb (" DHB values BxFFFF*16: ",
printdhb (" DHB values BXxFFFF << 4: ",
Serial.printin ("");

printdhb (" DHB values BxFFFF: ",
printdhb (" DHB values @xFFFF/256: ",
printdhb (' DHB values @xFFFF >> 8: ",
Serial.printin ("");

printdhb (" DHB values BxFFFF: ",
printdhb (" DHB values @xFFFF*256: ",
printdhb (" DHB values @xFFFF << 8: ",
Serial.printin ("");

// Serial.println ("a=0xFFFF");
// a=BXFFFF;

BXFFFF);
(BXFFFF / 16));
(BXFFFF >> 4));

BXFFFF);
(OXFFFF * 16));
(BXFFFF << 4));

OXFFFF);
(BXFFFF / 256));
(BXFFFF >> 8));

BXFFFF);
(OXFFFF * 256));
(OXFFFF << 8));

Page: 42

ioix]
I Send |
DHE values 0OxFFFF: 65535, FFFF, 11111111 11111111
DHE wvaluez OxFFFF/16: 4095, 0OFFF, 000011211 11111111
DHE wvalues 0xFFFF >> 4: 40925, OFFF, 00001111 211111111
DHE values 0OxFFFF: 65535, FFFF, 11111111 11111111
DHE values 0xFFFF*16: 85520, FFFO, 11111111 11110000
DHE wvalues 0OxFFFF << 4: 65520, FFFO, 11111111 11110000
DHE values 0OxFFFF: 65535, FFFF, 11111111 11111111
DHE valuez 0xFFFF/256: 255, O00FF, 0O0O00OO0O0D 121112111
DHE wvalues O0xFFFF >> §: 255, O00FF, 00000000 111112111
DHE values 0OxFFFF: 65535, FFFF, 11111111 11111111
DHE values 0O0xFFFF*256: 65280, FFO00, 11111111 00000000
DHE wvalues U0xFFFF << §: 65280, FFO00, 11111111 00000000

Sometime you want a specific part of the whole that is not conveniently located on the end. In that case you
simple use a combination. Let us put the center 8 bits into the lower byte. We are going to use a number that is

a bit more distinctive.

/* Bits, Bytes and Nibbles */
void setup ()

Serial.begin (9600);
word a,b,c;

a=0x4321;
printdhb ("DHB values 'a' = @x4321: ", a);
a=a <« 4;
printdhb (" DHB values 'a' << 4: ", a);
a=a > 8;
printdhb (" DHB values 'a' >> 8: ", a);

// printdhb (" Hex value @xFFFF: ", @xFFFF);

@ CoM12

=10l x|

Send |

DHE wvalues Ta' = 0x4321:
DHE wvalues Ta' << 4:
DHE values "a' »» §:

17185,
12816,
50,

4321,
3210,
003z,

01000011 00100001
00110010 00010000
gooooooo oolloolo

See how the digits “32” moved from the center to the left end and then they were moved to the right end. The
“C” language lets us do things inside the function calls as well. This version works the same as the code above

(but is a bit less obvious).

/* Bits, Bytes and Nibbles */
void setup ()
t

Serial.begin (9600);

// printdhb (" Hex value BXFFFF: ", OXFFFF);

word a,b,c;

printdhb (" DHB values 'a' = 8x4321: ", (a=0x4321));
printdhb (" DHB values 'a' << 4: ", (a=a <« 4));
printdhb (" DHB values 'a' >> 8: ", (a=a > 8));

Page: 43

There are “many ways to skin a cat” in the “C” language. An even shorter form uses the compound operator
notation and no inside parenthesis. In the case of the shift operator the operator must precede the equals sign.
/* Bits, Bytes and Nibbles */

void setup ()

Serial.begin (9600);

word a,b,c;

printdhb (" DHB values 'a' = @x4321: ", a=0x4321);
printdhb (" DHB values 'a' << 4: ", a <<= 4);
printdhb (" Hex value 'a' >> 8: ", a >»= 8);

// printdhb (" Hex value @xFFFF: ", 8xFFFF);

There are some other compound operators that are very useful but look a little funny when you firs see them.
Go back and look at the loop our printdhb function.

i=0;
while (i < s) // begin while loop for decimal
{ Serial.print (" ');
i= i+l;
3 // end of while loop for decimal

We can use the “C” compound increment function “++” to shorten this code a bit.

i=0;

while (i++ < s) { Serial.print (' ');3} // while loop for decimal

The “++” operator increments the variable “i” by one: (i=i+1). This is “postfix” notation. That means it returns
the value of “i” to the function before it does the “i=i+1” operation. The first time into the loop the value zero is
returned. The next time the value one is returned and so on until the value reaches “s”. There is also a “prefix”
notation form:

i=0;

while (++i < s) { Serial.print (' ');3}

In this case the value is incremented before it is returned. Thus the first time in to the loop the value of “i” is
one. There is a similar function to decrement the value of a variable: “~-“. To make the program even shorter
we can initialize the value for the variable inside the test criteria.

| unile (i=8, ++i < s) { Serial.print (" ');} |

Here are some more compound operators ~~~funny math~~":

Operation Compound Operator | Sample | Same as
Addition += i+=5 (i=i+5)
Subtraction -= i-=5 (i=i-5)
Multiplication *= i*=5 (i=i*5)
Division /= i/=5 (i=i/5)

We are going to add another control structure. It is the “for” control structure. Here is a simple example.

for (i=0; i<1@; i= i+1)
{
Serial.printin (i, DEC);
3

The “for” keyword needs three sets of parameters. The parameters are delimited by semicolons. The first is for
the initialization. This statement is executed one time. The second is the test condition. This is executed before
the before executing the code block. If the result is false then the code block is not executed. The third will be
executed after the code block. The “for” control structure repeatable executes the block of code {statements

Page: 44

between the curly braces} until the condition returns false. The example above would print the digits “0” to “9”

to the serial terminal. You will frequently see the compound operator used in the third parameter set of the
“for” control structure. | have been using the word “set” because you can actually have multiple comma
delimited statements in each parameter set as in this example:

for (i=8, c=65; i<26, c<108; i++, c++)
{
Serial.printin (char(c));
3

This example would print the characters “A” to “Z” to the serial terminal.

Consider the “if then else” structure that we used in the printdhb function.

if (n« 10) §{ s=4;3%
else if (n< 100) § s=3;}
else if (n< 1608) § s=2;3}
else if (n<10008) { s=1;}
else { s=0;3

// begin if then for decimal

// end of if then for decimal

This was not bad for decimal and hex but it got rather long for binary. It uses a value the is repeatable multiplied

by 10. We can take advantage of some of our funny math and new control structures to shorten the function.

void printdhb (char c[], word n)
{ byte s;
long i;

Serial.print (c);

for (i=10, s=0; i <= 10000; i *= 10)
£ if (n<i) § s++;3

3

i=0;
while (i++ < s) { Serial.print ('
Serial.print (n, DEC);

DH

Serial.print (", ");

for (i=0x18, s=0; i <= 0x1080; i *= 0x10)
£ if (n¢<i) § s++;3

3

i=0;

while (i++ < s) { Serial.print ('0');}
serial.print (n, HEX);

")

Serial.print

printbin(highByte(n));
serial.print (' ');
printbin(louBute(n));
Sserial.printin ();

3

void printbin (byte v)

{ word i;
byte s;
byte n;
n= v > 4;
for (i= B1@, s=0; i <= B10@8; i *= B1@)
g if (n<i) § s++53
3
i=0;
while (i++ < s) { Serial.print ('0');}
Sserial.print (n, BIN);

// function to print value as
// Decimal, Hexidecimal and binary

// print incoming string
// pad decimal value with spaces

// print decimal value

// print seperator
// pad hex value with zeroes

// print hex value

// print seperator

/* the Arduino IDE/compiler has a problem with the binary format values larger than a byte
so we have to do this a byte at a time */

// call function to print high byte
// print seperator

// call function to print low byte
// print a new line

// functiion to pad and print one bianry byte

// used for a nibble
// move high nibble into low nibble position
// pad binary value with zeroes

// print binary value

Page:

45

serial.print (' ');
n= v << 4; // roll the high bits off to the left
n=n > 4; // move the left over bits back to the right
for (i= B1@, s=0; i <= B10@8; i *= B1B) // pad binary value with zeroes
£ if (n<i) § s++;3
3
i=0;
while (i++ < s) { Serial.print ('0');3}
serial.print (n, BIN); // print binary value
3

Oops ... another function slipped in there. Our function calls are now three levels deep. Every level deeper we go
the code becomes more difficult to read. The upper levels begin to look nothing at all like the original language.
Take a look at the setup function in our program. It is comprised principally of calls to our user defined
functions. In order to understand what is happening one must start at the top and work their way down to the
bottom level while learning the meanings of the user defined “keywords” we have added to the language. Two
or three levels are not too bad. Unfortunately the larger and more complex the program becomes then the
tendency is for the number of function call levels to increase. This is true for all programing languages.

In the new function we have used the shift operators “>>" and “<<” to isolate each nibble. That way we can print
each nibble separately making the binary format much easier to read.

The other thing that your notice is that the variable “i” was changed to a “l1ong”. A long is a 4 byte variable. This
was done in order for “i” to be able to hold the larger values required in the test condition for the “if” control
structures. If you change it to a “word” (two bytes) then the value will overflow. The program will crash and
burn. Note that we used the compound operator “*=" to increase the value of “i” by a factor of 10.

RE=Y
I Send |
DHE wvalues=s "a' = 0x4321: 17185, 4321, 0100 0011 0010 0OO1 =
DHE wvalues Ta' <« 4: 12816, 3Z10, 0011 0010 0OO1 COOO
DHE waluez Ta' >x> §: 50, 0032, 0000 OO0OO 0OO11 OO1O
|
Jv aukoscroll |NOIineending LI |%DD baud ;I

Now that we have our nifty new print function we want to take a look at two more operators. They are the
bitwise “or” and the bitwise “and” operators. The first thing that happens is we run into the Arduino’s binary
input limit again but this time we know how to deal with that.

void setup ()
{

Serial.begin (9600);

word a,b,c;

a= (B1o10101@0 << 8) + Blololele;
b= (B160116681 << 8) + B10011081;

printdhb (" a: ", a);
printdhb (" b: ", b);
printdhb ("'and' a | b: ", a | b);
printdhb (* 'or' a & b: ", a & b);

Page: 46

The first thing to note is the use of the “<<” operator to get around the limitations of the Arduino’s
IDE/compiler. The last two lines have our new operators in them. The “or” operator “|” (that is a vertical bar
not a capital I) returns a one for each bit position where either number has a one. The “and” operator
“&”returns a one for each bit position where both number have a one.

RT=IE
I Send |
a: 438%0, AaAAM, 1010 1010 1010 1010 =
b: 39321, 99%%, 1001 1001 1001 1001
Tand®™ a | k: 4805%, BEEE, 1011 1011 1011 1011
"or™ a & b: 34952, 8888, 1000 1000 1000 1000
[
v &ukoscrall INDIine ending LI I%DDbaud LI

The numbers that we have used represent every possible combination of one and zero between the two
numbers. The “and” operator is frequently used to isolate a portion of a number. For example a place where we
only want the lower nibble.

void setup ()
Serial.begin (96080);
word a,b,c;
a= 54321; // we want the lowest nibble of the word
b= Bil1l; // this is our bit mask
printdhb (" a: ", a);
printdhb (" b: ", b);
printdhb (" 'or' a & b: ", a & b);
_iolx]
|| Send |
a: 54321, D431, 1101 0100 0011 0001 =
b: 15, 000F, 0000 OOOO OOOO 1111
Tor' a & b: 1, 0001, 0000 QO0O QO0OO oQool
id
v &utoscrall IND line ending ;l I'SIEuEID baud ;l

This could be used to simplify our “printdhb” function but | will leave that up to you. The last thing we are going
to look at is the actual “.cpp” file generated by the Arduino IDE to send to the compiler. That is shown below.
Note that the two file have been combined into one with the main file first. The lines highlighted in yellow tell
the compiler what line of what file the included lines come from. The compiler uses this information to return
the correct location of any errors it encounters. The lines highlighted in - are called “forward declarations”.

These tell the compiler what are functions are defined in the rest of the file.

#line 1 "Bits and Bytes03.ino"
/* Bits, Bytes and Nibbles */

Page: 47

http://en.wikipedia.org/wiki/Forward_declaration

#line 3
void setup ()

{

Serial.begin (9600);

word a,b,c;

a= (B10101010 << 8) + B10101010;
b= (B10011001 << 8) + B10011001;

printdhb ("
printdhb ("
printdhb ("'and' a
printdhb (" 'or' a

OO0 0w
(VRN o]

|
&
}

void loop () {
} // do nothing

#line 1 "functions.ino"
void printdhb (char c[], word n) // function to print value as
{ byte s; // Decimal, Hexidecimal and binary
long 1i;

Serial.print (c); // print incoming string

for (i=10, s=0; i<=10000; i *= 10) // pad decimal value with spaces
{ if (n<i) { s++;}
}

i=0;

while (i++ < s) { Serial.print (' ');}

Serial.print (n, DEC); // print decimal value

Serial.print (", "); // print seperator

for (i=0x10, s=0; 1<=0x1000; i *= 0x10) // pad hex value with zeroes
{ if (n<i) { s++;}
}

i=0;

while (i++ < s) { Serial.print ('0'");}

Serial.print (n, HEX); // print hex value

Serial.print (", ") // print seperator
/* the Arduino IDE/compiler has a problem with the binary format values larger than a byte
so we have to do this a byte at a time */

printbin (highByte (n)) ; // call function to print high byte
Serial.print (' "); // print seperator
printbin (lowByte (n)) ; // call function to print low byte
Serial.println (); // print a new line
}
void printbin (byte wv) // functiion to pad and print one bianry byte
{ word 1i;
byte s;
byte n; // used for a nibble
n= v >> 4; // move high nibble into low nibble position
for (i= B10, s=0; 1 <= B1000; i *= B10) // pad binary value with zeroes
{ if (n<i) { s++;}
}
i=0;
while (i++ < s) { Serial.print ('0');}
Serial.print (n, BIN); // print binary value
Serial.print (' ");
= v << 4; // roll the high bits off to the left
n=n >> 4; // move the left over bits back to the right
for (i= B10, s=0; 1 <= B1000; i *= B10) // pad binary value with zeroes
{ if (n<i) { s++;}
}
i=0;
while (i++ < s) { Serial.print ('0');}
Serial.print (n, BIN); // print binary value

Page: 48

Special Numbers (true or false?)

There are constants that are defined that are not really numbers but they always have a value. The keyword
“false” is defined to be equal to zero. Most often the keyword “true” will be set equal to one or minus one but
it may be any number other than zero. Many times these two special numbers are used with an associated data

type named “boolean”.

If you set a variable equal to “false” then that variable will be evaluated as zero. However if you set a variable
equal to “true” then the value returned from evaluating the variable should not be considered predictable
(actually for a specific system it will be ... but that is not something to depend on).

These conditional phrases are equivalent:

boolean grape;

if.(érape == false)
if (grape == 0)

As are these:

boolean berry;

if.(Berrg == true)
if (berry != 0)

/* sample code */
boolean grape = true

if (grape)
if (berry)

if (grape == true)
if (berry == true)

if (grape != false)
if (berry != false)
if (grape == false)
if (berry == false)

if (grape != true)
if (berry != true)

b

boolean berry = false;

makeJuice ();
makedelly ();

makeJuice ();
makedelly ();

makedJuice ();
makeJelly ();
makeJuice ();

makeJelly ();

makedJuice ();
makeJelly ();

//
//

//
//
//
//
//
//

//

execute make grape juice
not execute make berry jelly

execute make grape juice
not execute make berry jelly

execute make grape juice

[not execute make berry jelly

not execute make grape juice

[execute make berry jelly

not execute make grape juice

[execute make berry jelly

Page: 49

Memory: FLASH, SRAM, EEPROM

The Nano comes with three type of memory that have different properties and functions:

EEPROM SRAM FLASH
1Byte Wide 1Byte Wide Program Memory
2 Bytes Wide
32 General
_______________________ Purpose
Registers

641/0
Registers
AVR MPU
_..external |
DATA
EEPROM: 1 K for the ATmega328 (1/2 K for the ATmegal68)
SRAM: 2 K for the ATmega328 (1 Kforthe ATmegal68)
FLASH: 32 K for the ATmega328 (16 K for the ATmegal68)

EEPROM retains its values when power is shut off and even when a new sketch is uploaded but access is slow.
The AVR core actually has to be shut down to access EEPROM (2 clock cycles for write, 4 clock cycles for read).
Thus a special function in used in order to read or write the data in the EEPROM. It is good for about 100,000
write cycles. Well written software will compare the value to be written to value that is already stored there. If
the two are the same then it does not overwrite the value. This is the location to store values that may change
but need to be retained when the device is rebooted. An example of such data would be a calibration factor for
the internal temperature sensor, the location of a remote sensor or a data log.

FLASH retains its data until it is overwritten by a special piece of software (boot loader) or hardware
(programmer). It is good for about 10,000 write cycles. Our sketches can read from the FLASH memory but they
cannot write to it. This is where the code for the sketches is stored when they are uploaded. A special “FETCH”
mechanism moves program code from the FLASH memory to the microprocessor core. One of the registers in
the SRAM address space is used as a “program pointer” to tell the FETCH mechanism which bytes to transfer.

SRAM loses its values whenever power is removed but it is very fast. There is not practical limit to the number of
times that it can read and written. The AVR core has direct access to all the SRAM address space. This is where
our variables and the programs stack are stored. What is a stack? It is a special section of memory used by the
software to pass parameters between functions including the return address. It is also used for local variables
defined within a function. It is possible to write a function that repeatedly calls itself (that is called a recursive
function) and overfill the stack. That is called stack overflow and will most likely crash your Nano. Some of the
AVR mpu’s have a provision for external RAM. In that case it is “mapped” into a reserved area of the SRAM
space one section at a time. None of the Arduino boards (that | have seen) have this option.

Page: 50

All we have to do to read or write to the SRAM is declare a variable. Examples:

byte MyByte = B; "\ 8 DIt ubsgined number initalized to eight
uord MyWord = 14; ‘i 16 bit ubsgined number initalized to sixteen

char Alpha = 'A'; “y B DIt osigned number initalized to sixty-five (A = ASCII 45)

char Mychar = 8; “y B it osigned number initalized to zero

unsigned char MyUnChar = MyByte; %% same as byte

int MyInt =13 ‘A1 bit signed number (-32,768 to 32767)

unsigned int MyUnInt = 1; \yogame as uord

long MyLong = &3 \y 32 bit o signed number (-2,147,483,648 to 2,147,483,647)

unsigned long MyUnLong = 23 \Y 32 DIt ounsigned number (B to 4,294,967,295)

float MyFloat = 18.81; \y 32 bit signed floating point number {-3.482823GE+38 to 3.4028235E+38)
[* double */ \yogee float (Just in case you uere looking for double)

char Mystring[] = "Hello"; \ string are arrays of the type characcter

FLASH is a bit more of a challenge. In theory is you declare a constant then the preprocessor/compiler should be
able to calculate and imbed the value in line with the machine code. | am however told that the value gets
copied to RAM. We will ignore that for the moment as it really does not affect us at the level we are working.
There is however another method of storing and retrieving data in FLASH using a set of special functions. This is
best utilized for such things as a data table or group of strings where you are going to look up a specific value or
string. That saves you from having to place the entire table in the valuable and scarce SRAM space.

EEPROM is much the same as FLASH in that we need to use a special set of functions to read and write it. If we
use multiple sketches with the same Arduino board then we also need a bit of upfront planning so that we do
not overwrite valuable data that another sketch needs. We may also want several sketch to be able to access
the same data. This can be done by including a file in our sketch that holds the the declarations for the locations
in EEPROM.

We are going to expand the “Hello World” program with versions that uses each form of memory.

Page: 51

SRAM: Hello Word 001/002

In this version we are going to use SRAM by declaring s string for our message.
1ol]

File Edit Sketch Tools Help

B3CoM12
I Send

Helloiorld_000 &

/% delcare 2 string array to horld the message oI IO oL I E
and initalize the contents of the string */ Hello World!
char meg[]="Hello World!"; Hello World!
Hello World!
void setup() Hello World!
% serial.beqin(%608); fello Horldl
void ll]l]p() Hello World!
{ serial.printin{nsg); Hello wWorld!
delay (1808); Hello World!
Hello World!
I,
Hello World!
Hello World!
Hello World!
Hello World! =
d Hello World!
K] 11 1d! _|J

P o

¥ autoscroll IND line ending ;I IQGUU baud ;I

Notice that we did not specify the size of the array. The compiler will figure that out for us. The other thing to
notice is that this version and the previous version came out the very same size: 2,118 bytes.

Another way to do this is to use the string library that comes with Arduino IDE. We use the “#include” statement
to do that.

@ Helloworld 001 | Arduino 1.0.5

File Edit Sketch Tools Help

Helloworld_001 §

#include <ustring.h> | Send
Hello World! =l
Hello World!

/% delcare a string array to horld the message
and initalize the contents of the string */

String msg="Hello World!"; Hello World!

Hello World!

vold setup() Hello World!

{ Serial.begin(9608); Hello World!

1 Hello World!
void Toop()

1
{ Serial.printin(nsg); Hello World!
delay (1888); Hello World!

I Hello World!
Hello World!
Hello World!
Hello World! H
Hello World!
Hello World!
aximum) Hello World!
Hello World!

K | o
[Autoscrol |Nolineending v| [9500baud v

Wstring.h is found in the directory:
<your program path>\Arduino\hardware\arduino\cores\arduino

Page: 52

This provides a new variable type “String”. There are additional functions added to manipulate the string such
concatenation and compare but note what that costs us. The size of the program is now 3,680 bytes. The
Arduino is probably not the optimum location to be manipulating strings but it is good to know we have that
capability if needed.

FLASH: Hello Word 003/004

Flash memory (or program memory) is where we want to store most of our data because it is the largest area we
have to work with. In the case of Hello World the easiest way to that is with the special function F().
e

File Edit Sketch Tools Help

e I Send
©0 BOB oo |
Hello World!
HelloWorld_003 Hello World!

VO‘i[dSSEFUIl](g T (9600) Hello World!
erial.begin i Hello World!

vo%d luup() Hello World!
i Serial.printin(F("Hello World!")); Hello wWorld!
delay (1888); Hello World!

I; Hello World!

Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

ptl

J| |

v autascroll Mo line ending :I |9600 baud LI

Arduine Nano v ATme on COM1Z

There seems to be some controversy about the value of using this function because the Arduino has to copy the
string variable from FLASH to SRAM in order for the serial print routine to print it. This is however considered
the ‘proper’ method of printing inline literals. Quote from Mathew Ford of Forward Computing and Control Pty.
Ltd.: http://www.forward.com.au/pfod/ArduinoProgramming/index.html

“The F() syntax just puts the string in Program memory (Flash) and casts the resulting point to a
unique class. This unique class insures that the correct print() method is called to read the
bytes from the program memory and write() them. Any class that inherits from Print can use this
approach.

That includes Server, Steam, Client, HardwareSerial, SoftwareSerial and UDP.”

Well that is cool but it is not much help if we want to manipulate the string or if we want to use the same string
several places in the program. In order to do that we have to use functions from “PROGMEM” that are found in
“<your program path>\avr\pgmspace.h”. This is a collection of functions to store and recall data from flash
memory. These are defined in avr/pgmspace.h. If you look at some of the examples that are on line then be
careful that they use the latest version: the proper syntax has changed. The current syntax is documented at the
URL:

http://www.nongnu.org/avr-libc/user-manual/group _avr _pgmspace.html

Page: 53

http://www.forward.com.au/pfod/ArduinoProgramming/index.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__pgmspace.html

Before we go on we want to make two small additions to our program. First we will add a description of the

program the program at the top. Then we will make the Nano wait for us to talk to it.

/* Program: Hello World

Description: Sketch to print “Hello World” in serial monitor.
*/
int junk = 0; /* incoming serial byte */

void setup()

§{ /* run once each time the Nano is reset or powered on */
/* This sets up a serial connection, 9.6 kbts/second */
Serial.begin(9660);

void loop()
{£ /* loop until the end of time */

{

/* get incoming byte */

junk = Serial.read();

/* this next line is useful for debugging if you remove the comment markers

/* Serial.printin(junk); */

/* Print a line over RS5232/USB the connection. */

Serial.printin(F("Hello World!"));
3

3

if (Serial.available() > 8) // this line checks to see if there is something to read

Upload the new code. Then switch to the monitor window and type a single character followed by selecting the

send “button”. What happens if you enter s string like 12345 ?

| e@HelloWorld_003 | Ardui .5

IF\\E Edit Sketch Tools Help

=] i

=]

Send

1 ©e COMI2

i 12345
HelloWorld_003 §

H Hello World!

f* Prograns Hello World Hello World!
Description: Sketch to print “Hello World” in serial monitor. .
Hello World!

1

*/

| int junk - e; /4o incoming serial byte */ Hello World!
Hello World!

void setup() Hello World!
{ /* run ance each time the Nang 15 reset or pouered on */ Hello World!
/* This seﬁs up a serial connection, 9.6 kbts/second */ Helle World!
Serial.begin(9688); Hello Horld!

L Hello World!
vaid ll]l]p() Hello World!
£ /% loop until the end of tine */ Hello World!
if (serial.available() > B) /7 this line checks to see 1f there is sonething |Hello World!

{ Hello World!

/% get inconing byte */
junk = Serial.rezd{);
/% this next line s useful for debugging if you remove the comnent markers
/% Serial.printin{ junk j; */
f* Print a line over R5232/USB the connection. */
Serial.printin(F("Hello World!"));

£l

o

[Autoscrol Mo line ending =] [s600baud =]

PROGMEM is really most useful for tables. So our program is going to build a table in four languages. It will then

inquire which language to use. Please read the comments in the following code for details.

/* Program: Hello World in four languages using PROGMEM */

//=—=declarations——-——=—-——=—-——=————————— oo

Page: 54

/* include library to use flash memory (PROGMEM) for fixed data storage */
#include <avr/pgmspace.h>

/* this is where we define our PROGMEM string */

char HelpStr[] PROGMEM = "E=English, F=French, S=Spanish, I=Italian, A=A11";
char EnglishGreetingStr[] PROGMEM = "Hello World";

char FrenchGreetingStr[] PROGMEM = "Bonjour tout le monde";

char SpanishGreetingStr[] PROGMEM = "Hola mundo";

char ItalianGreetingStr[] PROGMEM = "Ciao mondo";

/* Here we set up an enumerated array of constants.
This is how all the example code is shown. I was
unable to find an example anywhere that put strings

in PROMEN did not use an array to access them. */
const char *Language[] PROGMEM =
{ EnglishGreetingStr, // Lanquage [8]
FrenchGreetingStr, // Language [1]
SpanishGreetingStr, // Lanquage [2]
ItalianGreetingStr 3; // Language [3]

/* Here we set up a separate constant name for each string.
This may be the only example of this type syntax/usage. */

const char *English PROGMEM = §EnglishGreetingStr};

const char *French PROGMEM = {FrenchGreetingStr3};

const char *Spanish PROGMEM = §SpanishGreetingStr};

const char *Italian PROGMEM = §ItalianGreetingStr};

const char *HelpMe PROGMEM = {HelpStr3;

/* Unfortunately the software cannot use the strings in
PROGMEM directly. We have to use a special function to
transfer the strings from PROGMEM to SRAM so that they
are in the same memory where the program runs. This
sets an area in SRAM to work with the strings. */

char OutBuffer[606];

/* this byte is used to read from the RS232/USB port */
char junk;

Y S L e it
void setup()
{ /* run once */
Serial.begin(9668); // This sets up a serial connection, 9.6 kbts/s.
/* wait for serial port to connect. Needed for Leonardo only */
wvhile (!Serial) { ; }
/* We are going to prompt the user for input.
Note that we are using the F() function here to wrap the
"string literal" */
Serial.printin (F("Enter: E, F, S, I or RA"));
Serial.printin ("");

3

Y At 11 8 ittty
void loop()
{ /* loop until the end of time */
if (Serial.available() > 8)
t
/* get incoming byte */
Jjunk = Serial.read();
/* this next line is useful for debugging if you remove the comment markers
/* Serial.printin(junk); */
/* now that we have a character from the user we have to decide what
to do. First off we are really particular. We will only accept
1 of the 5 charcters we asked for to begin with. If the character
Is not in that group we are going to send the user another message
to explain the situation. That is the string tha we defined as

*/

Page:

55

3

3

"HelpMe" in our declarations. So the first thing that we do is copy
that string to the OutBuffer using the special PROGMEM string copy
function. I am not going to try to explain the syntax because I
do not understand it myself. The importent parts to know are:
1) strepy P() is the special function to copy a string from PROGMEM
2) the first parameter (in thise case "OutBuffer") is the SRAM array
to copy the string to.
3) the last parameter (in this case "HelpMe") is the constant that
points to the string that we wish to retrieve. */
strepy P(OutBuffer, (char*)pgm read word(&(HelpMe)));

/* Now to test our user input. This is very straight foward. If the byte
matches the character then we copy the appropriate string to the
OutBuffer using the same syntax that we used for default string above.

We repeat the test for each character (fall through logic). */

if (junk == 'E')

{ strcpy P(OutBuffer, (char*)pgm read word(&(English)));3

if (junk == 'F')

{ strcpy P(OutBuffer, (char*)pgm read word(&(French)));3

if (junk == *S")

{ strcpy P(OutBuffer, (char*)pgm read word(&(Spanish)));3}

if (junk == 'I")

{ strcpy P(OutBuffer, (char*)pgm read word(&(Italian)));3

if (junk == 'A')

/* This is a bit different. Here we are using the Constant array to print
all the various language strings that we defined. This is maily here to
show the difference in systax: speciically the "[i]" at for the
constant array. The loop starts with the variable i equal to zero.

It copies the PROGMEM string to the OutBuffer and prints it. Then the

loop increases the value of i by 1 (i++ means i=i+1) and checks to see
if the value is less than 4. If it is then then the loop is processes
again. It repats this process until i=4. */

{ for (int i =8; i < 4; j++)
{ strcpy P(OutBuffer, (char*)pgm_read word(&(Language[il)));
Serial.printin (OutBuffer);

/* clear the buffer so that the main print statement will output a blank line
C use schar(8) to define the end of a string.
We simply write 8 to the first byte */
OutBuffer[8]= char(8) ;
3
/* Print whatever we happen to have in the OutBuffer */
Serial.printin (OutBuffer);

Page: 56

o0 sketch_augl0a | Arduil 0.5

File Edit Sketch Tools Help

sketch_aug10a §

/% How to test our user input, This is very straight foward. If the byte
matches the character then we copy the appropriate string to the
utBuffer using the same syntax that we used for default string above,

e repeat the test for each character (fall through logic). *
if (Junk == 'E'}
{ stropy_P(OutBuffer, (char®)pom read word(s(English))):}
if (Junk == 'F')
{ atrepy_P(0utBuffer, (char*)pom_read word({z(French))):}
if (umk == 'F0)
{ strepy P(OutBuffer, (char*)pom read word{s(Spanish))):}
if {junk == 'T'}
{ strcpy_P(OutBuffer, (char*)pom read word(s(Italian))):}
if {Junk == 'A")

/% This i=s a bit different. Here we are using the Constant array to print
all the wvarions language strings that we defined., This is wmaily here to
show the difference in systax: speciically the "[1]" at for the
constant array. The loop starts with the wariable 1 equal to zero.
It copies the PROGMEM string to the OutBuffer and prints it. Then the
loop increases the value of i by 1 (i++ means i=i+l) and checks to see
if the walue iz less than 4. If it iz then then the loop is processes
again. It repats this proceas until i=4. L
{ for (int i = 0; 1 < 4; i+
{ stropy P{0utBuffer, (char*)pmm_read wordis{Language[1]})));
Serial.println(OutBuffer |):
+
/% clear the buffer so that the main print statement will output a blank line
C use scharil) to define the end of a string.
We sinmply write 0 to the first byte *
OutBuffer[0]= char(0) ;
}
4% Print whatever we happen to hawe in the OutBuffer */
Serial.printini OutBuffer):

yte maximam)

EEPROM: Hello Word 005/006 (Write, Read)

First of all we need to do a bit of planning. We need to define the addresses of the data that we are going to
store in the EEPROM. Think of it as a hotel with a lot of rooms. The hotel guests are data bytes. We need to be
sure that we send parties of guests to the right suite of rooms and that the rooms are large enough to
accommodate the number of guests in each party. So the first question is “How many guests can we
accommodate?” The Arduino headers include '<your program
path>\Arduino\hardware\tools\avr\avr\include\avr\io.h’ that defines symbols for each board. This file is
actually more like an index that points to the appropriate file for the specific microprocessor.

191 #elif defined {_ AYR_ATmega3z5e_)
192 # o include <avr/ion3258.h0>

193 #elif defined {_ AYR_ATmega3z25eP_)
194 # include <ayr/iomn3258.h>

195 #elif defined {_AYR ATmega3z28P_)
196 # include <a¥r/ion3z28p.h>

197 #elif defined {_ AYR_ATmega3z9_)

198 ¥ include <ayr/ion329.h>

199 #elif defined {_ AYR_ATmega3z29pP_)
208 # include <avr/iom329.h>

281 #elif defined {_ AYR_ATmega3z29e_)

=101 x|

Enter: E, F, 5, I or &

Hello World

Hello World

Bonjour tout le monde
Hola uundo

Ciao mondo

[Bonjour tout le monde
Hola mundo
E=English, F=French, 3=3panish, I-Italian, A=4ll

¥ autoscroll Mo line ending ;I IBGUU baud LI

1

Arduine Na

For our CPU in the Nano is says to include the file ‘10328p.h". If we look at that file then we find the symbol
‘E2END’.

Page: 57

J* constants */

#define SPM_PAGESIZE 128

tdefine RAMEND 8xBFF /* Last On-Chip S5RAM Location */
tdefine XRAMSIZE g

#define XRAMEND (RAMEND + XRAMSIZE)

#define EZEND 8x3FF

tdefine EZPAGESIZE 4

tdefine FLASHEND ax7FFF

FLASHEND: The last byte address in the Flash program space.
RAMEND: The last on-chip RAM address.
E2END: The last EEPROM address.

Here is a simple program to try but the results may surprise you.

void setup() {
Serial.begin(9600);
Serial.print("FLASHEND: ");
Serial.print1n(FLASHEND);
Serial.print("RAMEND: ");
Serial.print1n(RAMEND);
Serial.print("E2END: ");
Serial.print1n(E2END);

void loop() {3} // do nothing

Page: 58

©® A¥YR_MEMORY_CONST | Arduino 1.0.5 o[]S

File Edit Sketch Tools Help

i x]

AR_MEMORY_CONST §

I Send | 155
void setup() { FLASHEND: 32767 2
Serial.beqgin(9688]); EAMEND: 2303
Serial.print{"FLASHEND: ");)
serial.printin(FLASHEND); EZEND: 1023
Serial.print({"RAMEND: ");
Serial.printin{RAMEND);
Serial.print({"E2END: "); =
Serial.printin{E2END); 4 | gIJ
} ¥ Autoscroll INolineending LI I%Dﬂbaud LI —
void Toop() {%; .
4 o

Binary S i1ze 2 s (o : e maximum)

Arduing Nano w ATm

If you are sharp then you are asking “Hey! Should not the number for RAMEND be 2047 or 2048 ??7?”

Well yes and no. The address space that the SRAM lives in is also used for CPU registers and 10 mapping. So the
first 255 addresses are ‘reserved’: 2303-255=2047. Let’s try something a little different. This program will use
two files. Open up the Arduino IDE and created new sketch named “AVR_MEMORY_SIZE” and save it. Then
create a second file named “ChipNames.h”. Enter this code in the new window and then save the file. It will be
saved in the same directory as your sketch.

AYR_MEMORY_SIZE | Arduino 1.0.5 = ||:||5|

File Edit Sketch Tools Help

ChipMames.h

#if defined {_ AVR ATnmegaz5éd_) -
extern const char ChipName[] = "Atmel ATnegaz5&@";
#elif defined {_ RAYR _ATmega3Z8P_)

extern const char ChipName[] = "Atmel ATnega3:Z8p";
#elif defined {_ AYR ATmegale8 |

extern const char ChipName[] = '"Atmel ATmegals8";
#elif defined {__ AYR_ATmegals8P_)

extern const char ChipName[] = "Atmel ATnegals8P";
#else

extern const char ChipName[] = "Unknouwn';

tendif

What we are doing here is to take advantage of some more of the information that is stored in the system
header files. In this case we are setting a constant for a proper name for our processor. Statements beginning
with the pound sign “#” (I am American. If | had been British | would have used the word “hash”) are directives to
a special program called the pre-compiler. It runs before the compiler and sets our constant value at compile-
time. We could have done this in the main code using if or case statements. In that case the proper name would
be determined at “runtime” (when the program executes). However each compile is targeted for a particular

Page: 59

processor so we can determine the proper value at compile time. This is more efficient because in theory the
program code runs many times but the final compile only has to run once. We will take advantage of a few more
defines below. Now go back to the first windows and enter this program code.

/* get the size of the AVR RAM areas */
#include "ChipNames.h" // include our other file.

float TempVal = 0;

void setup() {
Serial.begin (9608);

/* print chip name */
Serial.print("Microprocessor type: "); //---- Put proper designation in here -----
Serial.printin(ChipName);

/* speed code taken from http://playground.arduino.cc/Main/ShowInfo */
Serial.print(F("Speed = "));

Serial.print(F_CPU / 1660000,DEC);

Serial.printin(F(" MHz"));

/* get Flash RAM size */

TempVal= FLASHEND;

TempVal= ((TempVal+1)/10824);

Serial.print("Size of FLASH(using FLASHEND): ");
Serial.print(TempVal);

Serial.printin("K");

/* get SRAM size */

TempVal= (RAMEND -255); // sram begin at 256
TempVal= ((TempVal+1)/1024);

Serial.print("Size of SRAM (using RAMEND): ");
Serial.print(TempVal);

Sserial.printin("K");

/* get EEPROM size */

TempVal= (E2END);

TempVal= ((TempVal+1)/1024);
Serial.print("Size of EEPROM(using E2END): ");
Serial.print(TempVal);

Serial.printin("K");

/* get free (unallocated) SRAM */
Serial.print("Free SRAM: ");
Serial.print(freeRam());
Serial.printin(" Bytes");

3
void loop() {3;

/* http://stackoverflow.com/questions/966389/how-can-i-visualise-the-memory-sram-usage-of-an-avr-program */
int freeRam () §{

extern int __heap_start, *_ brkval;

int v;

return (int) &v - (__brkval == @8 ? (int) & heap_start : (int) _ brkval);
3

| ran this program on two different Arduino boards to show the what happens when one has a different AVR
chip.

Page: 60

R JRETEY
|| Send | || Send |
Microprocessor type: Atmel ATmegalZ8p = Microprocessor type: Atmel ATmegalés =
Bpeed = 16 MH= gpeed = 16 MH=z=
Size of FLAZH (using FLASHEND): 32.00K 8ize of FLASH{using FLASHEND): 16.00K
Size of SRAM (using RAMEND): Z2.00K 9ize of SRAM (u=ing RAMEND): 1.00K
Size of EEPROM{using EZEND): 1.00K S3ize of EEPROM (uszing EZEND): 0.50E
Free SRAM: 1669 Bytes Free SRAM: 645 Bytes

- -
Kl | _>|_I L | _>|_I
¥ autascrall [Moline ending x| [s600baud x| ¥ autascrall |Moline ending = [s600baud |

Now that we know how many rooms we have we need to check our reservations:

1 2 3 4 5
123456789012345678901234567890123456789012345678901234567890
HelpStr, "E=English, F=French, S=Spanish, I=Italian, A=A11", party of 48

English, "Hello World", party of 11
French, "Bonjour tout le monde", party of 21
Spanish, "Hola mundo", party of 10
Italian, "Ciao mondo", party of 10

Each of parties will also have a hotel employee to assist them: null (ASCII O to terminate the string). Addressing
begins with zero (0) and our rooms just happen to be sized in increments of four (4, an arbitrary choice by the
accounting department). The HelpStr is going to get the deluxe suite on the ground floor that will accommodate
52. The rest will get each get rooms less than half that size: 24. This will however be adequate room to allow the
parties to change their guest list a bit without inconveniencing the other guests. To be done properly we should
put this in a separate file that will be shared between our two programs. But for the moment we shall just
duplicate it in each sketch. So our first EEPROM program is going to be named “Hello Word 005”. All it is going to
do is check to the guests into their rooms (write the data to the EEPROM).

Page: 61

‘ HelloWorld_0045 § |

i Programn: Hello Morld 885 -
This program stores our Greeting strings in EEPROM.
These values will remain when the board is turned off. */

#include <EEPROM.h>

/* Addresses in EEPROM */

const word Helpstr = @8; /* EEPROM location 6888 through 8851 */
const word English = 52; /* EEPROM location 8852 through 8875 */
const word French = 7é&; /* EEPROM location 8876 through 8899 */
cconst word spanish = 188; /* EEPROM location 8188 through 8823 */
const word Italian = 124; /* EEPROM loration 8124] through 8147 */
const word TheEnd = 148; #* the end of our used EEPROM area *

void setup()
Serial .begin{9608);
storestring (Helpstr, English, “E=English, F=French, S=Spanish, I=Italian, A=A11%8"};
storestring (English, French, "Hello KorldiB8"};
storestring {French, Spanish, "Bonjour tout Te monde%B8'");
storestring (Spanish, Italian, "Hola mundonw@");
storestring (Italian, TheEnd, "Ciao mondo4@");
// the "\@" is an "escape sequence" that tells the compiler ue mean char(8)
/4 which we could not normally type in a string. The compiler should terminate
/4 the string for us ... I am just being extra careful (belts and suspenders).
1
vaid Toop(} { 3 // do nothing

void storestring (word addrstart, word addrend, char greeting[])

£ byte chrcount = 8; /f this for the index into our char array
byte singlechar=8x81; /f holds a single character from the array
word addr=addrstart; // this 15 the address that will he written
J/ continue until come to char(B)
while ({singlechar != 8) & (addr != addrend}} /4 or we reach the end of the allotated space
i singlechar= greeting[chroount++]; // get one character
EEPROM.urite(addr++, singlechar}; J4ourite it to the EEPROM
if (singlechar !=8) Serial.print (char{singlechar}); // this is for debugging
If (singlechar ==8) Serial.print ("%.8"}; AU WD print thet
delay(1@}; /7 allow time for EEPROM urite to complete
3
serial.printin{""}; ffoprint a line feed
3

4 of

There are a lot of things to notice here. The #include line uses the <delimiters> (less than, greater than). This is
the “C” convention for a system supplied library. The convention for user files/libraries is for “delimiters”
(double quotes). The Arduino IDE may look for the files in different locations according to the delimiters used.

In the setup function we have put a “\0” at the end of each of our strings. This is an “escape sequence” that tells
the compiler we want an ASCII zero there. We cannot normally type that character because it is a non-printing
control character. You are likely to see some used in “C” code:

\0O = Null ASClII zero (0)

\n = Newline ASClI ten (10)

\r = Carriage Return ASCII thirteen (13)

\t = Tab ASClII nine (9)

\e = Escape ASCIl twenty-seven (27)
\\ = Backslash ASCII ninety-two (92)

We created our first function in this program. Note that we are also passing it parameters and how the
parameters are declared. We also declared three variables within the function: chrcount, singlechar and addr.
These variables only exist when the function is executing. That saves us valuable SRAM space. The special
function that we used was “EEPROM.write”. This is part of a class library. The class is “EEPROM” and the
function is “write”. You should notice the period between the class and the function (remember that “C” is case
sensitive). This function writes a single byte at a time.

Page: 62

http://en.wikipedia.org/wiki/ASCII

Also notice the “while() {}’ loop structure. We repeat this section of code while the conditions are true. The two
conditions are that our current character is not ASCIl 0 and we have not reached the end of the allocated
address space. The “1=" (exclamation point and equal sign) is the “C” comparison operator for “not equal”. The
“&&" is the “C” logical operator for “and” (both conditions must be true). In order to enter the loop we initialize
the “singlecharacter” variable to a number other than zero. Remember that “0x01” is the “C” hex notation for
one (1). “Ox0F” would be decimal fifteen (15). A bit further down “=="is the “C” comparison operator for
“equal”. We also used the escape sequence “\\” to print a backslash.

Our variables “chrcount” and “addr” are incremented by the “C” compound operator “++”. The placement of
this operator can be very important if you use it inside a function call such as “greeting(chrcount++)”. In this case
the “++” operator follows the variable so that it returns the current value before it increments the value of the
variable. When the “++”operator proceeds the variable then it increments the value before returning the value
to the function.
Thus:

| singlecharacter = greeting(chrcount++);
is the same as

singlecharacter = greeting(chrcount);
chrcount = chrcount +1;

Conversely
| singlecharacter = greeting(++chrcount);
is the same as

chrcount = chrcount +1;
singlecharacter = greeting(chrcount);

The biggest problem with this program is we will not know if the guests made it to their room until we write
something to read the data back from the EEPROM.

Page: 63

This is the program HelloWorld006 that checks to see if all our guests are in their proper rooms.

Helloworld_006 § I
" Program: Hello World B86 =
This program reads our Greeting strings in EEPROM.
These values will remain when the board is turned off. */

#include <EEPROM.h>»

/* Addresses in EEPROM */
const word HelpStr 8 ;
const word English = 52;

e T e NLTES
const word Spanish = 188;
const uord Italian = 124; f _gend |
CﬁnStbu?:d TESEnd = 148; 0 E=English, F=French, S=Spanish, I=Italian, A=4ll 48 =
char buffer[se]; 52 Hello World 63
void setup() 76 Bonjour tout le monde 97
{ Serial.begin(9688); 100 Hela mundo 110
printnsg (HelpStr); 124 Ciac monde 134 o
rintmns English);
ErinthS EFF‘gnCh)? ¥ Autoscroll INolineending ;I IQSDDbaud ;I
printnsg (5panish);
printmsg (Italian);
3
void loop(}) £ 3 // do nothing
void printmsg (word addrstart)
i byte value; // store one hyte from EEPROM
word addr=addrstart; // EEPROM start address
Serial.print{addr,DEC); /A print starting address
serial.print{" "}; /f add a space

dof value=EEPROM.read{addr++);
if {value !=8) {Serial.print{chari{value));} // use char{) function to print ASCII charater

T ouhile {value != B);
serial.print(" "}; /f add a space
Serial.print{addr-1,DEC); /f print 1ast address occupied (note we have to subtract 1)
Serial.printin(""); Afprint a new line

4 o

-

The special function that we use in this program is “EEPROM.read”. Just like its counterpart it reads a single byte
at a time. For that reason we used the “Serial.print” function rather than the “Serial.println” we have been
using. “Serial.print” does not print a new line so we can print a whole bunch of single bytes this way. Note also
that we used an additional parameter in “Serial.print (addr, DEC)”. This tells the function to convert the value of
address to the string representation of a decimal number before it prints it. In “Serial.print(char(value))” we use
char to convert the value that we retrieved to an ASCII character before printing it. That is called “casting”. Then
we print the ending address but we have to subtract 1 because we have just added 1 to the address in our loop.
Lastly we use Serial.print (“”) to send a new line.

Notice the structure of the loop that does the printing. This is the “other form” of the “while” loop (the one we
are not supposed to use): “do {} while();”. In this case the loop will always execute at least once before it gets to
it condition check. It is thus possible to enter the loop when an invalid condition exists. Of course it also avoids
the necessity the variable “value” to something other than zero. From my perspective if you are certain that you
want to execute the loop at least once then this from is at least acceptable (not to mention that it also has a
definitive end).

Now that you have this program (you did save it, yes?) go back and upload the “blinky” program and run it. Then
upload this program again and run it. You will see that all our guests are still in their rooms.

Page: 64

EEPROM: EEPROM_Dump, EEPROM_Erase

It would be nice to have a program to dump the contents of the EEPROM. We might be using an Arduino that
someone had used on another project and we want to see if there is anything there that should be saved before
we overwrite or erase it. For that matter we might even want to know if we need to erase it. First we need to do
a little planning about what our print out is going to look.

0 1 2 3 4 5 6
12345678901234567890123456789012345678901234567801234567890
XXXX HLHLHLHL HLHLHLHL HLHLHLHL HLHLHLHL AAAARAARAAARAAAA

We know that our maximum address is decimal 1024 so we reserve the first four characters for the address
represented by XXXX. Then we add two spaces. We are going to print 16 hex values (0-FF) in groups of four
separated by a space (HL stands for High nibble, Low nibble). Follow that with two spaces and ASCII character for
each of the bytes. That is a total of 46 characters but we need a terminating null as well. So make the buffer 48
characters long. A bit of quick arithmetic should tell you that will be 64 lines. That is less than one page if you
capture and print it out. Another thing that we have to be careful of is special characters. Anything under
decimal 32 is considered to be a non-printing character. There are also the special combinations of characters
like “\t” or “\n”. We are going to take the simple approach and print a period for any value under 32 or equal to
92 or over 126 (otherwise we have to get very creative).

Page: 65

] EEPROM_Dump § |

| W Program: EEPROM Dump =
This program prints the entire contents of the EEPROM
i in HEX and ASCII (uwhen applicable) to the USB/RSZ23Z terminal */
(#include <EEPROM.h>
Junsigned long addr; /{ used for address in EEPROM
byte 1,],c; ff 1=1 to 16 bytes, J=HEX index, c= single character
char buffer[22]; /¢ char array for ASCII string
void setup()
14 Serial.hegin(9688); // initalize serial port
buffer[B] = ' '; /{ put space at beginning of char array
buffer[1] = ' '; /4 put second space at heginning of char array
buffer[18] =8; /4 string termination for buffer
buffer[19] =8; /7 belts and suspenders
Serial.printin (F{"EEPROM DUMP:")}; /7 information, notice the F{} urapper
do
i /* Read lé characters from the EEprom into our buffer */
/e Print the address padded with spaces ------ */
if {addr<1888) {Serial.print(' '};3 // space padding, char(32) is a space
if {addr<188) {Serial.print{' '};3? /{ space padding
if {addr<1@) {Serial.print{' ');2 /{ space padding
Serial.print (addr, DEC); /4 starting address for line
serial.print (" "} // seperator, could be replaced with a tab {"\t")
for (i=8; i<lé; ++i) /416 bytes at a time
i ©= EEPROM.read{addr + i}); /4 read one byte
buffer[i+2]=char{c); /4 stuff the character in our buffer
/*---— print HEX value ---=*/
if (c < Bx1@) fSerial.print('a'};3 /4 pad HEX value with 8, 8x18 = FB = 16
Serial.print (c, HEX); /4 using HEX tells print how to format the number
++]; /4 increment index for serperator
if (1 == 4] /¢ 1f we have printed 4 values
{ Serial.print{' '}; [/ print a seperator
j=8; // set our index back to zero to start over
3
/*--- Evyaluate character ---*/
if (c < 32) {fbuffer[i+2]=".";3 /4 do not print control codes
if (c ==92) {buffer[i+2]=".";3 /4 do not print "\
if {c »126) {huffer[i+2]="'.":3 /4 do not print ‘'extended' characters
3
Serial.printin{buffer); /4 hegin wiht a new line
addr=addr +lé;
o F ouhile (addr ¢ EZEND); /f EZEND is the end of the EEPROM
3
void loop{} i 3 // do nothing =
ﬂ o
[S

Not much new here. Run the program and see what the output looks like.
—Iox]
M Send |

EEPROM DUMPE:

0 4530456E 676CE973 682C2046 3D467265 E=English, F=Fre
1lc EBEEZ6E8ZC 20533053 70616EGD 73682C20 nch, S=E8panish,
32 459304974 6lecE¥el BEZCZ041 3D4leCEc I=Ttalian, A=All
43 O0OFFFFFF 48656C6C BFZO057VaF 7Zace400Hello World.
54 FFFFFFFF FFFFFFFF FFFFFEFF 4Z8FG6EBA Bonj
80 BF7572Z20 746F7574 Z06C6E52Z0 6DEFEEG4G our tout le mond
95 G500FFFF 486F6CE1 ZOGDVSEE G646F00FF a...Hoela mundo. .

112 FFFFFFFF FFFFFFFF FFFFFFFF 436%616F Ciao
123 ZOBDAFBE 646F00FF FFFFFFFF FFFFFFFF mondo.. ...,
144 FFFFFFFF FFFFFFFF FFFFFEFF FEFFFFFE ¢
160 FFFFFFFF FFFFFFFF FFFFFFFF FEFFFFFF 00au.n
1756 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
192 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

-
oo TMANOMONNNT MRARAANAT MERRRERT A ENER R ETT _I

v Autoscroll IND line ending LI I%DD baud ;I

Page: 66

That is pretty much what was expected. The thing to note is that the rest of the EEPROM is filled with ones
rather than zeroes (as | had been lead to believe): FF Hex = 11111111 binary. This has been consistent across

Arduino boards that | have seen.

So now let us erase the EEPROM. This will be simple because we are not really going to erase it. We are just

going to write ones to every bit location.

EEPROM_Erase

. /™ Program: EEPROM_Erase
Writes a 1 to every bit location in the

#include <EEPROM.h» i
unsigned long addr=8; I
unsigned long wcount=8; I
const unsigned addrEnd=EZEND+1; i

fronst byte wo= BI1111111; i

¥oid setup()

i Serial.begin(9688); i
/% Marn the user what is going to happen
Serial.printin {("This will overurite the

Serial.printin ("Enter 'Y' to proceed.");

while (Serial.available(}) == B8); i

if (Serial.read()=="'%") Iy
{ do

£ If ((EEPROM.read(addr}) = u) /i

{ EEPROM.urite{addr, @xFF); i

HCoUnt++; /i

delay (187; i

++addr; i

3 ouhile (addr < addrend); I

Serial.printin (addr-1, DEC); I

Serial.printin (E2END, DEC); i

Serial.print ("Bytes written:
Serial.printin (Wcount,DEC);

3
else I

RHE

EEPROM */

include system EEPROM library

adress to be read/uritten

numper of hytes actually uritten

conpute end condition at compile tine
values to write, binary notation for FF Hex

initalize serial port
and get a confirmation before proceeding */
entire EEPROM with ones."};

uait for responce
if Y then proceed

check to see if hyte needs to be written
urite one byte

increment counter

EEPROM is5 slow, allow it time

increment address

the end of the EEPROM
print Tast address

print EEPROM end address
print actual hytes written

Notify user operation was aborted

{ Sserial.printin ("EEPROM erase aborted.");}

3
void loop{} £ 3} // do nothing
i |

| v

il

First thing to note is that we require the user to confirm that they want to overwrite the data. You may recall
that earlier | said well written program check the EEPROM before overwriting it. | have looked at the low-level

assembly code in:

<app path>\Arduino\hardware\tools\avr\avr\include\avr\eeprom.h

It does not appear to perform this check. So our code does check before it overwrites location. This also reduces
the amount of time required for the operation. Lastly we report back how many bytes were actually written.

R

1023
1023

v autascrall

This will overwrite the entire EEPROM with ones.:j

Enter "Y' to preoceed.

Eytezs written: 105

||

Mo line ending ;I IQGDD baud LI

Page: 67

Going back and review the code in EEPROM_Dump. It would be convenient if we just had a function that would
format the data of 16 byte array. With a function like that our main loop would be somewhat simplified. And our
sketch would look something like this:

EEPROM_Dump2 &

i Program: EEPROM DumpZ

This program prints the entire contents of the EEPROM

in HEX and ASCII {when applicable]} to the USB/RSZ32 terminal */
#include <EEPROM.h>
#include <HexDecAsc.h>

¥oid setup()

1 Serial.begin{9688); /f initalize serial port
EEPROMDUMpP{}; /4 call function

3

void loop() { ¥ // do nothing

¥0id EEPROMDuUmp () /¢ function to dump EEPROM
i char buffer[68]; /¢ allocate buffer
unsigned int addr=8; /f set start address
Serial.printin({"EEPROM Dump:"); /4 inform the user
while {addr ¢ EZEND) A4 orun until we reach the end
{ for (byte i=8; i<16; i++) /4 process 16 hytes at a time
{ buffer[i]=EEPROM.read(addr++); // read EEPROM
3
serial.printin{formatRanbunp{addr-1s, buffer);; /Af print formatted string
3 | |

Page: 68

Building a Library: The easy way

For version two of our EEPROM Dump program we are going to build a library that formats various values as the
representation in Hexadecimal, Decimal or ASCII characters. The first step is to build a prototype program where
we will develop each and test each routine that we need. Along the way we are going to find out a little about:

passing parameters to a function

returning a value from a function

pointers (reference and dereference)

returning a char array from a function

multiple references (names) to a single char array
overloading a function (optional arguments)

Then we will convert those routines into a library file. Lastly we will rewrite the EEPROM Dump program.

Functions: Passing Parameters and Return Values

Open the Arduino IDE and enter the following code.
void setup ()
{ Serial.begin (9608);
Serial.printin(demoreturn(1234,10));
3

int demoreturn (int a, int b)

t
int c;
c=a/ b;
return c;

3

void loop() {3} // do nothing

Compile, upload and run this program in the IDE’s serial monitor. It should output “123”. Notice that we did not
get a decimal value “123.4” or remainder. That is because we are using integer math. All results are in whole
numbers. We will take advantage of this later on.

The first line of the function is the declaration “int demoreturn (int a, int b)”. We have been using “veid” as our
type for the previous functions. This time we use “int” to tell the compiler that we are going to return and
integer value. We also told the compiler that the function receives two integer values in the parameters section
(between the parentheses). The variables called “a” and “b” are only visible inside the function. The actual
program instructions are between the curly braces. The first thing we do is allocate space for the variable “c” in
order to have something to hold result. Then we define “c” to be equal to “a” divided by “b”. Lastly we use the
keyword “return” to tell the compiler that the value of “c” is the value to be returned by the function. We did
not really need the variable “c”. The function could have been written to return the result of calculation directly.
As | prefer to see single sentences on a single line | would probably write it like this:

| int demoreturn (int a, int b) { return (asb);} // divide a by b and return the result

Inside the setup function we have the call to our function “demoreturn(1234, 18)”. The earlier description of
SRAM mentions that part of it was used as the “stack”. What actually happens when a function is called is that
the mpu “pushes” the values for the parameters on the stack. The function can then “pop” these values off the
stack and use them. For an “integer, word or address” value two bytes are pushed and popped. For a “byte or
char” value only one byte needs to be pushed or popped so when convenient you really want to use the smaller

Page: 69

data type. When the function has completed its program steps it can return a value in the same manner. It pops
the return address off the stack and pushes the returned value on the stack.

Using the stack in this manner imposes some limitations. The largest value that can be passed is a long or
unsigned long that is four bytes. A complex data structure is one that cannot be passed via normal stack
operations. The one that “C” supports natively is the char array or “C string” structure (other complex structures
can be defined but that is beyond the scope of this document). Complex data structures must be passed by a
different method. The simplest method is to declare these data type globally at the top of our program. We did
that in HellowWorld_001:

Hellowiorld_001 §

/* delcare a string array to hold the message
and initalize the contents of the string */
char msg[]="Hello Worild!";

void setup()
{ Serial .begin(9688);
3
void loop(}
£ Serial.printinimsg);
delay (1888);
3

This method quickly use up our limited RAM because these variables “live” for the entire life of the program. A
better method is to declare these complex data structures inside of a function. That way they begin life when
the function is called and end life when the function exits. To do that we need a way to pass these complex data
structures between parts of our program. The method used in the “C” language is called “pointers”. A pointer is
like a street address that tells the program where to find the data structure: “That string lives at number Ox001A
on SRAM bus route.” The AVR is a very small computer so it only has one bus route: SRAM (EEPROM and FLASH
may be considered the suburbs --- you must take a special transfer bus to get there). Thus we only need to pass
the address which is always two bytes long. Earlier we demonstrated that “C” will accept any kind of two byte
value when it is expecting two byte value. That is NOT true in the case of pointers. This is a case where “C”
checks to see if the calling statement is sending a pointer and if the receiving function is expecting a function.
That requires a few suttle differences.

Passing a pointer such as a char array to a function is fairly simple. When you create an array “C” actually
constructs a pointer for it. So all you need to do is use the name of the char array. Creating a function that
expects a pointer is very similar. You simply add the array constructor in you declarations. We did both in the
function “printdhb” of “Bits and Bytes”.

void printdhb (char c[], word n) // function to print value as
{ byte s; // Decimal, Hexidecimal and binary
long i;

Serial.print (c);

Returning a data structure such as a char array or string from a function is where it gets a bit more complicated.
You have to tell the compiler that you are returning a pointer and what kind of data structure that pointer is for.
At this point we only have one kind of data structure: the char array. The following code will NOT compile for a
number of reasons. By this time you should be able to spot some of them.

void setup ()
{ serial.begin (9660);
Serial.printin(samplefunction(Hello", "World");

3

Page: 70

// Jjoin two char arrays with a blank space between them, return the new array
char samplefunction(char a, char b)
{ char c[386];
byte i,k,t; // declare internal variables
for (I=0, k=8, t=1; (t!'=0 & k < sizeof c);) // initalize variables and set test condition
{ c[k++] = a[il; // get one character, increment array index
t=a[++i]; // set test variable
3
c[k++] = ' ', // add a space and increment return array index
for (i=8, t=1; (t!=0 & k < sizeof c);) // repeat with second array
{ clk++]=b[il;
t=b[++i];
3
c[k] = o; // add a null
return c // return array
3
void loop() §3 // do nothing

Let us start with the obvious typo bugs. In the “setup” function there is a missing close parentheses at the end of
the second statement. The letter “I” in the “for” statement should not be capitalized (that was compliments of
user hostile Microsoft Word automatically correcting my text for me). At the end of the last statement in the
“sample function” there is a missing semicolon.

The function returns that char array but the function is declared as a simple char type. We need to fix that.
Insert an asterisk character “*” (shift 8) before that function name to tell “C” that we are returning a pointer.
This is called the “dereference operator” operator in “C”. We have a similar problem with the parameters. We
are passing two char arrays to the function but the variables “a” and “b” are declared as simple char types. We
need to add the array designator “[]” after each one. The dereference operator could also be used. There is one
more very BIG problem. The array that we are returning will cease to exist (actually be deallocated) when the
function exits. The simple method to resolve this is to insert the keyword “static” in front of the declaration for
the char array “c[]”. This is much the same as declaring a global variable at the top of the program. The
difference is that the variable is only visible inside the function in which it is declared (unless you pass a pointer
to the variable).

The keyword “sizeof” is new but it is correctly used to do exactly what it says. It will return the size of the char
array “c”. In this case that would be the size we declared it to be: 30 bytes. This operator normally returns the
size of the variable or type of the operand. There is however an exception (from Wikipedia):

" To use sizeof, the keyword "sizeof" is followed by a type name or an expression (which may be
merely a variable name). If a type name is used, it must always be enclosed in parentheses,
whereas expressions can be specified with or without parentheses. When sizeof is applied to the
name of a static array (not allocated through malloc), the result is the size in bytes of the
whole array. This is one of the few exceptions to the rule that the name of an array is

converted to a pointer to the first element of the array, and is possible just because the

actual array size is fixed and known at compile time, when sizeof operator is evaluated. "

In my narrow minded opinion these exceptions make the operation of “sizeof” inconsistent but most others
consider it perfectly normal. In this function we are using the “sizeof” operator to avoid the possibility of writing
beyond the end of our char array (a condition that is also known as buffer overflow). Here is the rewritten
debugged code. Save it as “HelloWorld_007".

void setup ()
{ Serial.begin (9608);
Serial.printin(samplefunction("Hello", "World"));
Serial.printin(samplefunction('Hello", "World beyond your imagination"));

3

Page: 71

http://en.wikipedia.org/wiki/Dereference_operator
http://en.wikipedia.org/wiki/Sizeof

// Jjoin two char arrays with a blank space between them, return the new array
char * samplefunction(char a[], char * b)
{ static char c[38];
byte i,k,t; // declare internal variables
for (i=0, k=0, t=1; (t!=6 & k < sizeof c);) // initalize variables and set test condition
{ clk++] = a[i]; // get one character, increment array index
t=a[++i]; // set test variable
3
c[k++] = ' '; // add a space and increment return array index
for (i=0, t=1; (t'=0 & k < sizeof (c);) // repeat with second array
{ clk#+]=b[i];
t=b[++i];
clk] = o; // add a null
return c; // return array
3
void loop() {3} // do nothing

-i0] i
|| Send |

Hello World
Hello World beyvond yvour imagin

The problem with this program is it uses just as much SRAM as declaring the array globally in the first place. The
common method used to circumvent this problem is to pass the target array to the function from the calling
function. In that manner the array only lives as long as the calling function(s). “HelloWorld_008” demonstrates
that method. Note that the “sizeof” function MUST be used in the function where the char array is declared.

void setup ()
{ Serial.begin (9668);

demofunction("Hello", "World");
demofunction('Hello", "World beyond your imagination");
3
void demofunction(char a[], char * b)
{ static char c[30]; // this array is discarded when the function exits
Serial.printin (samplefunction(a,b,c, sizeof c));
3

// Jjoin two char arrays with a blank space between them, return the result
char * samplefunction(char a[], char * b, char * c, byte n)

{ buyte i,k,t; // declare internal variables
for (i=0, k=0, t=1; (t!=0 & k<n-1);) // initalize variables and set test condition
{ c[k++] = a[i]; // get one character, increment array index
t=a[++i]; // set test variable
3
c[k++] = ' '; // add a space and increment return array index
for (i=0, t=1; (t!'=0 & k<n-1);) // repeat with second array
{ clk++]=b[i];
t=b[++i];
c[k] = 0; // add a null
return c; // return array
3

void loop() §3 // do nothing

Page: 72

Library HexDec: Developing Functions

Open the Arduino IDE and start a new project named “Develope_HexDec”. Put a comment at the top the file for

the name and enter the standard template code along with a line to initialize the serial port.

/* Program to develop HEX/DEC/ASC conversion routines for a library

demonstrates returning a string from a function

demonstrates multiple references to the same char array

demonstrates overloading function to make function parameter optional

prints a ASII table

prints a EEPROM dump

This code is placed in the public domain: August 2613, Lewis Balentine, Houston, Texas, USA
*/
#include <EEPROM.h>

void setup ()
{ Serial.begin (9600);

void loop() {;3} // do nothing

Save the file and then use the “upside down triangle icon” to create two additional files for this project:
Examples.ino (this will hold our demo/test code)
HexDecAcs.ino (this will hold our library functions)

2@ Develope_HexDec | Arduino 1.0.5

File Edit Sketch Tools Help

=10l x|

Dewvelope_HexDec

* Program to develop HEX/DEC/RSC conversion routines for a library =
demonstrates returning a string from a function
demonstrates multiple references to the same char array

The first function that we are going to define is one to return a digit from the set “01234567890ABCDFE”
according to its location within the set. Rather than using a char array (as is commonly done) our function will be
based on adding an appropriate value to return the character code. This avoids taking up SRAM space for the
char array. Place the following code in the “HexDecAsc” tab.

/* --- This returns the character for a Hex Digit --- */
char hexDigit(byte n) // works for oct, decimal, bcd or hex digits
£ if (m15) // we will sell no wine before its time
{ return (63);3} // or accept any digit above 15: '?'
else if (n>9) // 1f greater than nine need an ALPHA charater
{ return (n + 8x37);3} // Hex(18) + Hex(37)=Hex(41), Hex(41) = Decimal(65) = 'A’
else // else we need a digit
{ return (n + 8x30);3 // Hex(88) + Hex(38)=Hex(38), Hex(36) = Decimal(48) = '8'
3

This is fall through logic. We first test that the value provided is within the appropriate range for our function. If
itis not then we return a question mark “?”. Next we test to see if the value is greater than nine. If it is then we
return an alpha character from the set “ABBCDEF”. Otherwise we return a numeric character from the set
“0123456789”. Now enter the following code in the “Examples”.

[/~ eXAMP @S —==== ==
void demoHexDigit()
{ Serial.printin ("Demo/test digit conversion: ");
for (byte i=8; i<17; i++)
{ Serial.print(hexDigit(i));

Page: 73

3
Serial.print();

This goes into the main tab under setup:

| demoHexDigit();

_ioix]
|| Send |

Demo/test digit conversion:
01234567 8%ABCDEER?

That will be the pattern for all the functions:

1) Write the function (in HexDecAsc.ino)
2) Create a demo/test function (in Examples.ino)
3) Call the demo/test function (in Deveope_HexDec.ino)

The next function is a simple filter for our ASCII characters (goes in the “HexDecAsc” tab).

/* —-—= Filter characters codes. This allows only defined ASCII characters -----------------
char rtnASCIIcode(byte n)
{if (n==92) {return '.';} // avoid chance of escape sequence by blocking "\"
else if (n¢< 32) {return '.';} // non-printing control characters
else if (n>126) {return '.';} // 8 bit characters are undefined by ASCIT
else { return char(n);} // that leaves the all the rest
3

This is the example routine.

void demoRtnASCIIcode ()
{ Serial.printin ("Demo/test ASCII conversion: ");
byte j=0;
for (byte i=8; i<255; i++)
{ Serial.print(rtnASCIIcode(i));
if (j++ == 31)
{ Serial.printin();
j=0;
3

Serial.printin();

3

Add one more line for the setup function.

| demoRtnASCIIcode ();

i
I Send |

Demo/test ASCII conversion:

LP#5%eT () %+, -. /0123456789 ; <=>7
BABCDEFGHIJELMHOPQRSTUVWHYZ[.]
“abcdefghijklmnopgrstuvwxyz{ | }~.

Page: 74

The next function converts a byte to two hex digits using our formatBytesAsHex function. It returns a pointer to
a char array with the ASCII characters. Note how we are splitting the byte into nibbles.

char *formatByteAsHex(byte n, char tmp[]) // this function formats 'n' as two hex digits
{ tmp[1] = hexDigit(n & BBBBA1111); // in the char array 'tmp' that is passed to it.
tmp[@] = hexDigit(n >> 4); // 1t returns that the pointer to that char array
return tmp; // temp MUST BE at least two bytes long
3

The example code is a bit more complex this time. The concept here is to demonstrate that we can use the
return value of the function or use the function just to format the variable “tmp”. That makes the use of the
function very flexible.

He

// —--- example one --- (demo use of formatByteAsHex --- returned string)
void printHexByteOne() // example using returned string with print
{ char tmp[l=" "; // in this case we send a number and string
Serial.print("Example One: "); // the sring is returned to Serial.Print
for (byte i=12; i<20; i++) // with hex digits
{ Serial.print(formatByteAsHex (i, tmp));
3
Serial.printin(""); // output: "6C 6D OE 6F 10 11 12 13"
3
// —--- example two --- (demo use of formatByteAsHex --- passes string)
void printHexByteTwo() // example using returned string with print
{ char tmp[]=" Mo // this is nearly the same but in this case
Serial.print("Example Two: "); // we call the format function and then
for (byte i=12; i<20; i++) // we call the print function. The idea is to
{ formatByteAsHex (i, tmp); // show it can be used either way.
Serial.print (tmp);
3
serial.printin(""); // output: "@C 6D 6E 6F 10 11 12 13"
3
is the code to run the two examples.
/* --- demo/test use of formatByteAsHex --- */
printHexByteOne(); // uses returned string, see examples
printHexByteTuwo(); // uses returned string, see examples

~ipix
I Send |

Example ©One: 0C 0D OE OF 10 11 12 13
Example Twc: 0C 0D ODE OF 10 11 12 13

Now we need to do the same thing with a word size variable but we add decimal to our options as well.

char *formatWordAsHex(word w, char tmp[]) // this function formats 'n' as four hex digits
{ formatByteAsHex(louwByte(w), & tmp[2]); // temp MUST BE at least four bytes long
return formatBytefAsHex(highByte(uw),tmp);
3
char *formatWordAsDec(word n, char tmp[]) // this function formats 'n' as five Dec digits
{ tmp[4] = hexDigit(n %18); // Use intger math to get each digit: 54321%10=1
tmp[3] = hexDigit((n % 180)/10); // 54321 % 160 = 21, 21/18=2
tmp[2] = hexDigit((n % 1800)/100); // 54321 % 1000 = 321, 321/106=3
tmp[1] = hexDigit((n % 16000)/10680); // 54321 % 10000= 4321, 4321/16066=4
tmp[@] = hexDigit(n / 100808); // 54321/10606=5
return tmp; // temp MUST BE at least five bytes long
3

Page:

75

Notice the first statement of “formatWordAsHex” function. We use the “&”reference operator to get the
address of the third byte of our char array. This operator returns the address of the operand. Now we need test

routines.
// --- example three --- (demo use of formatWordAsHex --- returns string)
void printHexWordOne() // example using returned string with print
{ char tmp[]=" e // in this case we send a number and string
word ww = OxD431; // sample word, this could be andress

Serial.print("Example Three (D431): "); // the sring is returned to Serial.Print
Serial.printin(formatlWordAsHex (ww, tmp)); // range of word is 65K

3
// —-—- example four --- (demo use of formatWordAsHex --- passes string)
void printHexWordTwo() // example using passed string with print
{ char tmp[]=" e // in this case we send a number and string
word ww = 54321; // sample word, this could be andress

Serial.print("Example Four (54321): "); // the sring is will be passed Serial.Print
formatWordAsHex(uww, tmp);
Serial.printin(tmp);

3
// --- example five --- (demo use of formatWordAsDec --- returns string)
void printDecWordOne() // example using returned string with print
{ char tmp[]=" Mg // in this case we send a number and string
word ww = 0xD431; // sample word, this could be andress
Serial.print(" Example Five (D431): "); // the sring is returned to Serial.Print
Serial.printin(formatWordAsDec (ww, tmp));
3
// ——— example Six --- (demo use of formatWordAsDec --- passes string)
void printDecKordTuo() // example using returned string with print
{ char tmp[]=" ", // in this case we send a number and string
word ww = 54321; // sample word, this could be andress
Serial.print(" Example Six (54321): "); // the sring is will be passed Serial.Print

formatWordAsDec(uw, tmp);
Serial.printin(tmp);

WOW! There was a lot of button pushing and clicking to format that piece of code. There is a lot more code in

the test routines than the functions because a lot of time was previously spent optimizing the code for the

functions (the test routines were used to test those). Here is the bit to go into the main tab.

/* -—- demo/test use of formatWordAsHex --- */
printHexWordOne(); // uses returned string, see examples
printHexWordTuwo(); // uses passed string, see examples

Serial.printin();

/* --- demo/test use of formatWordAsDec --- */
printDeclordOne(); // uses returned string, see examples
printDechordTuwo(); // uses passed string, see examples

Serial.printin();

laix|
|| Send |

Example Three (D431): D431
Example Four (543Z21): D431

Example Fiwve (D431): 54321
Example Six (54321): 54321

Page:

76

That brings us down to the really big function that was the target to begin with.

char *formatRamDump(char hd, word addr, char data[], char buffer[])
// this function formats the address and data into the buffer with the ASCII
// representation of:
// address in Hex (hd='h' or 'H') or default as Decimal
// data in HEX (MUST BE 16 bytes)
// data in ASCII
// buffer array must be at least 68 bytes
// 8 1 2 B 4 5 6
// 01234567890123456789012345678901234567890123456789012345678961
// 0868688 HLHLHLHL HLHLHLHL HLHLHLHL HLHLHLHL AAAAAAAAAAAAAAAA\N
{ byte i,p,s;
buffer[68]=8; // stuff a null terminator
for (i=0; i<16; i++) // do ASCII first
{ buffer[i+44]=rtnASCIIcode(datalil);} // get the ASCII code
buffer[42]="' '; // two spaces
buffer[43]=' ';
i=15; // do HEX next and do it backwards
s=0; // counter for seperator
for (p=40; p>6; p=p-2) // four bytes at a time
{ formatByteAsHex(data[i--1,& buffer[pl); // get Hig/low hex characters
if (+#s == 4) // If we have done 4 bytes
{ buffer[--pl=" '; // add a space
5=0; // and reset the counter
3 // do it again sam
3
buffer[5]=" '; // two spaces
buffer[6]=" "';
if (hd == 'h" || hd == 'H") // if H or h was sent then use HEX for address
{ formatWordAsHex(addr, buffer);
buffer[4]="H"; // Flag as HEX format
3
else // otherwise use decimal
{ formatWordAsDec(addr, buffer);}
return buffer; // done, return the char array pointer
3

Notice that we are working from the back (buffer[60]) to the front (buffer[0]). You will see the reason for that
later. Thus it is time for the test routine.

// --- example seven --- (demo/test use of demoFormatRamDump)
void demoFormatRamDump()
{ word addr= 54321;

char buffer[64];
char data[l16];
for(byte i=0; i<16; i++) { data[i]l= i + oOx41;3} // stuff the data “ABCDEFGHIJKLMNOP?”
Serial.printin("Example Seven (formatRamDump):");
Serial.printin(formatRamDump('H', addr, data, buffer));

3
The main tab gets this.
/* --- demo/test use of formatRamDump --- */
demoFormatRamDump() ;
=lolx]

|| Send |

Example feven (formatRamDump):
D431H 41424344 45464748 494A4p4C 4D4E4F50 ABCDEFGHIJELMMNOP

Page: 77

Library HexDec: Overloading

We have been talking about the “C” language. The Arduino IDE uses the C++ implementation of the “gcc”
compiler. “C++” is an extension or enhancement to the “C” language. One of the things it add is something
called “overloading”. This allows one to add to the definition or complete replace the definition of an existing
operator or function. It is primarily intended to be used to extend the functionality of defined operators and
function. For example the “+” operator can be extended to be used to concatenate two strings.

Some program languages such as Basic allow for functions to be defined with optional arguments. Overloading
provides this capability in C++. We are going to define some alternates versions of our functions to reduce the
number of parameters that they require. The idea is we are going to stuff the bytes to be converted into the
char arrays before the function is called. Each of the following function should be added to the “HexDecAsc”
after the previous function definition of the same name.

char *formatByteAsHex(char tmp[]) // this function ‘'overloads' the previous one
{ return(formatByteAsHex(byte(tmp[8]), tmp));3}

char *formatWordAsHex(char tmp[]) // this function 'overloads' the previous one
{ return(formatWordAsHex(word(tmp[@], tmp[1]), tmp));3}

char *formatWordAsDec(char tmp[]) // this function 'overloads' the previous one
{ return(formatWordAsDec(uword(tmp[0], tmp[1]), tmp));3}

char *formatRamDump(word addr, char data[], char buffer[]) // overload for default decimal
{ return formatRamDump('D', addr, data, buffer);3}

char *formatRamDump(word addr,char buffer[]) // overload decimal, data=buffer
{ return formatRamDump('D', addr, & buffer[@], buffer);3}

In the first three functions we are simply extracting the byte or the word to be converted from the char array
and passing it to the previously defined function. In the last two we are proving for a default format of Decimal
rather than Hex. In the last function we also use the buffer as the data array. This is why we designed out
function to work from back to front. By the time the conversion process gets to the address all of the conversion
has taken place. That is fortunate because the original data is overwritten by the conversion.

Add these three lines at the end of the “demoFormatRamDump” function.

Serial.printin("Example Seven (formatRamDump/overloaded):");
Serial.printin(formatRamDump(addr, buffer));
Serial.printin();

Add this new function to the Example code.
// --- example eight --- (demo/test use of overloading)
void demoOverLoading()

{ Serial.printin("Example Eight (overloading):");

// 012345678960123456789 // cheat: to figure byte locations
char tmp[]J="ABCDEFGH"; // Sample Data
Serial.printin(tmp); // print sample data
for (byte i=7; i>0; i--) // with hex digits

{ formatByteAsHex (& tmp[(2*i)]1);3} // format each byte except the first
Serial.printin(formatByteAsHex(tmp)); // format and print first byte
tmp[4]=0; // stuff with null terminator
tmp[5]=0; // stuff with null terminator
tmp[8]=0xD4; // stuff high byte
tmp[1]=0x31; // stuff low byte

Serial.print("HEX @xD431 as HEX: ");
Serial.printin(formatWordAsHex(tmp));
tmp[@]=8xD4; // stuff high byte

Page: 78

http://en.wikipedia.org/wiki/GNU_Compiler_Collection

tmp[1]=0x31; // stuff low byte
Serial.print("HEX @xD431 as DEC: ");
Serial.printin(formatWordAsDec(tmp));

Serial.printin();

3
Add this line to the setup function.
| demoOverLoading(); // uses returned string, see examples
RI=TE

|| Send |

Example Beven (formatRamDump):

D431H 41424344 45464748 494A4B4C 4D4E4F50 ABCDEFGHIJELMNOP
Example Seven (formatRamDump/overloaded):

54321 44343331 48202034 31343234 33343420 D431H 41424344

Example Eight (overloading):
A B CDEVFGH
4142434445464748

HEX 0xD431 as HEX: D431

HE¥ 0xD431 a=s DEC: 54321

Library HexDec: ASCII Table

We are going to test our ASCII function by printing a table of ASCII characters. We are doing this to show how to

make multiple references to the same char array using different identifiers (variable names).

/ —=- ASCII Table --- (demo multiple references)

/* Of special note in this first function is there are multiple references (names) tied to
the same char array. This was done so as to pass the array to the hex conversion function
without copying the bytes back and forth. The array is declared, allocated and printed
using the name "tmp". Pieces of the array are operated on using the name "OutHex".

Two points:

1) The second (or more) name is declared as a "pointer" using the "*"
dereference pointer operator. Basically this tells the compiler to reserve space for
an address.

2) That address must be assigned using "&'" reference pointer operator. Basically this
returns the physical memory address of an object. In this case it returns the address
of the char array member. Place the "&" in front of the array member reference:

OutHex= & tmp[3];
"OutHex" is now considered a char array starting with the third member of the
character array "tmp".

Also note that in this function the values to be converted are actually stored in the
char array that holds the result. The values are in fact overwritten by their ASCII
Hex charters. This is the reason that the conversion routine was written in a manner
that starts with the Low nibble. After the High nibble is converted the original
source data is destroyed.

*/

void printASCIItable() // print out an ASCII table with Hex codes
// this is included because it is simple to do with the functions in hand
{char tmp[]="0 1 2 3 4 5 6 7 8 9 A B C D E F "; // two spaces after
byte i,j,n,1; // each character
char *QutHex;

Serial.printin();

Page:

79

Serial.printin("ASCII Table:");

for (j=2; j<8; j++)
{ for (i=0; i<16 ; i++)
£ n=i*3;
1= (j * 16) +i;
tmp[nl=char(1);
tmp[n+1]=" *;
3
Serial.print ("ASCII: ");
Serial.printin(tmp);
for (i=0; i<16 ; i++)
€ n=tmp[i*3];
OutHex= & tmp[i*3];
formatByteAsHex (n, OutHex);
3
Serial.print(" HEX: ");
Serial.printin(tmp);
3

// fill one row with ASCII characters
// followed by two spaces

// print ASCII string

// convert to HEX

// note that in this case the number we
// are converting is actually the first
// byte in the string we are passing

// print HEX string

// and repeat

Of course the setup function gets another line as well.

// /* --= print ASCII Table --- */
printASCIItable();

Library HexDec: EEPROMDump

JRI=TEY
Il |
ASCIT Table:
ASCII: Lo #0558 & T N
HEX: 20 21 22 23 24 25 28 27 28 29 2A 2B 2C 2D 2ZE ZF
AZCII: 0 1 2 2 4 5 & 7 8 9 ;oo o= 07
HEX: 30 231 22 322 34 35 36 27 28 39 3A 3B 3C 2D 3E 3F
A3CIT: @ A B C D E F & H I J E L M N ©
HEX: 40 41 42 432 44 45 45 47 48 49 44 4B 4C 4D 4E 4F
ASCIT: P o R 8 T U %W W X ¥ Z [kY] - _
HEX: 50 51 52 52 54 55 5e 57 58 59 5A 5B 5C 5D 5E 5F
ASCII: * a b <o 4 e £ g9 h 1 3 k 1 m n
HEX: 60 61 62 632 64 65 66 67 68 69 6A 6B 6C 6D B6E AF
ASCIT: p g r = t u v w ® ¥V Z i | T~
HExX: 70 71 72 72 74 75 7a 77 78 79 7A VB VC 7D T7E TF

When you're up to your neck in alligators,
it is easy to forget the objective was to drain the swamp.

(unknown origin)

The original objective was to simply the process of doing an EEPROM dump via a function that could be used for
other similar programs (possibly a flash or sram dump). Thus the last step before we create our library is to

verify that our function “formatRamDump” can be used in that manner.

// --- example nine --- (EEPROMDump)
void EEPROMDump()
{ char buffer[60];
word addr=0;

Page: 80

Serial.printin("EEPROM Dump:");
while(addr < E2END)
{ for (byte i=0; i<16; i++)
{ buffer[i]=EEPROM.read(addr++);

Serial.printin(formatRamDump(addr-16, buffer));

3
3
Well that is certainly simpler ... but does it work? Guess where the following goes.
// /* ——— EEPROM Dump --- */
EEPROMDump();
RI=TE

|| Send |

EEPROM Dump: (=
00000 453D456E 676CE973 68202046 30467265 E=English, F=Fre
00016 GEE3682C 20533053 70616E6Y 73682C20 nch, S=Spanish,
00032 49304974 6leCE961 6E2CZ041 3D416C6C I=Italian, A=All
00048 (OOFFFEFF 4B656C6C 6F205076F 72606400Hello World.
00064 FFFFFEFF FFFFFFFF FFFFFEFFF 4Z6FG6EGA Bond
00080 6EF757220 746F7574 20606520 EDEFGEG4 our tout le mond
00096 AS00FFFF 48AF6CE1 Z06D756E G46F00FF <. ..Hola mundo. .
00112 FFFFFEFF FFFFFFFF FFFFFFFF 436%9616F Ciao
00128 Z0ADAFGE G4AF00FF FFFFFFFF FFFFFEFF mondo.
00144 FFFFFFFF FFFFFFFF FFFFFEFFF FFEFFFFFF ... uvvvvnnnnnn
00160 FFFFFFFF FFFFFFFF FFFFFEFFF FFEFFFFFF ... vvvvvinnnnnn

Library HexDec: Creating the Library

The proper method of creating a library is to create class such as was done for the Serial class that you are so
familiar with by now. This involved several files, defining constructors and destructors, complex naming
conventions and getting the thing to compile without errors. The whole concept of the Arduino hardware and
software was to create an open platform that was simple and inexpensive. Creating a proper class library is
anything but simple. Once the library is created then using it is also more complex as one must prefix each
function call with the class name as is done in Serial.print(). In the next section we will compile a proper class
library, but in this section we want something less complicated.

There is a far simpler and more reliable approach although it violates several concepts espoused to produce
proper “C” code/programs. That is to place everything, including the functions, in a single header file. | will
admit that this is not the correct method to be used in a large or complex project but it works amazing well in a
simple small environment where one wishes to share a few functions between several programs.

Page: 81

Close the Arduino IDE. Now create a new folder named “HexDecAsc” in your library folder. Copy the file
“HexDecAsc.ino” from you project directory to the new library directory. Rename it “HexDecAsc.h”. The
directory should look something like this:

l C\Users'lewis.balentine.KE ;lglﬂ
‘(_;(:;;v | . = Arduino - libraties = HexDechsc - l‘i’l I Search HexDechsc \QJ
File Edit ‘Wiew Tools Help
Organize * Sharewith + New folder = ~ [l ':E}'
[

Documents library

o Arrange by: Folder =
N_ubrarles HexDecihsc e I
j Documents i
| My Documents WB = [
| Arduing] HexDecasc.h |
| Build || keywords bxt
, Code_Snips
. Docurments
, hardware

) libraries
. HexDechsc
, ather downloads
| Preferences
) sketches
J Utilities

Now open the file “HexDecAsc.h” with any text editor (You can even use Microsoft Notepad.exe). We want to
add the following lines at the top of the file.

#ifndef HEXDECASC
#define HEXDECASC
#include "Arduino.h"

char hexDigit();

char rtnASCIIcode();
char *formatByteAsHex();
char *formatWordAsHex();
char *formatWordAsDec();
char *formatRamDump();

The first three lines that begin with “#” are directives to the pre-processor/compiler/linker. The cryptic one at
the beginning means “if HEXDECASC is not defined then do the following” . The next one defines “HEXDECASC".
These two lines keep us from accidently using the library twice in the same program. The third line says to
include the header file "Arduino.h". We need this for all libraries used with the Arduino. It defines basic things
such as the various data types and the root operators.

The next six lines are forward declarations for our functions. Note that we have NOT include the parameter
information.

Now add this line to the end of the file.
| tendif
This is the end of our “ifndef” directive. Now save the file and you are done creating the library.

Page: 82

Library HexDec: Testing the Library

Now go back to the sketch directory. Rename the function file “HexDecConvert.ino” to something funky like
“HexDecConvert.xyz”. Open the main file with the Arduino IDE (you should be able to double click on it). Note
that you only have two tabs now.

2@ Develope_HexDec | Arduino 1.0.5 i =]]

File Edit Sketch Tools Help

Develope_HexDec

/* Program to develop HEX/DEC/ASC conversion routines for a library =
demonstrates returning a string from a function
demonstrates multiple references to the same char array
demonstrates overloading function to make function parameter optignal
prints a ASII table
prints a EEPROM dump
This code is placed in the public domain: August 2813, Lewis Balentine

=

Use the top menu and select “Sketch”, “Import Library”, “HexDecAsc”. If the library does not show up then use

2

“Sketch”, “Import Library”, “Add Library” and browse to the directory where the library is located.

*/

;Y
£

A
I

&e Develope_HexDec | Arduino 1.0.5

File Edit |Sketch Tools Help

Yerify | Compile Chrl+R.

Show Sketch Folder CeriHK
add File...

Imnpott Library. ..

demonstrates returr
demonstrates multip
demonstrates overlc
prints a ASIT table
prints a EEPROM dun
Thizs code is placed

ffinclude <EEPREOM.h3>

vold setup ()

Serial.kegin (960C

demoRtnAICITIcode
demoHexDigit () ;

J* ——— demo/test

printHexBvteOne rrr 00—

Add Library...

EEPROM
Esplara
Ethernet
Firmata

E5M
LiquidCrystal
Robat_Cantral
Robat_Matar
s

Servo
SoftwareSerial
SPI

Stepper

TFT

il

ire
Contributed
HexDechsc

' converzion ron
hg from a funct:
ez to the game

ion to make fw

lic domain: Auc

fmatByteAsHex —-

5@ Develope_HexDec | Arduino 1.0.5

File Edit Sketch Tools Help

Develope_HexDec

/* Program to develop HEX/DEC/AZC conversicon 1
2@ Select a zip file or a folder containing the library you'dlike x|

Loak in: I[E]Iibraries Vl 2 =

File nare: IHaxDecnsc Open
Files of type: IZIP files or folders = l Cancel

i

Page: 83

The Arduino IDE adds a single line to the top of your main sketch file. Personally | like to move that line down
below the line for the EEPROM library but that is purely a matter of personal preference.

&e Develope_HexDec | Arduino 1.0.5 o Develope_HexDec | Arduino 1.0.5

(File Edit Sketch Tools Hep File Edit Sketch Tools Help

Develope_HexDec § Develope_HexDe: &

#include <HexDecAsc.h> /* Progran to develop HEX/DEC/ASC co
demonstrates returning a string f
/* Program to develop HEX/DEC/ASC con demonstrates multiple references
demonstrates returning a string fr demonstrates overloading function
demonstrates multiple references t prints a ASIT table
demonstrates overloading function orints a EEPROM dump
prints a RSII table This code is placed in the public
prints a EEPROM dump xy
This code is placed in the public ;
y P P #include <EEPRON.N>
#include <HexDecRAsc.h>

#include <EEPROH.h>

All the demo/test code should now work as before but you can use these functions in other programs as well by
simply importing the library. You should also be able to go back and rewrite the EEPROMDump program using
the library (hint the code was included at the end of the previous section).

Page: 84

AVR Internal Temperature Sensor

The AVR MPUs have built in temperature sensors. The bad news is for our purposes there are a few problems
with them:

1) The readings are in degrees Kelvin

2) They are not very accurate (+/- 10°C)

3) They measure the internal temperature of the MPU rather than the surrounding atmosphere

4) They are difficult to read

The good news is most of these problems can be diminished. They also have the distinct advantages that they
are already paid for and wired into our circuit (thus requiring no additional hardware). There are several on line
references that are useful:

Most people with experienced in using microcontrollers and the AVR line in particular are of the opinion that
the only practical use for the internal temperature sensor is to determine if there is a problem that is causing
your system to overheat. Unfortunately | am a complete novice and assume nothing. Thus before | accept that
the internal sensor cannot be used for a practical application | will travel down that path until | find a point of no
return.

References:

Arduino Playground, Internal Temperature Sensor (arduino.cc)

AVR122: Calibration of the AVR's internal temperature reference (Atmel)
AVR121: Enhancing ADC resolution by oversampling (Atmel)

Arduino / AVR internal temperature sensor interface (avdweb)

ANALOG INPUTS (ANALOG TO DIGITAL CONVERTER) (QEEWiki)
Analogue to Digital Conversion on an ATmegal68 (protostack)

Advanced Arduino ADC — Faster analogRead (Marulaberry Projects)

Using the ChipTemp Library

The internal temperature sensor cannot be read via the standard “analogread” function of the Arduino
language. To read the internal AVR sensor one must go a bit deeper and deal directly on the AVR hardware. |
started with the sample code from Arduino playground. The problem with this code is it makes the assumption
that whoever is looking at is familiar with a bunch a strange looking terms like “ADMUX, REFS1, REFSO, MUX3,
ADCSRA, ADEN, ADCSRA, ADSC” thus it is pretty much unreadable to the novice. As it turns out these are
references to the internal registers of the MPU as defined in the Arduino header files. There is a full description
of the applicable resisters in the Appendix: AVR ADC Sensor Registers.

The code by Albert van Dalen at avdweb is a bit less confusing because it encapsulates the temperature reads in
the form of a library:
http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html

Mr. van Dalen references the code provided by “SpikedCola” and “marcello.romani”. That code was presented in
the Arduino forum thread “Using the Internal Temperature Sensor”. Here is a copy of the code that he posted
(with the comments moved to make it more readable).

// http://forum.arduino.cc/index.php/topic,8146.6.html

void setup ()
{
Serial.begin (9600) ;
ADMUX = 0xC8; // turn on internal reference,
// right-shift ADC buffer,

Page: 85

http://playground.arduino.cc/Main/InternalTemperatureSensor
http://www.atmel.com/Images/doc8108.pdf
http://www.atmel.com/images/doc8003.pdf
http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html
https://sites.google.com/site/qeewiki/books/avr-guide/analog-input
http://www.protostack.com/blog/2011/02/analogue-to-digital-conversion-on-an-atmega168/
http://www.marulaberry.co.za/index.php/tutorials/code/arduino-adc/
http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html
http://forum.arduino.cc/index.php/topic,8140.0.html

// ADC channel = internal temp sensor
delay (10); // wait a sec for the analog reference to stabilize

}

void loop ()
{

Serial.println (averageTemperature()); // so we can debug

delay (500) ; // just to slow things down a bit
}

int readTemperature ()

{

ADCSRA |= BV (ADSC); // start the conversion

while (bit_is_set (ADCSRA, ADSC)); // BDSC is cleared when the conversion finishes

return (ADCL | (ADCH << 8)) - 342; // combine bytes & correct for temp offset
(approximate) }

}

float averageTemperature ()

{

readTemperature () ; // discard first sample (never hurts to be safe)
float averageTemp; // create a float to hold running average
for (int i = 1; i < 1000; i++) // start at 1 so we dont divide by 0
// get next sample, calculate running average
averageTemp += ((readTemperature() - averageTemp)/ (float)i);
return averageTemp; // return average temperature reading

}

To keep things simple we are going to start with use Mr. van Dalen’s code but we have to create a library (a

proper C++ class library) to do that. | have made some minor changes (shown below in bold) to Mr. van Dalen’s

code. Save these two files in a new library folder named “ChipTemp”:

// <user home>\Arduino\libraries\ChipTemp\ChipTemp.h
// http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html

#ifndef ChipTemp H
#define ChipTemp H

// #include <WProgram.h>

// this is a small change to Mr. van Dalen’s code.

// “WProgram.h” was used by the earlier versions of the Arduino IDE
// “Arduino.h” is used by the current version (1.0.5)

#include "Arduino.h"

// ATmega328 temperature sensor interface

// Rev 1.0 Albert van Dalen

// Based on "InternalTemp"

// Requires 166 ... 204 bytes program memory
// Resolution 0.1 degree

// Calibration values, set in decimals

//static const float offset = 335.2; // change this!
static const float offset = 329.0; // sainsmart Nano number one
static const float gain = 1.06154;

static const int samples = 1000; // must be >= 1000, else the gain setting has no effect

// Compile time calculations
static const long offsetFactor = offset * samples;
static const int divideFactor = gain * samples/10; // deci = 1/10

class ChipTemp

{

public:
ChipTemp () ;
int deciCelsius();
int celsius();
int deciFahrenheit () ;
int fahrenheit();

private:

Page: 86

inline void initialize();
inline int readAdc();
bi

#endif

// <user home>\Arduino\libraries\ChipTemp\ChipTemp.cpp
// http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html

#include "ChipTemp.h"

// #include <WProgram.h>
ChipTemp: :ChipTemp ()

{

}

inline void ChipTemp::initialize ()

{ ADMUX = 0xC8; // select reference, select temp sensor
delay (10) ; // wait for the analog reference to stabilize
readAdc () ; // discard first sample (never hurts to be safe)

}

inline int ChipTemp: :readAdc ()

{ ADCSRA |= BV (ADSC); // start the conversion
while (bit is set (ADCSRA, ADSC)); // ADSC is cleared when the conversion finishes
return (ADCL | (ADCH << 8)); // combine bytes

}

int ChipTemp::deciCelsius ()
{ long averageTemp=0;

initialize(); // must be done everytime

for (int i=0; i<samples; i++) averageTemp += readAdc();

averageTemp -= offsetFactor;

return averageTemp / divideFactor; // return deci degree Celsius

}

int ChipTemp::celsius()
{ return deciCelsius()/10;

}

int ChipTemp::deciFahrenheit ()
{ return (9 * deciCelsius()+1600) / 5;
}

int ChipTemp::fahrenheit ()
{ return (9 * deciCelsius()+1600) / 50; // do not use deciFahrenheit ()/10;
}

Mr. van Dalen also provides some code to test the library functions. Create a new sketch directory named
“ChipTempDemo” and create this file in it.
(Special note: The Arduino IDE is VERY particular. The extension “.ino” MUST be lower case!)

// <user home>\Documents\Arduino\sketches\ChipTempDemo\ChipTempDemo.ino
// http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html

// #include <avr/pgmspace.h> // Not needed in current version
#include <ChipTemp.h>
ChipTemp chipTemp;

void setup ()
{ Serial.begin (9600) ;
Serial.println("Celsius decimalCelsius Fahrenheit decimalFahrenheit");

}

void loop ()

{ delay(500);
Serial.print (chipTemp.celsius());
Serial.print (" ");
Serial.print (chipTemp.deciCelsius());

Page:

Serial.print (" ");

Serial.print (chipTemp.fahrenheit());
Serial.print (" ");
Serial.println(chipTemp.deciFahrenheit());

Now open the file in the Arduino IDE by double clicking on it. Compile and upload the file. Then open the serial
monitor. You should see something like this. The first two numbers represent degrees Celsius. The second two
numbers represent degrees Fahrenheit.

=
I Send |
) T4 Jo 99 ;|

=4 244 75 758
=4 244 75 759
=4 244 75 758
24 Z44 75 759
=4 244 75 759
=4 244 75 758
24 Z44 75 7589
=4 244 75 759
=4 244 75 758
=4 244 75 759
=4 244 75 7589
=4 244 75 758
=4 244 75 759
=4 244 75 758
24 Z44 75 759
=4 244 75 759

24 7
4] | r

v &utoscrol IND line ending ;I I%DD baud ;I

To be honest | was a bit surprised that the library compiled after one minor problem was fixed (/ have not had
much joy compiling class libraries). My Nano had been unplugged for some time before | upload the program to
it. It took about 30 minutes for the output to stabilize at: “24 244 75 759”. This is the effect of the chip heating
up and dissipating power as it runs.

The problem is the thermometer that | had sitting beside it was reading just over 88 degrees Fahrenheit.
Looking at the library code there are two constants that are used to adjust the returned values: gain and offset.
| added the following line (and commented out the one it replaced) in the header file. Then | get a much closer
temperature reading.

| static const float offset = 329.0; // sainsmart Nano number one |

The “offset” is an adjustment between what the temperature values inside the chip are and the temperature
value for the outside real world. The other adjustment “gain” is a linear correction factor applied to the
temperature scale. These two factors are different for each Arduino board due to variations in the
manufacturing, chip enclosure, chip mounting, voltage regulation, current power use and high noon position of
the large asteroid known as Pluto. Well maybe Pluto is not involved. The point is | would prefer to have these
factors stored in the EEPROM for each board rather than having to change the library for each board (not
mention having to keep track of which board gets which set of factors).

Page: 88

Develop Avr Temperature Functions

We are going to build our own library (the simple kind) that has a function that returns the raw data from the
ARV. That will allow us to apply an appropriate “offset” and “gain” factor without having to change any of the
library code. We will also make provisions for the function accept a parameter to determine the number of
samples to be read. Let us create a new Arduino project and call it “AvrTemperatureSensor”. Add an extra file to
hold our functions “AvrTemperatureSensorFunctions.ino”. Put the standard setup and loop functions in the
main window. The only parts we are going to use from the previous code examples are those to initialize and
read the AVR temperature sensor.

The techniques of “Oversampling” and “Decimation” are documented in the Atmel AVR121.pdf document.

“Decimation” is used to increase the resolution of the ADC. This technique requires that there be noise on the
input signal with a mean (average) value of zero. As we are dealing with an internal sensor and an internal
voltage reference it is extremely difficult to add any other circuitry to provide the required noise ... unless that
noise just happens to exist au naturel. Much to my surprise some testing has revealed there is probably
sufficient evenly dispersed noise to increase the resolution of the ADC via “Decimation”.

“The extra samples, m, achieved by oversampling the signal are added, just as in normal averaging, but the results
are not divided by m as in normal averaging. Instead the result is right shifted by n, where n is the desired extra bit
of resolution, to scale the answer correctly. Right shifting a binary number once is equal to dividing the binary
number by a factor of 2. As seen from Equation 3-1, increasing the resolution from 10-bits to 12-bits requires the
summation of 16 10-bit values. A sum of 16 10-bit values generates a 14-bit result where the last two bits are not
expected to hold valuable information. To get ‘back’ to 12-bit it is necessary to scale the result.”

Translation:
Add 16 consecutive 10 bit ADC reading together and right shift the result 2 places.
This yields a virtual 12 bit ADC with a range of 0 to 4096 (rather than 0-1024)

The temperature sensor is calibrated in degrees Kelvin. As we are adding two virtual bits to the ADC this changes
the virtual calibration from 1 degree to % degree Kelvin.

Both of the previous mentioned routines take 1000 sequential readings and average. In the case of ChipTemp it
is done with a “normal average”. SpikedCola uses a “moving average”. Averaging data from an ADC
measurement is equivalent to a low-pass filter and has the advantage of attenuating signal fluctuation or noise,
and flatten out peaks in the input signal. | tried number alternative filtering algorithms. In the end | concluded
that oversampling was far simpler and in most cases more reliable. Here is the test code that | came up with.
/* Project to develop functions for AVR internal temperature sensor */

unsigned long Time;
float save;

void setup()

{ Serial.begin(9668);
3

void loop()
{ word rau;
float temp;
byte i;
raw = avrRauTemp(512); // 512 is the numbers of samples
temp= ((((float(raw))/4)-331.5)*1.8)+32;
// conversion:
// float to convert to floating point number
// divide to scale from 1/4 degree increnments to 1 degree increnments
// subtract 273 to convert from kelvin to celcius

Page: 89

// subtract 58.5 (offset varries by board) for external temperature
// multiply by 1.8,
// ——- accuracy can be increased by using two point calibration ---
Serial.print(raw);

Serial.print(", ");
Serial.print(temp);

Serial.print(", ");
Serial.print(Time);

if (raw<save) Serial.print(" <<<");
if (rawsave) Serial.print(" >>>");
Serial.printin();

save=rau;

add 32 for degrees fahrenheit

// raw reading returned by function

// converted to degrees Fahrenheit

// benchmark time to do
// temperature decrease
// temperature increase

reading

// save current temperature

There is one thing to note in the code. The level of parenthesis is in the conversion to Fahrenheit is important.
The conversion from a word value to a floating point value must be done at the very inside of the conversion.
Here is the code for function that returns the averaged raw values of the AVR temperature sensor.

{/*
/*
/*
/*
/*

/*
/*
/*

3

unsigned long RauwSum=0;
word RawTemp=0;

word test=0;

byte exp=0;

byte k=0;
unsigned long Start=micros();

ADMUX = BXC8;
delay(10);

test=0;
while (test++ < samples)
{ for (k=0; k<16; k++)

3
Time=micros()-Start;
return ((RawSum)>>exp);

word avrRawTemp(uword samples)

samples: the number of samples to average
this number will be reduced to a power of 2!
return: degrees Kelvin * 1/4, range 8 to 4696

each sample has 16 ADC reads for the 12 bit virtual ADC

REF: Atmel document number AVRI1Z2I1.pdf

on 16lMhz ATmega328 512 samples requires just under 1 second
16 samples (16*16=256) gives fairly consistent results
on a steady-state system in under 46K microseconds

// as "C" and “C++” lack an basic expodential or power function (or operator)
// we must resort to loops to calculate the binary exponent

while (samples>1)
samples=1;

while (test++ < exp) { samples *=2;}

{ samples /=2; exp++;}

{ ADCSRA |= _BV(ADSC);
while (bit_is_set(ADCSRA, ADSC));
RauTemp += (ADCL | (ADCH << 8));

RawSum += (RauTemp >>2);
RawTemp=8;

//
//

//
//

// used to sum samples for averaqing

// used to accumalate 18 bit ADC readings
// used to count samples

// samples =
// used as shift operand

// counter for ADC reads

// this was used for benchmark timeing
// turn on internal reference,

// right-shift ADC buffer,

// ADC channel =
// wait for the analog reference to stabilize

// calculate exponent for power of 2
// make sure samples =
// set samples value to power of two

// reset test because we have abused it

// oversampling loop (for averaging)

// virtual ADC loop, 16 readings

// start the conversion

// ADSC cleared when the conversion finishes
// accumalate the reading (low byte first)

*/
*/
*/
*/
*/

*/

*/
*/

2 to the exp power,

internal temp sensor

1 (not 8)

accumalate virtual 12 bit ADC value
zero ADC accumalator for the next sequence

record benchmark time
averag by shifting bit position, LSBs lost

The portions highlighted in yellow were shamelessly copied from the code by “SpikedCola”. | have formatted the
terms “ADMUX, ADCSRA, ADSC, ADCSRA, ADCL and ADCH” as keywords but | believe that they are actually constants

Page: 90

that are defined the Arduino header files. | believe that “_ BV” and “bit_is_set” are low level macros defined
within the back end tool chain used by the Arduino IDE.

The function “micros()” returns the number of microseconds since the Arduino board began running the current
program. This function is called at the beginning and end to determine how long it takes to gather the requested
number of samples. The global variable “Time” is used to return this information to the main loop. The two lines
that have these calls as well as the declaration for the variable “Start” should be commented out of the final
version of the function. The variable “RawSum” is 32 bit (four bytes) unsigned long integer. It can hold over a
million samples from our virtual 12 bit ADC. If we had used word variable (2 Bytes) we would have been limited
to sixteen samples.

| was surprised to find out that “C” and “C++” have not a function or operator for exponential operations (well
there probably is one in a math library somewhere but not in the basic language itself--- EDIT NOTE: see Arduino
reference for the function pow()). | restricted all the variables in this function to integers because integer math is
inherently faster and more accurate than floating point. For that reason | want to be able to use a shift
instruction to do the averaging. This also has the advantage of discarding the remainder that is beyond the
significant digits of our calculations. This is a fairly simple calculation. We simply keep dividing the variable
“samples” by two until it is less than two. We increment the variable “exp” with each division. Then we have set
the value to “samples” by going through a multiplication loop “exp” times. This also insure that whatever
requested number of was given the function it will always use the next lowest power of two. Thus if you call for
five samples you are only going to get four.

Here is a sample of the output using 512 samples per function call.

= IES
I Send |
133233, o.blU, FLT7a20 :I

1454, 89%9.60, 227520
1454, 892.60, 227520
1454, 892.60, 227520
1454, 89%9.60, 227520
1454, 892.60, 927520
1454, §%.60, 227520
1454, 82.60, 227520
1454, 89%.60, 927520
1454, §%.60, 227520
1454, 892.60, 227520
1454, 89%9.60, 227520
1454, 892.60, 227520
1454, 892.60, 227520
1454, 89%9.60, 227520
1454, 892.60, 927520
1454, §%.60, 227520

’ ol

[+ Aukoscroll IND line ending LI I%DD baud ;I

Page: 91

Page: 92

Storing Calibration Constants (EEPROM)

Now that we have gone to all the trouble to get our calibration data we need to put the results in the EEPROM.
Then we can create that uses that data to report the temperature. First we must determine exactly what we are
going to store and where we are going to store it. We want the program to report the actual raw reading that it
gets from the sensor as well as the temperature in degrees Fahrenheit Celsius and degrees Fahrenheit. By
definition the reference point is going to be 72 degrees Fahrenheit (22.22 degrees Celsius) so the first piece of
data we want is raw sensor data reading for that point. That will be stored as our offset point in a two byte
word.

Assume for a moment that the correct sensor reading for 72 degrees Fahrenheit is 1485 and that we have a
sensor reading of 1500. That will give us a positive difference of 15 units. Those units are actually one quarter of
one degree Kelvin. Thus the nominal conversion factor for Celsius is 0.2500. The ration of degrees Fahrenheit to
Degrees Celsius is 1.8. Thus the nominal conversion factor for Fahrenheit is 0.2500 * 1.8000 = 0.4500.

Thus the formulas to report the correct temperatures will be:

Temperature in Celsius =22.22 + ((Current Reading-Offset) * (Conversion Factor for Celsius))
Temperature in Fahrenheit = 72.00 + ((Current Reading-Offset) * (Conversion Factor for Fahrenheit))

We are going to store the Celsius number as a two byte word. To convert that number to a word value we
multiply it by 65532. To convert the word value back floating point we divide it by 65532. We are also going to
store an ID string to identify the specific sensor if we happen to have more than one connected to our
computer. That will be 16 bytes long without a null terminator. We also need to store flag that controls how the
report data is written and how often it written.

We will call this program “EEPROM_TempSensor_Calibration_Constants”. It is rather long because we are going
to validate our data after it is stored.

/* EEPROM_TempSensor_Calibration_Constants */
/* Stores internal temperature sensor Calibration Constants in EEPROM
Uses first 32 bytes of EEPROM for working storage
Uses last 32 bytes of EEPROM for backup storage */
#include <EEPROM.h>
//
//== replace these with the actual values to be used for this specific Arduino board ==//
//
word CovrtOffsetR = 1387; // Observed Reading for 72 degrees Fahrenheit
float Covrt2Celsius = 0.25; // calibrated conversion factor for celsius
char IdString[17]="Your string here"; // fill in your ID string here
S e 1234567896123456 // 16 charateres max
//
// EEPROM addresses constants
const word EEmask = 0; // 1 byte location of EEPROM storage mode mask
const word EEflag = 1; // 1 byte location of EEPROM storage mode flag
const word EEoffsetR= 2; // 2 byte location of CovrtOffset
const word EEcelsius= 4; // 2 byte location of Covrt2Celsius
const word EEminutes= 6; // 2 byte location of Report Target Minutes
const word EEunusedd= 8; // 2 byte location -- unused --
const word EEunusedl= 10; // 2 byte location -- unused --
const word EEunused2= 12; // 2 byte location -- unused --
const word EEunused3= 14; // 2 byte location -- unused --
const word EEidtring= 16; // ID string w/o termiantion size (16)
const word EEidsize = 16; // 24 byte location of IdString
const word EEwdsize = EEidtring+EEidsize; // Working data storage size (32)
/T T T T T T T
// you may notice some extra space allocated these may be used in a later program
it
const word StorageWorking=EEmask; // EEPROM start for working copy of constants

Page: 93

// EEPROM start for backup copy of constants

// note we have to add 1 to the value

// Becasue addresses begin with zero not one
const word StorageBackup =((E2END-(EEwdsize))+1);
const word CovrtFactor = 65532;

void setup()
{ char WorkStr[EEwdsize+4]; // used to
// this array is a bit long so that we can stuff an

float tempf1t=0; // used to
word tempurd=o; // used to
float saveflt; // used to

word i=0;

word j=0; // counter
word k=0; // marker
char c;

Serial.begin(9600);

// build array to store
// EEmask and EEflag
WorkStr[i++]=0xFF;
WorkStr[i++]=0xFF;
// CovrtOffset
WorkStr[i++]= highByte(Covrt0ffsetR);
WorkStr[i++]= louByte (CovrtOffsetR);
// Celsius

// The higher this number is the better

build array to write

extra zero byte at the end

convert celsius & fahrenheit factors
save celsius & fahrenheit factors
save conversion factor

// index into work array

// one character

// so we can report progress

// stuff hex FF in array
// stuff hex FF in array

tempurd =word(Covrt2Celsius*CovrtFactor); // mutiply and drop decimals

(F("Celcius factor = "));
(Covrt2Celsius, 5);

(F("multiplied by "));
(CovrtFactor);

FC ="));

(Covrt2Celsius * CovrtFactor, 5);

Serial.print
Serial.printin
Serial.print
Serial.print
Serial.print
Serial.printin
Serial.print
Serial.print
Serial.print (F("(HEX: "));
Serial.print (tempurd, HEX);
Serial.printin (F(")"));
WorkStr[i++]=highByte(tempurd);
WorkStr[i++]=1ouByte(tempurd);
Serial.printin ();

Serial.flush ();

(tempurd, DEC);

// Minutes between report lines
WorkStr[i++]=0x00;
WorkStr[i++]=0x01;

// Extra space we may use later

(F("Celcius factor stored as Word= "));

// stuff Celcius factor in array

// stuff hex 66 in array
// stuff hex 81 in array

while (i<EEidtring) {WorkStr[i++]=8xFF;3} // stuff hex 68 in array

// ID String
Idstring[17]=0;
Serial.print (F("ID String: "));
// Serigl-println—(IdString);
j=0;c=1; k=i;
while (c!'=0)
{ c=IdString[j++];

if (c<32)c=8;

WorkStr[i++]=c;
3
while (j++ <EEidsize) § WorkStr[i++]=8xFF;} // fill
Serial.printin (& WorkStr[k]);
Serial.flush();

// make sure we have a null terminator
// We are not going to print the

// ID string until we filter it

// stuff id string in array

// filter non-printing characters

in the rest with ones

// now print it

Page:

94

A EERREN HRiee ——mmmmmmemooosmmmmsomesoomommmm—e
// erase the the entire the EEPROM
for (i=0 ;i<E2END; i++)
§{ if (EEPROM.read (i) '= OxFF)
EEPROM. urite(i, OxFF);
3

// copy the array to EEPROM (working copy)

for (i=0 ;i<EEwdsize; i++)

{ if (EEPROM.read (StorageWorking+i) != WorkStr[il)
EEPROM. urite(Storagelorking+i, WorkStr[i]);

3

// copy the array to EEPROM (backup copy)

for (i=0 ;i<EEwdsize; i++)

{ if (EEPROM.read (StorageBackup +i) != WorkStr[il])
EEPROM. urite(StorageBackup +i, Workstr[i]);

3

Serial.printin ();

Serial.printin (F(" "));
Serial.printin ();

Serial.flush();

i=EEidtring; j=0; c=1;

while (c'=0, j< EEidsize)

{Cc=EEPROM. read(i++); // read the ID string
WorkStr[j++]=c;

WorkStr[EEidsize]=0; // just in case
Serial.print (F("ID String read from EEPROM: "));
Serial.printin (WorkStr); // print it

Serial.flush();

J) EEE e UFrSees sse——mccmmmsemmsscmessoso=asos
tempwrd= EEPROM.read(EEoffsetR)<<8;

tempwrd= tempuwrd + EEPROM.read(EEoffsetR + 1);
Serial.print (F("Offset read from EEPROM: "));
Serial.printin (tempurd, DEC); // print it
Serial.flush();

// Get the celsius factor; --—--—-—-———=———==""""=—-—-

tempwrd= EEPROM.read(EEcelsius)<<8;

tempurd= tempurd + EEPROM.read(EEcelsius + 1);

Serial.print (F("Celsius factor read from EEPROM: "));

Serial.printin (tempurd, DEC); // print it

// now we need to convert it

tempflt= float(tempurd)/ CovrtFactor;

Serial.print (F("Celsius factor converted back to floating point: "));
Serial.printin (tempflt, 5); // print it

Serial.flush();

Serial.printin ();

Serial.printin (F("Th-th-th-th-th- ... that's all folks!"));
Serial.flush();

// http://wwu.youtube.com/watch?v=-_kwXNVCaxV

// http://en.wikipedia.org/wiki/Porky Pig

// [~/

// Serial.print (F("--Got Here, i= "));

// Serial.println (i, DEC);

// Serial.println (j, DEC);

// Serial.flush();

// while(true); // debugging, stops program

Page:

95

e e
3

void loop() {3 // do nothing

There is nothing that you have not already seen in this program except for Serial . f1ush. That is a member of the
serial library that sends all the waiting characters out the serial port before returning to the program. Normally
the serial library operates in the background but in this case | had some bugs where the program would lockup
before the previous Serial.print statement got all of its characters to my terminal. That made it difficult to
identify the line where the problem occurred. So | added a bunch of flush statements.

Note that we are only storing the Celsius conversion factor. The Fahrenheit conversion factor will be derived
directly from the Celsius conversion factor by multiplying by 1.8. So of the extra allocated space comes from
having completely rewritten the program several times during the development. The 36 byte number worked
out well for so the extra bytes are left in there for future use.

No effort was made to optimize or reduce the size of the program because it is well under the Flash size and in
theory it should only be needed to be run once. The output should look like this (be sure you replace the
variables with your own values).

ST
|| Serd |

Celecius facteor = 0.25000
multiplied by &5532 = 1&383.00000
Celcius facteor stored as Word= 16383 (HEX: 3FFF)

ID String: Your string here

ID String read from EEPROM: Your string here

Offzet read from EEPROM: 1337

Celsius factor read from EEPROM: 16383

Celsius factor converted back to floating point: 0.25000

Th-th-th-th-th- ... that's all folks!

v fwkoscroll |Carriage returnll |960E| baud ;l
JRI=TE
“ Send |
EEDROM Dump: =
goooo FFFFO5AE 3FFFO001 FFFFFFFF FFEFFFFFF P

000la G559&F7572 20737472 696ER720 68657265 Your string here
00032 FFFFFFFF FEFFFFFF FFEFFFFFF FFFEFFFEF
00048 FFFFFEFF FEFFFFFF FEFEFFFFFF FFEFEFFEFE nnn
000f4 FFFFFFFF FEFFFFFF FFEFFFFFF FFFEFFFEF nann
00080 FFFFFFFF FFFFFFFF FFFFFEFFF FEFFFFEF nnnns
00026 FFFFFFFF FEFFFFFFF FFEFFFFFF FFFEFFFFF00cnv...

Page: 96

00960 FFFFFFFF
00976 FFFFFFFF
00992 FFFFO0S56B
01008 S596F7572

[Autoscroll

FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF
3FFFO0001 FFEFFFFF
20737472 696E6720

FFFFFFFF
FFFFFFFF
FFFFFFFF
68657265

Your string here

-

|Carriage return | [9600baud x|

Note how handily this puts the ID string into the last 16 bytes of the EEPROM.

Page: 97

Thermometer Program

Reporting Protocol

Now that we know how to read the internal temperature sensor and we have our calibrated constants we are
almost ready to create the actual program to report the temperature from the Arduino back to the computer.
We must first do a little planning. We need to define sort of temperature reporting protocol. It would probably
be useful if that protocol provided for two way communications as well.

moows»

Linear Calibrated Temperature Sensor(s) Reporting Protocol
Established: September 2013 by Lewis Balentine
This Protocol is designated to be Public Domain

Default communications will be via RS232 protocol at 9600 Baud
All communications will be done in ASCII 7 bit characters
The device will monitor the serial port for commands as specified below
All commands will be Two Characters of which the first must be an Alpha character
Command terminations/separators may be either a carriage return (ASCII 13) character or a new
line (ASCII 10) character or null character (ASCII 0) or a tab character (ASCII 9) or a space character
(ASCII 32) or any combination of the these characters
Only one command is accepted at a time but additional data may be sent as required by the
command. This data shall be delimited from the command by a command terminations/separator.
When that data is an ASCII string then the space character (ASCII 32) is excluded from the list of valid
terminations/separators within the length of the string.
The following two character commands will be considered valid
1. ID Output sensor/location ID string(s)
For multiple sensors each ID string will be proceeded by
a designation digit/character, a colon and a space
2. ST Output Status (as applicable to implementation)

a. Reporting mode, true or false

b. Debug mode active, true or false

c. Report Raw reading, true or false

d. Report Fahrenheit temperature, true or false
e. Report Celsius temperature, true or false

f. Internal Temperature, true or false

g. Minutes between readings

h. Reference voltage

i.

Sensor Parameters
Repeat the ID, Offset, Fahrenheit, Celsius constants as applicable for each sensor.
For multiple sensors each ID string will be preceded by a designation numeral, a
colon and a space.
[. If any current in memory constants have not been written to storage then include
line that to that effect.
m. Report storage Mode flag set if it is set
RT Raw True =include raw reading from temperature sensor
RF Raw False = do not include raw reading from temperature sensor
RV New reference voltage
CT Celsius True = include degrees Celsius
CF Celsius False = do not include degrees Celsius
= Celsius input. Recalculate raw reading offset based on input temperature.

O N AW

Page: 98

9.

10.
11.

12.

13.
14.
15.
16.

17.
18.
19.
20.

21.
22.
23.
24,
25.

26.

27.

FT
FF
F=

T#

T
PF
PT
DB

DO
DF
DC

D2TmMoOoor

N+

Device with multiple sensors must be placed in “Single Sensor” mode.

Fahrenheit True = include degrees Fahrenheit

Fahrenheit True = do not include degrees Fahrenheit

Fahrenheit input. Recalculate raw reading offset based on input temperature.
Device with multiple sensors must be placed in “Single Sensor” mode.

Sets time between report lines where # is one of the following

1 Reportreading every 01 minute

Report reading every 02 minutes

Report reading every 03 minutes

Report reading every 04 minutes

Report reading every 05 minutes

Report reading every 10 minutes

Report reading every 15 minutes

Report reading every 20 minutes

Report reading every 30 minutes

Report reading every 60 minutes

Report reading every 2 hours

Report reading every 4 hours

Report reading every 6 hours

Report reading every 8 hours

Report reading every 12 hours

Report reading every 24 hours

(it is intended that the data is the average temperature for the given period)
Followed by data (units, number) for other reporting period (not implemented)
Stop printing report lines and accept commands only (report printing mode/state)
Resume printing report lines (report printing mode/state)

Toggle debug mode for extended reporting

a. Average time for each read cycle

b. Number of reads cycles for each report line

c. Actual time for each report Line

d. Other information according to implementation

New Degree offset for minor adjustment to temperature scale

New Degree offset for minor adjustment to temperature scale (Faherenheit)

New Degree offset for minor adjustment to temperature scale (Celsius)

plus command separator plus sensor designator. This command is ONLY used for
devices with multiple sensors. The designator shall be a single alpha or digit character
as determined by the implementation. This command selects the sensor for all following
sensor specific commands until another “S:” command is received. This command
essentially places the device in “single sensor” mode. To exit this mode enter the “S:”
command without a designator.

plus command separator plus new ID/Location string

plus command separator plus new Raw reading offset (capital O colon)

plus command separator plus new Celsius scale factor

plus command separator plus new Fahrenheit scale factor

Extended protocol (zero, colon).

These commands are specific to a given specific implementation.

Write new constants to device storage

“NN” MUST be upper case!

This command (WW:) shall only update the working copy of the constant data
Overwrite backup constant data with working constant data. “W” MUST be upper case!

TOS3ITATTSR A0 Q0T
Mmoo DeoevoOoNOTUITAWN

Page: 99

28. W- Overwrite working constant data with backup constant data. “W” MUST be upper case!
29.E+ This is a special mode that writes the readings to EEPROM rather than to the serial port
(This will of course require an alternate power source)
a. Set device storage flag
b. On the next “Reset” or “Startup”
1. Clear device storage flag
2. Read and store RawReading to device storage until space is exhausted
3. Shutdown, Sleep or Resume normal operation as available in implementation
30. E- Clears Flag for EEPROM mode
31. ED Dumps data from device storage according to current conversion constants
(debug mode ignored and all three values are output)
32. EC Clears device storage area (if EEPROM writes OxFF to all locations)
33. AR Extended protocol .
These commands are specific to a given specific implementation.
34. M? Undefined, reserved for future use by this protocol specification.
35. N? Undefined, reserved for future use by this protocol specification.
36. U? Undefined, reserved for future use by this protocol specification.
37. X? Undefined, reserved for future use by this protocol specification.
38. Y? Device specific command(s) (implementation specific).
39. Z? Device specific command(s) (implementation specific).
40. LL Output list of device implemented commands
Each line shall be prefixed with semicolon and space
The first line shall include device Identification and/or serial number
The required output is the 2 character commands
Optionally each line may include a short description
41. ?? SameaslLL
42. SS Shutdown or Sleep (implementation specific).
This command MUST have two consecutive calls.
The device will respond with “; SHUTDOWN” or “; SLEEPING” as applicable.
43. 00 Turn rounding on or off (implementation dependent)
44, 11 Reset or reboot device (that is two exclamation marks)
This command MUST have two consecutive calls.
The device will respond with “; RESETTING” (implementation limited)

. The device/application may implement any set or subset of the commands that include the

following commands: ST, CT, CF, FF, FT, T1, T2, T3, T4, T5, ??
Any response line from the device that is NOT a report line shall be prefixed with a semicolon “;”
and a space.
Valid commands that do not otherwise generate responses shall respond with the two character
command plus space plus “OK”.
If the device receives a command it does not recognize then it will respond with “??”.
If the device receives a command it recognizes but is not implemented then it may respond with
either “XX” or “??” but “XX" is preferred.
. Commands with a terminating colon may be used for multiple sensors by replacing the colon with a
numeral to identify the sensor number.
Report lines from the device shall consist of the designated data fields separated by a tab character
(ASCII 09) in the following order:

1. Raw reading

2. Calibration corrected Celsius temperature

3. Calibration corrected Fahrenheit temperature

4. Extended debugging data as defined above

Page: 108

That should be enough to confuse the issue. Our device currently only has one sensor but the protocol makes
provisions for multiple sensors (Engineering is the art of “Planning and Forethought”). Tab characters (ASCIl 09)
are one of the commonly used delimiters for text files. This makes it easy to import the data file into a
spreadsheet program or database for charting and/or analysis. The semicolons prefixed to the devices responses
may it easy to strip out those lines from the data file or signal the receiver application that this is NOT a normal
reporting line. If the PC application includes device commands in its output stream and/or log then it should
prefix these with a semicolon and a space as well. Although the protocol specifies all upper case characters for
command characters it is recommended that the device application accepts either upper or lower case or a
combination of both with the exception “W” commands. The reset command “!1” (that is two exclamation
marks) is intended to be used for “If all else fails then abort and start over”. The reset command may also be
used as an entry point to update the device software (depending on the reset characteristics of the device).

The commands “A:”, “A?”, “X?” and “Z?” (the “?” is wild card that is to be interpreted as any character) are
intended to be used to extend the protocol as may be required for a specific senor(s) while keeping the
functionality of the basic protocol in place. This allows for a standard reporting application to use sensor(s) with
extended capabilities. However an extended reporting application specific to the implementation may be
created to take advantage of the additional features (for example “wet” and “dry” bulbs or a humidity sensor).
Any command beginning with the letter “M”, “N”, “U” or “X” is defined to be undefined and reserved for future
use by this specification.

Page: 101

Thermometer Program, Plan “A”

READ BEFORE YOU PROCEED !!!
Plan “A” to use the internal temperature was a dismal failure.
The program code does however provide the Basis for Plan “B” which is a total success.

This section we will discuss the structure of the program, the variable usage and specific details of the
Implementation. It will also list all the functions and describe their use. The program code is divided into two
files. The first “ThermometerOne.ino” has the declarations, setup function, loop function, command processor
function and those functions directly related to parsing commands codes. The second file named
“ThermometerOneFunctions.ino” contains the code to implement the various sections of the protocol. The two
source files together are a bit over 50 Kbytes. They are fully included in the

Page: 102

Appendix: Thermometer One Program Code. Note that much of the “debugging code” has been left in place but
commented out to provide examples of the debugging methods used (these lines should be obvious).

Main File Functions

Global Declarations

Includes

The first items listed are the “#include”s. In order to implement the sleep/shutdown function we need the
resources provide by avr/sleep.h. EEPROM.h is included so that we can read and write to the EEPROM. Our own
library “HexDecAsc.h” is included to implement a device specific function that dumps the EEPROM contents to
the serial port. This was needed for debugging purposes.

EEPROM address

The first group of these is the constants that identify specific locations where conversion constants and
operational parameters are to be stored. There are two complete 36 byte copies of this data: one at the start of
the EEPROM and one at the end. The first is designated as the working copy. The last is designated as the backup
copy. If the first section should ever “wears out” (as in more than 10,000 writes) then the two sections can be
swapped by redefining their locations.

The second group is a set of four word variables used by the application to delineate the beginning and ends of
the sections of the EEPROM where reading are to be written to or read from during storage mode operation.
The implementation uses these in such a way as to spread the writes out across the entire range. This is referred
to as “wear leveling”. With an ATmega329P this results in 952 bytes of data storage [1024-2*(36) =952].In a
best case scenario this is adequate for 7,600 readings or to put it another way: one reading every 5 minutes for
26 days. A more reasonable estimate would be somewhere around 15 days.

Conversion Factors/Calibraton Data

These variables are used to store the factors needed to convert from raw readings of the virtual 12 bit ADC to
actual temperatures in degrees Celsius and Fahrenheit. It also includes a variable used to determine if any of
these have been changed in the current session. Two constants are also defined for the temperatures at the raw
reading offset.

Global operational mode Variables
A number of modes (or machine states) are defined. These Boolean variables are used to indicate if a given
mode is active. In some cases multiple modes may be active at the same time.

Global work Variables

These are global static working variables that are available to all functions. For the most part they deal with
timings and command handling. The variables “LastRead”, “Consecutive” and “gap” are defined in this section in
order to preserve their values between calls to the functions that use them.

Setup() Function

The setup function does exactly what it is intended to do: configure the hardware and operational parameters.
The parameters are read from the EEPROM and default timing numbers and operation modes are established.
Then if the device is NOT in EESTORAGE mode the operational status is sent to the serial port before the main

loop begins.

Loop() Function

The loop function continually cycles through three tasks. The first task is to determine if there is a possibility of a
command waiting in the serial buffers. If there is then it calls a function to read the command and sends any
valid result to the command processor.

Page: 103

The second task is to collect temperature data. The variable “gap” is used in this take to regulate how often this
task is performed.

The last task is to determine if it is time to report or record data. A delay of up to 120 milliseconds has been
incorporated in this task in order to make the reports as periodic as possible. In most cases there is less that plus
or minus 1 millisecond error however if there has been any command processing then all bets are off. Things like
changing the report timing in mid-stream completely negate the precision of the report trigger for the current
report cycle.

CmdProcessor() Function

This is the main control function to implement the protocol. It accepts a two character command and redirects
the application to the appropriate function. If the “debug mode” is active then the two letter command is
reported to the serial port as well. This feature is intended to be used in the development process of an
application for the receiving end. Examples of non-implemented commands are also included.

At the bottom of this function there are four application specific commands defined.”Z1” and “Z2” insert sample
data into the EEPROM. Although these were written and used for debugging purposes they can also be used to
initialize a virgin device. The “ZZ” command changes the number of seconds per minute to 10 in order to reduce
the reporting period. It also sets all the modes so that only raw readings are reported. This is intended to be
used to collect data for a two point calibration.

The “ZD” command uses the “HexDecAsc” library to dump the entire contents of the EEPROM to the serial port.
This was used extensively in debugging the EEPROM writes and reads.

HelpMe() Function

This is the companion to the CmdProccessor function. It dumps a list of all implemented commands to the serial
port. It was placed directly below the CmdProccessor function in order to make it easier to keep the two in sync.
Notice the extensive use of the F() macro in this function. Without it the program had a tendency to lock up and
crash during the development. The use of this macro has definite benefits.

PrintSeperatorLine() Function

Some of the list functions such as the HelpMe function above print a line of dashes at the beginning and end of
their output. The function provides a way to accomplish that without having to insert a line of dashes in those
functions thus conserving program space.

ReadTwoCharacters ()Function

This is the main input function. It retrieves characters from the serial port, strips off command terminators and
capitalizes the alpha characters (with the exception of ‘w’). It also saves the previous command and incorporates
a time limit. If a complete command is not received within 250 milliseconds then it aborts and program control
returns to the loop() function. Under more ideal condition the function only requires on the order of 15-20
milliseconds. If it does detect a valid command then it drains the serial stream of any remaining terminator
characters. In order to provide for the maximum input flexibility the definition of terminating characters is
extremely liberal. In either case it returns a Boolean value to indicate if a valid command has been received.

Note: There is a separate input handler for the ID string that does not use a space as a command terminator.

DrainCmdTermiantors() Function
This function is used the drain the serial stream of any remaining command termination characters.

Page: 104

DebugPrintCharacters() Function

This was the principle debugging method used for the ReadTwoCharacters function. The function has been
overloaded so that it could be used to print CMDs received by other functions such as the main reporting
function. The CmdProcessor used this function in debugmode.

Thermometer Functions File

EnableADC() Function

This function is called by the setup routine to configure the ADC unit. It is probably not required because it
essentially replicates the default settings. This insures that something (i.e. an unusual boot loader or previous
program) has not redefined those parameters. The required defines are include just above the function
definition.

Read_Calibration_Data() Function

This function is called by the setup routine to retrieve operational parameters and calibration data from the
EEPROM. It is also called when some of those parameters are written to the EEPROM (the exception being the
EEMODE flag).

Werite_Calibration_Data() Function

This writes operational parameters and calibration data from memory back to the EEPROM working data
storage. It only writes those parameters that are flagged as being new. Note that it also clears the EEMODE flag.
This command must be called manually using the “WW” command and the “WW” must be upper case (most
commands may be upper or lower case).

ClearStorage() Function

This function is used to clear the EEPROM storage area between the working and backup copies of the
parameter data. It does a read before write to avoid excessive wear on the EEPROM. It is called by the
Check_EEPROM setup function but it may also be called using the “EC” command. Each read requires 4 machine
cycles. Each write requires 2 machine cycles. Thus a single byte may require 6-8 cycles to process.

EEmodeFlagSet() Function

This function is used to set the EEMODE Flag so that at the next reset or restart the application will write to the
EEPROM rather than report its data to the serial port. This was originally written as simple set to non-zero value.
That could have caused to excessive to the low order bit if the device is frequently used in EEPROM mode. The
nature of way the EEPROM work dictate that it is “erasing a zero bit” that cause wear.

http://electronics.stackexchange.com/questions/21232/100k-eeprom-writes-per-bit-or-as-a-whole

It's not just write cycles that's specified, but erase/write cycles. On the AVR EEPROM can be
erased by byte. Erasing sets all bits to 1, writing selectively clears bits. You can't program a
1, just O0s. If you want to set at least one bit to 1 you have to erase that byte.

Erasing removes the charges from the FET's floating gate, but on each erase cycle some of the
charge remains on the floating gate, which won't be removed through the quantum tunneling. This
charges accumulates and after a number of cycles there's so much charge left on the floating gate
that the bit still will read 0 after erasure. That's what determines EEPROM life, it's erasure
rather than writing. So you can safely write additional 0s, as long as you don't erase.

So the function was rewritten to compare two bytes a mask and a flag byte. A zero bit is rotated through the bit
positions of the flag byte to set the EEPROM flag. To clear the EEPROM flag the mask is set even to the flag. Thus
there is only one write to each byte for each EEPROM mode cycle and zero erase are evenly spread across both
bytes. In theory this may increase the life of the EEPROM flag (100,000 E/W cycles) by a factor of 16 . It will at
the very least double the life. This function must be manually called by the “E+” command.

Page: 185

http://electronics.stackexchange.com/questions/21232/100k-eeprom-writes-per-bit-or-as-a-whole

EEmodeFlagClear() Function

This the compliment to the EEmodeSetFlag function. It is automatically called in the Check_EEPROM setup
function and may be manually called by the “E-“ command.

EEmodeFlagTF() Function
This function is used to check the EEMODE flag and returns true or false.

Check_EEPROM() Function

This function is called by the main Setup function to check if the current run is designated to go to the EEPROM.
If the EEMODE flag is set then the EEPROM mode is set true and the Report and Debug modes are set to false.
The function then determines the End of the last EEPROM session. It then uses ClearStorage to erase the entire
storage area. A marker of two 0 bytes is written to the EEPROM to indicate the start of the current session. The
storage variables are set and the function exits.

Print_ldString() Function

This function Outputs the current “ID/Location” string to the serial port. This function is called by is called by the
Status function or it may be called manually by the “ID” command.

PrintTrueFalse() Function
This function Outputs the “True” or “False” to the serial port. It is only used by the Status function.

ReportStatus() Function

This function Outputs the current operation status and parameters to the serial port. It is called by the main
setup function and may be manually called using the “ST” command.

avrRawTemp() Function

This is the function called by the main loop to read the internal temperature sensor. It is a clone of the similar
function presented in the previous sections that uses 16 consecutive 10 bit ADC reads to produce a virtual 12 bit
reading. . The main difference is a fixed number of 64 reads using in line constants. These changes help reduce
the cycle time for the function.

This is the function that would need to be rewritten if this application is used for a different temperature sensor
or for multiple sensors.

Convert()Function

This function is called by the reporting functions to convert Raw Readings the Celsius and Fahrenheit. It rounds
these numbers to the nearest % degree for Celsius and % degree for Fahrenheit.

Report() Function

This is the function called by the main loop to send output to the serial port or the EEPROM. It first calculates
the average temperature for the report period. Then if the EEPROM mode is active then it calls the secondary
function Report2EEPROM otherwise it write to the serial port. If debug mode is active it also reports the cycle
time and number of readings. This feature was used to derive some of the timing constants.

QuickBlink() Function

This function blinks the LED on digital pin 13 for 2 milliseconds. It is used in EEPROM mode to indicate report
cycles, writes and shutdown.

Report2EEPROM() Function

This is the function that is used to store data in the EEPROM. It implements both wear leveling and data
reduction. The wear leveling is done by beginning each new session where the old session ended. This is
controlled by the Check_EEprom function. The data reduction is based on the concept that there are typically a

Page: 106

number of consecutive readings that are the equal. The function counts up to 16 consecutive readings and
stores the count in the high nibble of the word that it writes to the EEPROM. This increases the amount of data
that can be stored and reduces the number of writes thus increasing the life of the EEPROM as well. It is
important to note that the range of readings recorded will never exceed 2047. This insures that there will always
be a high order zero in the reading and thus no word written to the EEPROM storage will ever be all ones. That is
important because areas with all ones are considered to be unused. When the function reaches the end of the
available storage it wraps around to the beginning (this has NOT been extensively tested due to the extended
time periods required). When it reaches the beginning mark the sleep/shutdown function is called.

DumpStorage() Function

This is the compliment to the Report2EEPROM function. It locates the beginning of the last recorded session by
searching for the two zero bytes marker. It then decodes the data and dumps it to the serial port using the
current reporting constants. It dumps all three temperatures: Raw, Celsius and Fahrenheit separated by tab
characters. Lastly it reports the number of readings and the amount of storage used. This function must be
called manually using the “ED” command. There are a lot of example debugging lines in this function that are
commented out.

PrintOKStr() Function

This function prints the current two letter command followed by “ OK” to the serial port. Various command
function use this function to acknowledge the command was accepted and executed.

PrintNotRecognized()Function

This function prints the current two letter command followed by “ ??” to the serial port. Various command
function use this function to indicate that the command was not recognized.

PrintNotlmplemented() Function

This function prints the current two letter command followed by “ XX” to the serial port. Various command
function use this function to indicate that the command is not implemented.

ShutDown() Function

This command is used to cease execution of the program. It disables interrupts, disables the ADC and places the
ATmega328 into “sleep power down” mode. This is as close to shut down as we can come. This mode still uses
nearly 10 milliamps of power due to the inefficient 5 volt voltage regulator.

http://playground.arduino.cc/Learning/arduinoSleepCode

Sleep is commonly used to save power on Arduino boards. For some Arduino variants, however, there
is not much benefit. For example, the Arduino serial and USB boards use a 7805 type of power
regulator, which needs 10mA when the Atmega IC is in idle mode. Putting these boards to sleep
will cut a few mA off the total power consumption however it will still be high.

An application specific designed device could greatly reduce the power usage but in that case one might also
want to revisit the data collection and command processor routines to reduce power between those as well.
Power reduction was not considered in the software design as this application is primarily intended to be used
with the device connected to computer. This function may be manually called using the “SS” command.

software_Reset() Function

This function may be called to restart the application from the beginning. The implementation method uses a
simple assembly call to the zero vector. This does NOT reboot the device. A better implementation would be to
use the vector to the boot loader however the boot loader would need to be checked for compatibility. It is
expected that the “OptiBoot” would work well in this manner. However for this application the failsafe approach
was chosen. This function may be manually called using the “!” command.

Page: 107

http://playground.arduino.cc/Learning/arduinoSleepCode

This function is intended to be used in the case “If all else fails”. As such it should be rewritten using some kind of
interrupt handling so that one may recover from an infinite loop. This may require modifying the Serial library.

SetRawReadMode() Function

This function sets the raw reading report mode to true or false. This function may be manually called using the
“RT” or “RF” commands. Default is true.

SetFahrenheitMode() Function

This function sets the Fahrenheit report mode to true or false. This function may be manually called using the
“FT” or “FF” commands. Default is true.

SetCelsiusMode() Function

This function sets the Celsius report mode to true or false. This function may be manually called using the “CT”
or “CF” commands. Default is true.

SetReportMode() Function

This function sets the report mode to true or false. This function may be manually called using the “RT” or “RF”
commands. Default is true.

ToggleDebugMode() Function

This function sets the toggles the debug reporting mode between true and false. This function must be manually
called using the “DB” command. Default is false.

NewReportTime() Function

This function is used to change the time between report lines. Note that only the times specified in the protocol
are implemented (i.e. TT is not implemented). This function may be manually called using the “T#” command
where “#” isin the set “1,2,3,4,5,6,7,8,9,0,A,B,C,D,E,F”. Default is “1”.

Report_Reset() Function

This function reset the report line variables and report timing variables. It is normally called by the
NewReportTime function but may be called by other functions as well (i.e. when new parameters are written to
EEPROM or restore from backup).

NewldString() Function

This function reads an ID/Location string from the serial port and stores in active memory. The function
incorporates a 5 second timeout to read the value. Failure to provide the data in a timely manner will abort the
command. This command includes internal code to read data from the Serial port. It does not capitalize the
string or terminate when a space is received. It will terminate if more than 24 printable ASCII characters are
received. If a value is received and recorded then the new data flag is set as well. Command terminators are
drained from the serial stream in either case. This function must be called manually using the “L:” command.

As | am reviewing the code for this function it seems that | neglected to include code to drain any extra printable
characters from the serial stream. That oversight will be corrected.

NewOffset() Function

This function reads a new raw reading offset from the serial port and stores in active memory. The function
waits 2 seconds for the data to enter the serial stream before attempting to read the value. Failure to provide
the data in a timely manner will abort the command. If a value is received and recorded then the new data flag
is set as well. Command terminators are drained from the serial stream in either case. This function must be
called manually using the “O:” command.

Page: 108

CelsiusEquals() Function

FahrenheitEquals() Function

These two functions are the primary way a user will calibrate the device. They take the user’s input to
recalculate the raw reading offset for 20 degrees Celsius (68 degrees Fahrenheit). This is accomplished by
multiplying the difference between the input temperature and the offset temperature by the temperature
conversion factor. The result is subtracted from the current raw reading to produce a new raw reading offset.

NewcCelsius() Function

This function reads a Celsius conversion factor from the serial port and stores in active memory. The function
waits 2 seconds for the data to enter the serial stream before attempting to read the value. Failure to provide
the data in a timely manner will abort the command. If a value is received and recorded then the new data flag
is set as well. Command terminators are drained from the serial stream in either case. This function must be
called manually using the “C:” command.

NewFahrenheit() Function

This function reads a Fahrenheit conversion factor from the serial port and stores in active memory. The
function waits 2 seconds for the data to enter the serial stream before attempting to read the value. Failure to
provide the data in a timely manner will abort the command. If a value is received and recorded then the new
data flag is set as well. Command terminators are drained from the serial stream in either case. This function
must be called manually using the “F:” command.

The three functions above use commends included in the Serial library to read floating point or integer values. At
some point that code should be replaced to incorporate a timeout and insure that any extra characters are
properly dealt with.

RestoreFromBackup() Function

This overwrites the working parameter storage with data that has been saved in the backup copy. This function
must be called manually using the “W-" command and the “W” must be upper case (most commands may be
upper or lower case).

OverwriteBackup() Function

This is the compliment to the RestoreFromBackup function. This overwrites the backup copy with data from the
working parameter storage. This function must be called manually using the “W+"” command and the “W” must
be upper case (most commands may be upper or lower case).

TestDatal() Function
TestData2() Function
These two functions replace data in the working EEPROM storage a set defined within the function. These two

functions were originally written to test the Backup and Restore functions. They can however be used to
initialize a virgin device as well. These functions must be called manually using the “Z1” or “Z2” commands.

CalibrationMode() Function

This function is used to gather information for new calibration constants using the three point calibration
method. It disables all reporting except for raw readings and set the time period to 1 minute. Then it lies to the
AVR by telling it the each minute is only ten seconds long. The result is a raw reading every 10 seconds. The
“newflg” is set to zero so that none of these parameters are accidently written to the EEPROM. This function
must be called manually using the “ZZ” command.

Page: 1089

void EepromDumpAll() Function

This function dumps the entire EEPROM to the serial port 16 bytes at a time in Hex and ASCII. It uses a set of
library functions that was presented previously in this document. The only difference is that it prefixes each line
with a semicolon and a space”; “. This function must be called manually using the “ZD” command.

Temperature Calibration Theory

The internal temperature sensor is designed to generate a linear output. That is to say that for each 1 degree
increase in temperature the sensor outputs an equal increase in voltage regardless of the temperature. That
ratio is approximately 1 mV (millivolt = 1volt/1000) per degree Kelvin. However, due to the process variation in
manufacturing the temperature sensor output voltage varies from one chip to another. The sensor was
intended to be used to determine if there was a problem that caused the MPU to overheat. Thus lack of
accuracy and the variation between devices is acceptable for its intended use.

There are several additional factors that may affect the reading that is returned by the internal sensor. The
three principle ones are:

1) Variations in the power supply

2) Variation in the amount of current the MPU is using

3) The ability of the MPU to dissipate the internally produced heat to the environment around it

In this application the power supply will always be the USB port from the computer that the Nano is attached to.
Thus the power supply should be well regulated and constant (unless the computer goes to sleep). The task of
the MPU will be limited to reading temperature sensors and reporting back to the computer at regular intervals.
Thus the amount work the MPU is doing and the amount of current that it is using should be constant as well.
The case would be much different if the same device was being used to do something such as control a group
stepper motors via its PWM facility.

That leaves the ability of the MPU to dissipate heat. The MPU’s heat is absorbed by the environment around it
via radiation and conduction. An increase in the environment temperature makes it more difficult to dissipate
that heat and in turn causes an increase in the internal temperature of the device. It is this cause and effect
relationship that we are attempting to exploit. Assuming there are no other outside factors (i.e such as being in
a location that alternates between bright sunlight and shadow) then for any given air temperature there should
be a given MPU temperature. The difference between these two temperatures what we are calling “offset”.

The question becomes is this offset equal for all temperatures. Clearly the answer is no. Consider the extreme
case if the Arduino was placed inside a high temperature furnace. Rather than dissipating heat it would absorb
heat and eventually melt (the melting point of silicon is 2,577 degrees Fahrenheit or 1,414 degrees Celsius). We
are hoping that over the relative small range of interest that the two lines are approximately linear and closely
parallel. The only way to establish the exact offset at any temperature is to make a physical observation. It is
impractical to do this for every possible temperature. Thus we will choose three convenient observation points.

Page: 118

Sensor Voltage

Melting
Point

Observation Point 2
Observation Point 3

—
—
£

[«}
o
5
\‘?}Q ®
c
11}
n
L0
O

Temperature

The observation points must be within the fairly wide operating temperature range of the MPU: -55 degrees
Celsius to 125 degrees Celsius (-67 degrees to 257 degrees Fahrenheit). Observation point 1 should be as close to
0 degrees Celsius (32 degrees Fahrenheit) as possible. The second observation be close to 20 degrees Celsius
(68 degrees Fahrenheit). The third observation needs to be over 38 degrees Celsius (100.4 degrees Fahrenheit).
A “gain” factor can then be produced from the readings at observation points 1 and 3:

Gain = (T3-T1) / (V3-V1)

Where:

T3 = the temperature at Observation point 3
T2 = the temperature at Observation point 2
T1 = the temperature at Observation point 1
V3 = the sensor voltage reading at Observation point 3 (0 to 4096) — raw reading
V2 = the sensor voltage reading at Observation point 2 (0 to 4096) — raw reading
V1 = the sensor voltage reading at Observation point 1 (0 to 4096) — raw reading

From those new observations we will come up with a new simple formula for calculating the
temperature scale factor:

Scale Factor = (T3-T1) / (V3-V1)

Temperature Calibration Procedure

| have six addition thermometers at my disposal:

1)
2)
3)
4)

5)
6)

Honeywell Electronic HVAC thermostat (unknown)

Six inch Taylor “Confortmeter” spirit bulb wall thermometer (-35 to 55 Celsius)

Taylor pocket bi-metal stem one inch dial thermometer (0-220 Fahrenheit)

Omega SST armored twelve inch fractional calibrated partial immersion photographic spirit bulb
thermometer (5 to 55 Celsius)

BCR six inch full immersion mercury bulb thermometer (-50 to 50 Celsius)

Mastech MS826T Multimeter with Type K sensor (-20 to 400 Celsius)

Page: 111

No two of the above register closer than two degrees across their effective range. The Fractional Omega (the
most expensive of the lot) is the worst in that it consistently reads at least ten degrees lower than any of the
rest. The Mastech, with its probe frozen in a block ice, reports between 5 and 6 degrees Celsius. It was this
inconsistency that instigated this project.

Ultimately | had to choose one as a point of reference. The BCR was only one that | had any confidence in. In
addition | determined that the Mastech about a 2.5 degree error at 25 degrees Celsius but otherwise was
consistent with the BCR mercury thermometer at ambient temperatures.

Temperature Calibration Procedure: Observation Point 1

"This porridge is too cold," she said.
Ideally one would use shaved ice made from distilled water to pack both the Nano and the thermometer. | just
be used a bag of ICE that was acquired at a local grocery store. | placed this in a plastic dishpan of water along
with a full immersion 6 inch BCR mercury bulb thermometer. The Nano was placed inside two plastic bags and
immersed in the water along with the thermometer. Both were isolated from the bag of ice. After the reading
has stabilized both the temperature and the raw reading was recorded. | note there was a lot of condensation
inside of the first plastic bag. The inner bag was an anti-static bag and did not show any condensation problems
(much smaller volume as well).

Raw reading = 1343
Temperature = 6.75 degrees Celsius

Temperature Calibration Procedure: Observation Point 3

"This porridge is too hot!" she exclaimed.
This was a little more difficult. For this | used a small cardboard box (6.5 x 4 x 1 inches). The Nano and the 6 inch
BCR mercury bulb thermometer were mounted in the box. The box was place in an Oven (standard electric
cooking range) that had been preheated to above 50 degrees Celsius and allowed to cool down to 50 degrees
Celsius (because that is the top of the range of the BCR thermometer). The Thermometer One program was
placed in “Calibration mode”. The oven door was closed and the system was allowed to reach equilibrium. A
reading was recorded from the program then the door was opened and the thermometer read very quickly. This
was done several times to insure consistency.

Raw reading= 1511
Temperature = 44 degrees Celsius

Now we can calculate the scale factor:

Scale Factor = (T3-T1) / (V3-V1)
Scale Factor = (44-6.75) / (1511-1343) = 37.25/ 168 = 0.2217

That is slightly less than the theoretical 0.2500 scale factor.

Temperature Calibration Procedure: Observation Point 2

“Ahhh, this porridge is just right," she said happily and she ate it all up.
For this point the HVAC system was set to bring the temperature down to 20 degrees Celsius. The “C:” command
was used to plug in the new scale factor and the “C=" was used to set the offset.

Page: 112

http://en.wikipedia.org/wiki/The_Story_of_the_Three_Bears

it
I Send |
1388 20.00 68.00 =]
1388 zZ0.00 68,00

1388 20.00 68.00

1388 zZ0.00 68,00

;W OE

;oW OK

; Report Timing reset

P W+ OK

Report Mode: True
Debugging Active: False
Report Raw Reading: True
REeport Fahrenheit: Trues
Report Celsius: True
Minutes Bewteen: 1
Senser ID/Locaticn: Your string hers
Raw Offzet: 1368
Celsius Facteor: 0.2217
Fahrenheit Factor: 0.39%91
1388 zZ0.0oo &g, 00
1388 zZo.0o &8.00
1390 zZ0.50 9,00

[V Autoscrol ICarriage return LI IQSDD baud LI

So the final question is: “How accurate is it?” Not off by at least 5 degrees at 30 degrees Celsius.

Plan “A”, Evaluation and Summary

1)
2)
3)

4)

5)

6)

7)

A number of Arduino boards were successful programed with an application to report the temperature
back to the computer at periodic intervals. That item is rated as a “success”.

The Arduino application(s) that were developed have the desired level of capabilities for two way
communications, adjustments, storage and reporting. That is rated as a “success”.

The applications has been designed and implemented without any modifications or additions to any of
the Arduino board. That is item rated as a “success”.

The design of the application and protocol are such that modification of the application to use a
different temperature sensor should only require changing one function and the calibration factors. That
item is rated as a “success”.

The design of the application and protocol are such that modification of the application to support
multiple temperature sensors is possible. This would require implementing “Single Senor” selection
protocol as well as changes to the reporting functions. Until these actions have been attempted and
completed successfully that is rated as “questionable”.

The ability to extend the range of the ADC from 10 bits to 12 bits via “Oversampling” and “Decimation”
have been demonstrated and confirmed. While the limitations of having “appropriate” noise available is
a limiting factor it does provide an interesting alternative. That item is rated as a “success”.

While the linearity of the internal temperature sensor may be without question what we are actually
attempting in this application is to quantity the Arduino’s ability to dissipate its internally generated
heat. The linearity of that function and its relationship to the function of the internal temperature
sensor remain questionable. The methods used in the application were not able to exploit this
relationship. Accuracy could not be obtained. That item is rated as a “failure”.

To say plan “A” is a dismal failure is being kind. Plan “A” is a loser!

Page: 113

Thermometer Program, Plan “B”

In order to proceed with this project | had to give up the concept that no external parts or hardware
modifications would be required. If the internal temperature sensor cannot be utilized for this purpose then an
external one must be used. Several alternatives exist:

K Type thermocouple

SMBus/I12 temperature sensor

Analog devices AMD590 2 wire variable current output temperature sensor
Maxim DS18S20 1-Wire Digital Thermometer

10K Ohm at 25° C 1% thermistor and 10K 1% resistor (look for these on Ebay.com)
National Semiconductor LM34 Analog Temperature Sensor

The last two of these are probably the more practical approaches. The thermistor approach is probably the least
expensive but it would require a table driven conversion routine. The Maxim or SMBus is probably the simplest
if one can obtain the part in a suitable package. | chose the last one.

We will need to dump all the scale and offset stuff that was done previously and replace it with a more
traditional ADC voltage conversion. That will entail changing some of Global variables as well. As we will still be
using the internal 1.1 Voltage references we can still reference the internal Temperature sensor as well. An
additional 40 bytes of the EEPROM will also be set aside for a future table based conversion routine. That could
be useful for using a thermistor as a temperature sensor. At the same time we are going to do a little work on
reducing the size of the program. Most of the program remains the same so in this section we are only going to
cover the additional hardware, EEPROM locations, Global Variables and functions changes. The full program
code is in the Appendix: Thermometer One Program Code (Plan “B”).

Page: 114

External Temperature Sensor: LM34
| had several of these on hand for another future project acquired via Amazon.com for US$6.00 each. The
specific part number | have is:

National Semiconductor LM34CZ Analog Temperature Sensor

The picture below shows the part sitting on top of a common 16mm dice like one might find in a board game or
on the dice tables in at casino. As it is shown in the picture the lead on the left is for power (5 Volts DC). The lead
on the right is the ground connection. The center lead is for the analog output signal.

Power << Signal >> Ground

Page: 115

A LM34DZ would work also (and it is the least expensive part in the series). Those may also be acquired from
Avnet, Arrow, DigiKey, Newark Electronics, Jaemco, other electronic supply houses as well as EBAY. At
electronic supplies they typically cost between US$2.00 to USS2.50. | have seen them on EBAY for less than
USS$2.00. You can also pay more than US$15 for parts in this series (LM34CAH). The difference is in the
Temperature scale, accuracy and the packaging. The datasheet (see appendix) covers the various options but

here is the simplified version:

Part Number Scale Low High Accuracy Typical
LM34 Fahrenheit -50 300 | 2 Degree 0.8
LM34A Fahrenheit -50 300 | 1 Degree 0.4
LM34C Fahrenheit -40 230 | 3 Degree 1.6
LM34CA Fahrenheit -40 230 | 1 Degree 0.4
LM34D Fahrenheit 32 212 | 3 Degree 1.2

Add a one letter suffix for the packaging:

Suffix

Package

H

TO-46 Hermetic Sealed Metal Can, 3 through hole leads

M

S0O-8 Small Outline Surface Mount, 8 legs

Z

TO-92 Plastic Transistor Package, 3 through hole leads

The nice thing about these devices is that they are Linear Analog Temperature very similar to the AVR internal
sensor. The big difference is that they report 10 millivolts per degree Fahrenheit and they are guaranteed to be
within 1 degree of accuracy at 77 degrees Fahrenheit. They typically expect better than1/2 degree accuracy. As
they are so similar to the internal sensor only minor differences will be needed in the software to switch
between the internal temperature sensor and the external temperature sensor.

The most practical package for our use is the plastic TO-92. The most limiting factor is that the main conduit of
heat to the sensor is the three wires it uses for leads. With the TO-46 metal can the main conduit is the can
itself. It also offers the advantage that it can be soldered or cemented to a heat sink or other heat conducting
medium. It is however the most expensive packaging.

’ Note: A similar series of parts exist for the Celsius scale. That is the LM35 series.

Page: 116

| used a 175 tie point breadboard. | cheated a bit by mounting the Nano such that one set of pins are not in the
breadboard. That is not a problem in this case because we are not going to use those pins in this application.

That left three rows of tie points at the other end which all we need for the sensor. Here is the layout.

O
8]

O
]
O

o o O
oon
g g o
z %
2 2
o=z
o
G
=
o)
J
@] 8]
o o O

Atmel also recommends putting a capacitor on the Analog Reference pin (REF) to reduce noise. As an option you
can run a wire from the REF pin around to the other side and stick a small disk capacitor in the middle. | used a
22 Pico farad ceramic disk capacitor (because that is what | had available). | cannot tell that it has made any

difference.

Q) o

Q) -

O g -
o

O

Page: 117

EEPROM Layout
Starting from the top lets first look at the new EEPROM layout:

0 1 2|3 4|5 6|7 8|9 10|11 12|13 14|15
mask | flag ref volts offset minutes unused unused unused unused
16 | 17 | 18 | 19 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
ID String 16 Bytes long w/o termination
32 | 33 | 34 | 35 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47
Reserved space for future Table
48 | 49 | 50 | 51 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63
Reserved space for future Table
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Reserved space for future Table
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Reserved space for future Table
96 | 97 98 | 99 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111
Reserved space for future Table
112 113 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127
Begin EEPROM Mode Data Storage area
976 977 978 | 979 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 | 990 | 991
EEPROM Mode Data Storage area End
992 993 994 | 995 | 996 | 997 | 998 | 999 | 1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007
mask | flag offset ref volts minutes unused unused unused unused
1008 | 1009 | 1010 | 1011 | 1012 | 1013 | 1014 | 1015 | 1016 | 1017 | 1018 | 1019 | 1020 | 1021 | 1022 | 1023
ID String 16 Bytes long w/o termination

This device will support a special “EEPROM mode” that writes the raw reading data to the EEPROM rather than
the computer. This is for use with an external power supply such as a battery in a remote location (i.e an
outbuilding such as a green house or an enclosed area such as a refrigerator). The two bytes “EEmask” and
“EEflag” (bytes 0&1) are used together to control this mode.

With our new sensor we are measuring voltage directly as compared to our reference voltage. The quantity that
is unknown is the reference voltage. While that value is supposed to be 1.1 volts that is not entirely accurate. A
reading of the reference pin on my Nano showed 1.067 volts ... but how close is my VOM meter to being
accurate? A global variable named “RefVoltage” is used so that value may be adjusted as needed. It is stored as
a two byte word at the location “EErefvolt” (bytes 2&3). Once that has been calibrated it should not need to be
reset. However you might want the Arduino to reflect the temperature relative to your favorite thermometer or

Page: 118

the electronic thermostat on you HVAC system. For that purpose the global variable “DegreeOffset” has been
established to move the scale up or down. It is stored as a two byte word at the location “EEoffset” (bytes 4&5).
The global variable “MinuteTarget” is used to control how often that report data is generated. It is stored as a
two byte word at the location “EEoffset” (bytes 6&7).

After the report parameters we have space for 4 words of data that have not been used (bytes 8 through 15).
That is followed by our 16 character ID/Location string (bytes 16 through 31). All of the proceeding is called our
“working data”. That 32 byte segment has a duplicate backup copy at the end of EEPROM which conveniently
places our ID/Location string in the last 16 bytes. Following the working data are 40 words reserved for use by a
table based conversion routine (bytes 32 through 111). The rest of the EEPROM is used for data storage during
the EEMPROM mode (440 words: bytes 112 through 991 on an ATmega328).

Global Variables and Constants

Now let’s take a closer look at the global variables and constants.

const word EEwdsize = EEidtring+EEidsize;

const word StorageWorking=EEmask;

const word StorageBackup =((E2END-(EEwdsize))+1);

The constant “EEwdsize” defines the size of our EEPROM working data block. The two constants
“StorageWorking “and “StorageBackup” are used to define the start address of working data storage and its
back up copy. These three values are used routines that backup and restore the data blocks.

word StorageBegin =StorageWorking+EEwdsize+EEtbsize;
word StorageMark =StorageBegin;
word StorageEnd =StorageBackup;
word StorageIndex =StorageBegin;

These variables are used by the routines that write, read and erase the EEPROM mode data storage. The

“StorageMark” and “Storagelndex” were added so that wear leveling could be implemented.

float RefVoltage;

const float CovrtFactorV= 8192;
float DegreeOffset;

const float CovrtFactor0O= 1824;
word MinuteTarget = 1;
char IdString[EEidsize+1];
byte newflg=0;

The first two variables were previous discussed. The two constants are used to convert them from floating point
variables to words so that they can be written to and recalled from the EEPROM. The variable “MinuteTarget”
controls the time between generated reports. The variable “IDString” is used to hold a copy of the ID/Location
string in ram. The variable “newflg” is used as a bit level flag to indicate that when any of the above variables
have been changed and not written to EEPROM.

float Celsius;

float Fahrenheit;
float AvrCelsius;
float AVRFahrenheit;

These variables hold the current temperature values in their respective scales.

boolean ReportMode = true;
boolean RtnRawRead = true;
boolean RtnCelsius = true;
boolean RtnFahrenh = true;
boolean DeBug = false;
boolean RtnAvrRead = false;
boolean EepromMode = false;
boolean RoundMode = true;

These variables control the operational modes of the device and establish the default operation.
ReportMode Turns printing of report lines on or off
RtnRawRead When true sensor reading is included as the first value of a report line
RtnCelsius When true sensor Celsius is included as the next value of a report line

Page: 119

RtnFahrenh When true sensor Fahrenheit is included as the next value of a report line
DeBug When true debug data is included as last values of a report line
RtnAvrRead When true AVR temperature data is included as an appended report line
EepromMode When true all other modes are set to false and sensor readings are written to EEPROM
RoundMode When true Celsius is rounded to nearest quarter and Fahrenheit is rounded to

nearest half.

word SecondsMinute
unsigned long SecondsTarget
unsigned long RptTrigger
byte gap

unsigned long RptStartTime
unsigned long CycleStart
unsigned long CycleTime 3

This group of variable is used to control the operational timing. The variable “SecondsMinute” is used to convert
“MinuteTarget” to “SecondsTarget” which is the number of seconds between report lines. The variable
“RptTrigger” holds the time that the next report is to be generated. The variable “gap” is used to control the
ratio of data reads to serial port reads or to put it another way the gap between data reads. The last three
variables are used in Debug mode to calculate actual times between report lines and the time required for a

data read cycle.

unsigned long Accumalator = 8; // Accumalate temperature reads
unsigned long CycleCount 8; // Cycles per Report line

The variable “Accumalator” hold the sum of all data reads for the current report cycle (Note that each data read
is actually the truncated average of 1024 sensor reads). The variable “CycleCount” holds the number data reads
in the current report cycle.

char cmd[] {0,0,03;
char prevemd[] {0,0,03;

These two variables hold the current and previous two character command strings read from the serial port. The
zero terminator is only used by the Debug mode to print the current command to the serial port.

word LastRead = 0;
byte Consecutive ‘H

These two variables are used to implement a simple form of data reduction for the EEPROM recording mode.
They are defined as global variables in order to provide with a pre-allocated static RAM memory location so that
the values are retained between calls to EEPROM recording function.

60000,

]
OO ®

(a5}

Page: 128

Main Program File Functions

setup() Function

There are not really any changes here. This function configures the hardware, reads the parameters from the

EEPROM and set the initial operational modes and timings factors.

loop()Function

This function still has the same three basic tasks:
1) Check the serial port for commands

The only change is the name of the function to collect the data is now “ReadRawTempA1()”.

2) Collect data
3) Report/Record data

cmdProcessor() function

Functionally the same but the commands were put in alphabetical order. Several commands deleted. New

commands added for Degree Offset and Reference Voltage.

HelpMe() function
Tabs were added between the command and description. The list was edited to match the command processor.

That made it much easier to extract the Table shown below.
Arduino AtMega328 Temperature Sensor 1.0

ID
ST
RT
RF
FT
FF
F=
cT
CF
IT
IF
DO
DF
RV
T1
T2
T3
T4
T5
T6
17
T8
T9
TO
TA
B

Output ID string

Output Status

Raw=True

Raw=False

Fahrenheit=True
Fahrenheit=False

Enter Current Fahrenheit
Celsius=True

Celsius=False

AVR Internal Temperature=True
AVR Internal Temperature=False
New Degree Offset (Fahrenheit)
Same as DO

New Reference Voltage

Report time = 01 minutes
Report time = 02 minutes
Report time = 03 minutes
Report time = 04 minutes
Report time = 05 minutes
Report time = 10 minutes
Report time = 15 minutes
Report time = 20 minutes
Report time = 30 minutes
Report time = 60 minutes
Report time = 02 hours

Report time = 04 hours

Page: 121

TC Report time = 06 hours
TD Report time =08 hours
TE Reporttime =12 hours
TF Report time = 24 hours
PF Print mode = False
PT Print mode =True
DB Debug mode toggle
L: New Location
WW Write Calibration data to EEPROM
W+ Overwrite Backup Calibration data
W- Restore from Backup Calibration data
E+ Set Flag to send next run to EEPROM
E- Clear Flag to send next run to EEPROM
EC Clear EEPROM Storage
ED Dump data stored in EEPROM
LL List implemented commands
?? Listimplemented commands
SS Shutdown (send twice)
1| Reset (send twice)
Z1 Writetestdatal
Z2 Write test data 2
ZZ 5 Second reporting for calibration
ZD Dump ALLL EEPROM to serial
Response 'XX' = not implemented
Response '??' = not recognized

PrintSeperatorLine() function

ReadTwoCharacters() function

This was rewritten to save a few bytes. The long string of dashes was replaced with “for” loop that prints the

dashes. It also has the advantage that the length of the line can be adjusted easily.

DrainCmdTermiantors() function
DebugPrintCharacters () function
These functions had no changes.

Page: 122

Thermometer Functions File

The following functions were deleted or replaced in their entirety:

CelsiusEquals() deleted
FahrenheitEquals() replaced in its entirety
NewOffsetR() deleted
NewcCelsius() deleted
NewFahrenheit() deleted
avrRawTemp() replaced in its entirety
Convert() replaced in its entirety

Read_Calibration_Data() function
Werite_Calibration_Data() function

These functions were rewritten to read and write the new parameters. Note that provisions have been made for
the degree offset to positive or negative. If the word stored in EEPROM has the high bit set then the value is
negative. A separate divisor is used for the degree offset and voltage reference to allow for different ranges.

ClearStorage() function
EEmodeFlagSet() function
EEmodeFlagClear() function
EEmodeFlagTF() function

These functions had no changes.

Check_EEPROM() function

A line was added to blink the LED 30 times when entering EEPROM recording mode. This is intended to give the
user a visual indication that the device is in the proper mode.

Print_ldString() function
PrintTrueFalse() function
These functions had no changes.

ReportStatus() Function

This function was rewritten to delete the old parameters and add the new ones. Tab characters were added
between the description and the parameter. The ID string and degree offset are now the only parameters that
are specific to given sensor. The strings labels were edited to shorten the lengths saving a few more bytes.

AvrTemperature() function

This function replaces the avrRawTemp() function for the internal sensor. A 12 bit synthetic reading is no longer
generated. It now uses the reference voltage to convert the ADC reading to a raw voltage. Conversion of the
voltage to Celsius and Fahrenheit is now done with in the function as well as printing a separate report line.

ReadRawTempA1() function

This function replaces the avrRawTemp() function for the external sensor. The first part is essentially the same
as the AvrTemperature() function except for the ADMUX setting. Note that we also initialize the pin (A1) at every
pass. That is because | am paranoid.

Convert(word RawReading) Function

This function was totally replaced. It is now much simpler consisting of only three lines. Rounding to nearest half
or quarter is optional was made optional and calls subroutines for that pupose.

Page: 123

nearestquater () function

This function was removed from the Convert() function. It rounds the incoming floating point value to the
nearest quarter (0.25) and returns that value. Provisions have been added to accommodate negative numbers
as well.

nearesthalf () function

This function was removed from the Convert() function. It rounds the incoming floating point value to the
nearest quarter (0.50) and returns that value. Provisions have been added to accommodate negative numbers
as well.

Report() function

This function was modified to add a call to the AvrTemperature() function if the AVR Temperature mode is
active. Otherwise there is no change.

QuickBlink() function
Report2EEPROM() function
These functions had no changes.

DumpStorage() function

The strings that were used to print the header line were combined into a single string with imbedded tab
characters. A similar was made to the bottom of the report for the quantity labels. The wording was also
changed to delete a few characters. Deleting the extra Serial.print() statements saved a few additional bytes.

Response() function
This function was added to handle the output of the next three functions: PrintOKStr(), PrintNotReconized() and
PrintNotImplemented(). This saved several more bytes.

PrintOKStr () function
Rewritten to call Response() function.

PrintNotRecognized() function
Rewritten to call Response() function.

PrintNotimplemented() function
Rewritten to call Response() function.

ShutDown() function
software_Reset() function
SetRawReadMode() function
SetCelsiusMode() function
SetFahrenheitdMode() function
SetReportMode() function
ToggleDebugMode() function
These functions had no changes.

SetAvrinternalMode() function

This function was added. It is used to change the AVR temperature reporting mode by changing the values if the
global variable “RtnAvrRead” to true or false. Default is “false”. It must be called using the command “IT” or “IF”.

ToggleRoundMode() function
This function was added to toggle the rounding mode of the Convert() function.

Page: 124

NewReportTime() function
Report_Reset() function
These functions had no changes.

NewldString() function

One line was added to this function to fix a bug. If a shorter string was entered then the end characters form the
previous string were not deleted. The line “while (n<EEidsize) IdString[n++]=8;“ was added to resolved this
problem.

PrintDegreeOffsetEffect() function

This function was added to allow show the user the effect of adjusting the degree offset. It prints the
temperature as read and then as adjusted by the offset (in both Celsius and Fahrenheit). This function is called
by NewDegreeOffset() and CalculateDegreeOffset().

ValueNotAccepted() function

This function was added to handle response with an input parameter was not accepted either due to timeout or
invalid characters. It can be called by: NewDegreeOffset() , FahrenheitEquals(),CelsiusEquals() or NewRefVolt().
This saved a few more bytes.

NewDegreeOffset() function

This function was added to allow the user to manually adjust the degree offset. This function must be manually
called with the command “F=".

CalculateDegreeOffset() function

This function was added. Used by FahrenheitEquals() and CelsiusEquals() to adjust the current degree offset.
Print output was added to inform the user of the effect of the change.

FahrenheitEquals() function

This function was completely rewritten. It now calls the function CalculateDegreeOffset(). This function must be
manually called with the command “F=".

CelsiusEquals() function

This function was completely rewritten. It now calls the function CalculateDegreeOffset(). This function must be
manually called with the command “C=".

NewRefVolt() function

This function was added to allow the user to manually adjust the value for the reference voltage. This function
must be manually called with the command “RV”.

RestoreFromBackup() function
OverwriteBackup() function
These functions had no changes.

TestDatal() function
TestData2() function

These two functions were rewritten to change the parameters. These function load default data into the
EEPROM and then call Read_Calibration_Data() to read that data. These functions must be manually called with
the command “Z1” or “Z22".

Page: 125

CalibrationMode() function
This function was modified such that it now toggles the 5 second calibration mode on or off. This function must
be manually called with the command “Z22".

EepromDumpAll()function
This function had no changes

Page: 126

caICOML 2

=10l x|

Send |

;: DB OE

;Fahrenheit:

H Celsius:
; Avr:
; Round:
H Minutes:
H Voltage:
i Bensor ID:
; Offzet:

i Eeport
H Debug
i Raw
;Fahrenheit:
H Celsius:
i AVr:
H Round:
H Minutes:
; Voltage:
i SBenscor ID:
H Off=zet:
0709 23
;353 o7
o7o% 23
;353 97
a7o% 23
;353 a7

1.0750
SainSmartNanco328
0.oo0on0

1.0750
SainSmartNanc3IZ8
0.0000

74,43 98 477
207.82 ARV
T74.43 124 475
207. 682 ARV
74,43 1=24 47759
207,82 ARV

240001

60000

g0000

Page: 127

Temperature Sensor Calibration

Calibration Theory

The external temperature sensor is designed to generate a linear output in Degrees Fahrenheit. That is to say
that for each 1 degree increase in temperature the sensor outputs an equal increase in voltage regardless of the
temperature. That ratio is 10 mV (millivolt = 1volt/1000) per degree Fahrenheit. There are several additional
factors that may affect the reading that is returned by the external sensor:

1) Resistance in the path between the sensor and Analog pin
2) Capacitance in the path between the sensor and Analog pin
3) The accuracy of the reference voltage

For items 1 & 2 Tl recommends a 2K Ohm decoupling resistor in line with the output of the LM34 for long
distances. The major variable in this implementation is the is the 1.1 reference voltage produced internally by
the AVR. One obvious solution is to use a very accurate high impedance Voltmeter to read the reference
voltage at the AREF pin. This may not always be possible (i.e. the user may not have such a meter available). The
practical alternative is to place the temperature sensor in an environment with a known temperature and adjust
the voltage reference as need to obtain the correct output. This also resolves the first problem.

Calibration Method 1

Obtain the use of a known good thermometer. Place the thermometer and the device in a container of some
sort that allows the user to view the thermometer but protects both items from hot or cold airflows or direct
sunlight. A common corrugated cardboard box is simple and effective container. Wait for the temperature to
stabilize on both the sensor and the thermometer. Adjust the value for the reference voltage until both devices
show the same temperature.

Calibration Method 2

This requires a bit more work but makes for a very accurate calibration. Remove the sensor from the bread
board. Attach the sensor to one end of cable of suitable length with at least 3 conductors (common Ethernet
LAN cable is appropriate). Enclose the sensor end of the cable in a small plastic bag. Wrap the bag around the
sensor and the cable to form a tight bundle. Use short pieces of tape the secure the bundle and the seal the top.
Place the bundled end of the sensor end of the cable into a small contained (i.e. a one pint plastic milk bottle)
leaving the top of the bundle above the top of the container. Fill the container with water but leave some space
for expansion. Place the container and the cable in a plastic bag (i.e. a grocery bag). Place this package in a
freezer and allow the water to freeze into a solid block.

Remove the package from the freezer and properly discard the outside plastic bag. Unbundle the cable and
attach the end where the sensor was mounted to the bread board (be careful to insure that you maintain the
correct polarity). Wait for the ice in the container to begin to melt. Adjust the value for the reference voltage
until both device reports 32 degrees Fahrenheit. You are done.

Temperature Sensor Extension Cable

It would be helpful if we had a simple way to move the sensor from the board to a remote location. For that we
need a common connector and some kind of standard easily obtained extension cable. Consider the use of a
3.5mm Stereo cable (i.e. like those used for the iPhone, iPod, Ipad, Android and various mp3 players). All you
need to do is replace the sensor on the breadboard with a 3.5mm stereo female jack and then mount the sensor
in a 3.5mm male plug (consider including the 22K ohm resistor). Then you can use any 3.55mm stereo cable that
is available and those are CHEAP! (hint: look at http://www.monoprice.com).

Page: 128

http://www.monoprice.com/

SL=Switched Left L=Left
SR=Switched Right R=Right

R 7 R

SR~
~ ¢ ILIRIC
L - Z

The pink thing on the left of this illustration is the bottom of a 5 pin 3.5mm PC board stereo jack. On the right we
have a standard 3.5mm phone plug. Connect the ground to “Common”, power (5 volts) to “Right” and signal to
“Left”. Ignore the switched pins on the jack (they are switched “out” when there is a plug in place).

Page: 129

Plan “B”, Evaluation and Summary

1)
2)
3)

4)

5)

6)

7)

A number of Arduino boards were successful programed with an application to report the temperature
back to the computer at periodic intervals. That item is rated as a “success”.

The Arduino application(s) that were developed have the desired level of capabilities for two way
communications, adjustments, storage and reporting. That is rated as a “success”.

The applications has been designed and implemented without any modifications or additions to any of
the Arduino board. That is item rated as a “success”.

The design of the application and protocol are such that modification of the application to use a
different temperature sensor should only require changing one function and the calibration factors. In
plan “B” these changes were implemented and the code further modified to make additional changes in
the future even simpler. That item is rated as a “success”.

The design of the application and protocol are such that modification of the application to support
multiple temperature sensors is possible. This would require implementing “Single Senor” selection
protocol as well as changes to the reporting functions. Until these actions have been attempted and
completed successfully that is rated as “questionable”.

Calibration, testing and comparison have verified the repeatability of the readings from the device as
well as tracking well with the reference instruments. That item is rated as a “success” (finally!).

The one detractor at this point is that the size of the binary hex code that is downloaded to the Arduino
is over 17 K bytes. It would be desirable to get this down to a size that could be loaded into a
ATmegal68. That is likely to require deleting some of the functionality.

Plan “B” is a winner !

Page: 138

Thermometer Program, ATMEGA168

The reason for having gone to the additional trouble of reducing the size of the program was because it had
grown to 18KB for the binary image. | really wanted a version that would be able to run on the ATMegal68
because | happen to have a couple of these that | purchased before | found out that they do not have internal
temperature sensors. However in order to reduce it sufficiently some functionality must be sacrificed. The first
thing to go of course is the Internal Temperature Sensor function. The next major change was to reduce the
Help system to a very short list of commands without descriptions.

o]

I Send |

; REeport: Trus
Debug: False
; Raw: Trus
;Fahrenheit: Trus
; Celsius: Trus
Round: True
; Minutes: 1
; Voltage: 1.0575
; Sensor ID: Iduinoc NanolAS
H Cffget: o.ooao

; AtMegalé8 Temperature Sensor 1.0
; ID BT RT EF FT FF F= CT CF DO RV
; T# PF PT DE 00 L: WW W+ W- E+ E-

; EC ED LL 88 1l Z1

0766 ZE.00 79,00
07aa Z6.00 79.00
0767 Z26.00 79,00
07aa Z6.00 79.00
07a7 zZ6. 00 79.00

Next to go was the function that dumped a list of the EEPROM in Hex and ASCII. It was still a bit too plump so
one set of test data was removed as well as the report times over one hour. The debugging code was also
removed (even though it was commented out). Then it compiled with just over 200 bytes to spare. Full EEPROM
recording mode and the EEPROM data dump feature is include all be it a somewhat smaller storage area. The
full program code is included in the Appendix: Thermometer ATMegal68.

... wow Che quedtion (b whal to do with that extra 200 bytes of flach memory

Page: 131

Arduino Debugging

The most glaring weakness of the Arduino system is the lack of a good run time debugger or any debugger for
that matter. Atmel does support a hardware level debugger in their development package but that is not
commonly available and the Arduino “reset” design interferes with it. There are a few simulators but nothing
that seems to be well recommended. Thus we are reduced to the oldest, most basic debugging methods.

Debugging Methods:
1) Review your code for syntax errors.
2) Putin lots of print statements.
Use these to isolate the area with the problem.
Until you have a finished project you may want to comment these out so you can reuse them.
3) Reduce you code to the most basic pieces.

Common errors to look for:

1) Each “C” stamen must end with a semicolon --- look for missing semicolons.
2) “C”is case sensitive --- look for improperly capitalized keywords.
This applies to user defined functions, variables and constants as well.
3) Improperly nested delimiters { ([]1)3 --- look for miss matched delimiters.
This is also commonly known as “Lost In Stupid Parenthesis” (reference to LISP programing language).
4) The entire world interprets leading zeroes as zero except “C” — leading zeroes signify OCTAL numbers.
debug.ino:117:46: error: invalid digit "9" in octal constant
5) Binary notation will only accept 8 digits --- count your digits.
Temporary placing a space in the middle sometimes helps: BOOOO 0000.
6) Improperly nested quotes (double and single) ---
7) Buffer overflow: “C” does not limit string writes like higher level languages such as Basic.
Insure that you are not writing beyond the end of allocated space.
8) Be sure that you use commas inside of the parameters clause of a “while” statement.
9) Be sure that you use semicolons inside of the parameters clause of a “for” statement.
10) Be sure “if equal” uses two equal signs “==" not one “=".
11) The dreaded “off by one” syndrome ... you will be amazed at what a difference there can in having a one
where you should have had a zero.
12) Lower case “i” looks a lot like lower case “I” that looks a lot like “1”. “0” also looks a lot like “O”.

Other Hints:

1) Years ago one of my college instructors told me that when Einstein was asked how to solve a particularly
difficult physics problem that he responded: “Simplify, Simplify, Simplify.”
| would imagine that this applies to electronics and software as well as advanced physics.

2) Include lots of comments --- your logic may be sound and obvious today but totally incomprehensible
tomorrow.

3) When you get something that works make a backup copy. You can clean it up later.

4) Reduce your function sizes so that you can view the entire function on a single screen.

5) Group functions that call each other together.

6) Define functions before they are called.

7) Write and debug small pieces code separately.

8) Use the statement: Serial.printin ("Got here");
Start at the beginning and move the line through the code until it does not print.

9) Thereis no “stop” or “end” statement. Use the statement: while (true);
This should stop a runaway program.

Page: 132

10) Do not take the error messages at face value --- look at the statements ahead of the referenced line.
11) Temporarily comment out code sections (use the edit menu functions).
12) Do you Serial.print() a lot of strings in your code? Use the F() to reduce RAM usage (it works).
13) Close the IDE and reload the program --- sometime the IDE sometimes gets confused.
14) Copy the program to a new folder and rename it.
Strip out the pieces until you have the most basic template.
(I have a sketch folder called “debug” for this purpose)
Use a text editor to open the original program files.
Copy pieces one at a time from the Editor to the debug application in the IDE.
15) Have someone else look at you code --- you can get help on the Arduino user forum.
16) Shutdown the IDE and CLEAN your personal temp and build directories.

The Arduino IDE does NOT clean up after itself.
In the Temp directory look for folders named:
console*.tmp,
build*.tmp
scoped_dir*
untitled*.tmp
17) Do not use Microsoft Word as a code editor --- in that mode it is a royal pain in the southern most
regions. On the other hand “Notepad ++” is an excellent code editor.
18) Remove or disable the ‘CAPS LOCK’ key from your keyboard (perhaps not practical but very desirable)
19) If all else fails --- get some rest. Fresh eyes see mistakes much better.
Received

void setup()
{ Serial.begin(9668);
3

void loop()
{ byte i;
// this program is intended to demonstrate stoping a run-away program
// by using the while() statement
Serial.printin ("Got here");
// uncomment the next line ----
// while (true);
Serial.printin ("Got here as well");
// the error here is that 1 is declared as a byte.
// 1ts max value is limited to 255, after that it rolls back to @
// thus the program will rapidly repeat the print statement
// until the end of time and you will most likely never see
// the previous print statements flash by
for (i=0; i<3080; i++)
{ Serial.printin (i, DEC);
// uncomment the next line ----
// if (i==255) uwhile (true);
3
3

Page: 133

RS232 Serial Monitor

Now that we have a Arduino program to report the temperature back to the PC we need something on the PC
side to read that data (other than using the serial terminal in the Arduino IDE).

FreeBasic Compiler

FreeBasic is a modern multi-platform implementation of the basic language. It is an open source compiler that
can generate standalone executable programs (no runtime distribution package required), libraries or object files
for Windows or Linux operating systems. It can produce either CUI (console/ character user interface) or GUI
(Graphical User Interface) programs. Like the Arduino IDE it uses GCC and/or GAS in the background to build the
executable. It comes with its own small debugger and but you can also use the GDB/INSIGHT debugger. All of
these are open source tools.

FreeBasic was originally written as a replacement for GWBasic that came with the early generation Microsoft
operating systems. Microsoft has a tendency to ‘upgrade’ all of their software on a regular basis in a manner
such that the new version is incompatible with the older versions. They do this in order to ‘encourage’ their
customers to purchase the new version. Without the built in obsolescence Microsoft’s profit margins would
quickly start to plummet. Unfortunately it also appears that Microsoft is intentionally trying to eliminate all
console based applications (see)

These marketing strategies made Bill Gates a billionaire at the considerable expense of the rest of the world.

Although FreeBasic can be used to produce GUI apps there is not a good GUI IDE for developing these kinds of
applications. The ones that | tried were some combination of unintuitive, poorly documented or just downright
flaky. On the other hand FreeBasic is EXCELLENT for console applications. There are several IDEs available for
FreeBasic that work well for console based applications. The one | chose to use was FBIDE.

FreeBasic Web Site: http://www.freebasic.net/
FreeBasic Download: http://sourceforge.net/projects/fbc/

Free Basic Forum: http://www.freebasic.net/forum/
FBIde Web Site: http://fbide.freebasic.net/
FBIDE: http://fbide.freebasic.net/download

You can download and install both packages on your computer but it highly recomended that you do NOT use
the default Installation directory: C:\Program Files\FreeBASIC. FreeBasic and FBIDE both default to storing
projects and working directories under the Free Basic installation directory. The directory C:\Program Files\ and
all of its subdirectories are “protected” directories. This will cause you numerous problems. | have created a
“c:\bin” on my computer where | install such software (in fairness to FreeBasic this was a common practice in
the days of MS-DOS, Windows 3.1, Windows 95 and Windows NT even for programs produced by Microsoft). This
also provides someplace to install various linux/unix utilities that | sometimes find useful.

Page: 134

http://www.freebasic.net/
http://sourceforge.net/projects/fbc/
http://www.freebasic.net/forum/
http://fbide.freebasic.net/
http://fbide.freebasic.net/download

€ FreeBASIC 0.90.1 Setup

. .
Choose Install Location

Choose the folder in which to install FreeBASIC 0.90.1.

free

BASIC

=T

£z FreeBASIC 0.90.1 Setup

=101
Choose Install Location

bes Choose the Folder in which to install FreeBASIC 0,90.1,

BASIC

Setup will install FreeBASIC 0,901 in the following Folder, To install in a different Folder, click
Browse and select another Folder, Click Mext ko continue.

Browse.., |

Tullsaft Install System w2, 46

Setup will install FreeBASIC 0,90.1 in the Following Folder, Toinstall in a different. Folder, click.
Browse and select another folder, Click Mext o continue.

Destination Folder
’7 | C:iBiniFreeBASIC

Browse... |

Space required: 53, 7MB
Space available: 17.6GE

Tullsaft Install System w2, 46

Mexk = I

Cancel |

Mext = I

Cancel |

The FBIDE Program comes as a Zip file (no installation). Most current Operating Systems can open a Zip file
without any additional software. Open the Zip file and drag the contents of the folder “FBIde0.4.6r4” to a
location under FreeBasic. Your installation should look something like this.

' FreeBASIC =10l x|
File Edit View Favorites Tools Help | 5
@ Back ~ -_.:J - l_‘_ﬁ‘ /._) search Folders |'$ I__'ﬁ x n ‘ -
Address Il’f} C\bin\FreeBAsIC j Go
Marme = | Size | Tvpe | Dake Modified
IC)bin Fil= Falder 9/13{2013 6:21 PM
[S)doc File: Folder AL32013 6:21 PM
| [C)examples File: Folder AL32013 6:21 PM
| E=FBIDE File Folder 9/13/2013 6:34 PM
(S0 | File Folder 9/13/2013 6:39 PM
A ICine File Folder 132013 6:21 PM
i =] Filz Falder 9/13{2013 6:21 PM
|§_°°] changelog.txt 169 KB Text Docurent FI16/2013 1:30 PM
EFbc.exe 1,079 kKB Application TIL72013 9:24 AM
Ifbide.exe 3,031 KB Application 5iz1/2011 5:51 PM
. FbIdeFix. dll 42 KE Application Extension &13/2011 9:32 PM
4 KB Icon 711712013 9:47 AM
16 KE Application Extension 4/7/2005 6:33 PM
Eopen-console.exe 26KE Application FIL712013 9:47 AM
|§_°°] readme. bxt 12KE Text Document FIE/2013 12113 PM
l?:!ﬁuninstall.exe 66 KB Application Q132013 6:21 PM
E ik 1KE Internet Shorbcut QL3013 6:21 PM
|4 objects selected |3.89 ME | :‘ My Computer 4

The selections shown with the SEI{QIINEIC{deliale| are the ones added by FBIDE. Double click on the fbide.exe
file. It will open and immediately assume the entire screen. Click on the double Box icon in the upper right

corner. It will then be much better behaved.

=12l x|

Page: 135

Select “File”, “Open” from the top menu. Navigate to the directory “C:\bin\FreeBASIC\examples\GUI\win32".
Open the file “Hello.bas”.

File Edit Search “iew PRun Help

O & 4w~ Rl > E

2| x|
Laak. in: IE}win32 j 0 Q = '

=10l x|

_7) dislogres
| menures

% bitmap.bas
% calendar.bas

% fileopen, bas

% hello_region. bas
menu.bas

% shellfolder.bas

% toolbar bas

% treeview bas

File name: Ihello.bas Open I
Files of type: IFBFiIes [* baz) Cancel |

[~ Dpen as read-anly

P

|Compilation Complete. [1:1 A

| am not about to try and explain the complexities of the code for this program. Thankfully that is not required
because all we are trying to do is determine that the software works. From the top menu select “Run”, “Compile
& run”.

.E_ FBIde - C:\bin%FreeBASIC, examples’ GUIYwin32\hello.bas
File Edt Search View Help

O &) | 4 Comple Chr+F9 >

Compile & run F2
hello.bas | Run Shift+Ctrl+F9
Quick run F5
CMD prompk F&
#include| Parameters...
Show exit code

declare function WinMain { byval hInstance as HINSTANCE, _
byval hPrevInstance as HINSTANCE, _
byval szCmdLine as string, _

byval iCmdShow as integer) as integer

That should open a rather large GUI window with the words “Hello, World!” in the middle.
=1

Hello, World!

| would say that the Window for a bit oversized for the task but the good news is that you now have another
compiler and IDE installed on your computer. With this one you can produce programs that run under any

Page: 136

& C:.bin'\FreeBASIC, examples,GUL\win32

File Edit Wiew

version of Microsoft Windows (and in theory Linux). Close this window as well as the program file in the FDIDE
editor. Let’s take a quick look at the directory where the source file was located.

=10l x|

¥
7

@Back - _,,J - ?

Falders

33 X9 |m@-

fiddress ||) C:\binFreeBASIC examples) GUTwWinS 2

EBE
I

Mame = Size | Type | [rate Modified
[—hdialogres File Folder AN 32013 621 PM
[imenures File Folder AN 32013 621 PM
%bitmap.bas 21 KB Wisual Basic Module BI7I2012 5:27 PM

%calendar.bas 3KB Visual Basic Module 8712012 5:27 PM
%Filenpen.bas 7EB Wisual Basic Module 8/7/2012 5:27 PM
%helln.bas 4 KB Wisual Basic Module 8/7/2012 5:27 PM
hel 16 KB application f13/2013 712 PM
%helln_reg on.bas 6 kE Visual Basic Module aI7 12012 5:27 PM
%menu.bas kB Wisual Basic Module aI7 12012 5:27 PM
%shellfnlder.bas 2 KB Wisual Basic Module aI7IZ2012 5:27 PM
%tuulbar.bas 4 KB Wisual Basic Module BI7I2012 5:27 PM
%treeview.has A kKB Visual Basic Module 8712012 5:27 PM
Date Created: 9/13(2013 6:45 PM Size: 16,0 KB 16.0 KB | ¢ My Computer Y

That “.EXE” file that you see there is the executable program. You do not need any runtime packages, “DLL”
files, libraries or installation programs. You can copy that file by itself to any computer running Microsoft
Windows and the program can be run.

Serial Port Monitor Program

Navigate back up the directory tree and create a directory called Projects under the “FreeBasic” directory.
Create another directory under it called “Serial Monitor”. In FBIDE select “File”, “New”. This will open a new
editor Window. Now select “File”, ”“Save As” and navigate to the new project folder. Save the file with the name
“Serial Monitor.bas”. Answer “YES” to the dialog box that pops up (it does not seem to make any difference if
you answer yes or no).

Page: 137

File Edit Search “iew Run Help
DS EH@# | +00 -« 808 % E
Unnamed
savefile 21|
Save i IE}SeriaIMonitor j € 0 i
File name: ISeriaI Manitar. bas j Save I
Save a3 lype: IFBFiIes ["baz] j Cancel /l
i

Question

H?) Ise news file?
| Mo I

Yes

Now copy the sample code below and paste it into the editor Window. Then select “File”, “Save”.

/' This is my first FreeBasic program. I thought it would be easy because
I was sure that I would snatch some sample code and proceed on. Wrong!
Extensive searches revealed a bit here and a bit there but always just

Sitting on the other end of my serial cable is an Auduino Nano
microprocessor board. It is sitting there printing "Hello World!" once

and print it to the screen. Pressing any key will cause the program to

It is implimented as a straight fall through process and one loop.
Not overly efficent as its wastes lots of CPU time sitting in the loop

that it does work fairly reliably.
"/

#include "string.bi" ' needed for format function

/' Any of these strings except the last will work
but the first is more reliable
Port = Comi2
Parity = none
Data Bits = 8
Stop bits = 1
Carrier Detect Duration = 8

every second. All this program does is read the input from the com port

a bit missing: and that bit always seemed to be enough to foil my efforts.

close the com port and exit. It is amazing how much time I wasted on this.

polling for a character to come through. However it does have the advantage

Dim LineCount As LongInt ' Jjust so we can see how many lines are read
Dim chrcount as Long

Dim C As Byte ' this is our incoming byte of data

Dim InBuffer As String ' this is our buffer to collect the bytes
Dim PortStr as String

InBuffer=""

LineCount=0

chrcount=8

Page:

138

Clear to Send duration = @
Data Set Ready duration = @
Open Timeout = @

Bin = Binary communications

PortStr = "COM12:9688,N,
PortStr = "COM12:9668,N,
sN
N

8,1,c0,C5,D05,0P,BIN"
SRy
PortStr = "COM12:9660,N,8,1,CD,CS,DS,0P"
8,1,C
SRy

D,cs,DS,0P,ASC,FE,TB8,RBE"

PortStr = "COM12:9668, D,CS,DS"

PortStr = "COMi12:9666,N,8,1,CD,CS" /' does not work for Arduino '/
// Open Com ("COMI12:96660,N,8,1,CD0,CS,DS,0P,BIN") as #2 //

'/

PortStr = “COM12:9660,N,8,1,CD,CS,DS,0P,BIN"
Open Com(PortStr) AS #2
" loop untill there is a keypress ... any keypress
While InKey = ""
" This first line is one of the bits that was missing.
" It checks to see if there is anything waiting in the Serial buffer
" Without it you are subject to reading a bunch of garbage
If Not(EOF(2)) then
' get a single byte from the serial port
Get #2,0,C,1
' characters below ASCII 32 are 'non-printing characters
' characters above ASCII 126 are not define (by ASCII)
' append any printable character to the string
If (C > 31) and (C < 127) Then
InBuffer = InBuffer + Chr(C)
' chrcount is not really needed. I added it while trying
' to figure out why I was getting garbage ... before the
' EOF() check was added.
chrcount=chrcount+1
else
' ignore this character
End If
" Linux/Unix terminate strings with a line feed (ASCII 16)
' MACs terminate lines with a carriage return (ASCII 13)
' Microsoft and Arduino use carriage return/linefeed (ASCII 13,18)
" If we get any of the above then increment the line count and
" print the string but only if we have something to print.
If ((C=13) or (C=18)) And (chrcount >8) Then
LineCount = LineCount + 1

' clear the buffer so that we can do it again
InBuffer=""
chrcount=0
End If
End If
" Call Sleep with 25ms or less to release time-slice when waiting
' for user input or looping inside a thread.This will prevent the program
' from unnecessarily hogging the CPU.
Sleep 25
Wend ' inkey =""
' we opend it, we close it
Close #2

" you'all come back, ya hear?
End

Print Format(LineCount,'80008080") +" ("+ Format(chrcount,"0@@") + "):

" + Inbuffer

Like “C” FreeBasic has two conventions for comments. Single line comments are delimited by the single quote
character. Multiple line comments are delimited by forward-slash plus single quote and a matching single quote
plus forward-slash. As you look at this you might notice that there is very little actual program code. The

Page: 139

comments give a fairly complete explanation of the program. What you will want to pay attention to is the com
port string: "COM12:9600,N,8,1,CD,CS,DS,0P,BIN". You will most likely need to change this according to the
Arduino and Computer that you are using. If you compile and run this then you should have a program that

prints out any ASCII strings it receives on the serial port to the display.

B FBIde - C:\bin' =10l x|

File Edit Search ‘Wiew Run Help

DSEE®E $O0((2mME > F

serial monitor.has] L X |
Parity = none -]

Data Bits = 8
Stop bits = 1
Carrier Detect Duration = 0

serial monitor.exe

Horld?
Yorld?
World?
Yorld?
Yorld?
World?
Yorld?
Yorld?
Yorld?
World?
Yorld?
Horld?
Yorld?
World?
Yorld?
Yorld?
World?
World?
Yorld?
Yorld?
World?
Yorld?
Yorld?
Hello World?

Il g R = e W W N =T one ol The DIT Ta L W= ST g

" Without it you are subject to reading a bunch of garkage
If Hot(EOF({Z)) then

1 |

"' It checks to =see 1f there is anything waiting in the Serial buffer

|C0mpilati0n Compleke. | 4711

Now if you look in your project directory you will find a copy of the compiled program.

& C:\bin’,FreeBASIC',Projects’,Serial Monitor

File Edit ‘iew Favorites Tools Help

OBack il > I ?

5 3 X B =

- - Folders
o’

Address I_J C:\bin\FreeBASIC\Projects) Serial Monitor

MNarme = | Size | Type | Date Modified

28 serial monitor bas 4KB Visual Basic Module 9(13/2013 8:24 PM
B serial monito : TIKE Application 9132013 6:22 PM

[pate Created: 91132013 8:22 PM Size: 72.5 KB [F2.5K8 | 4 My Computer

4

You can run the AVR Temperature program on you Arduino and receive the data on your computer via the
“serial monitor.exe” program. Because this program is printing to Standard Out you can redirect its output to a

file via the command line:

“serial monitor.exe” >> mylogfile.txt

Still it does have a number of limitations most particularly the need to recompile it when you change the
computers or the Arduino. See the “Appendix: Arduino Receiver” for a much more capable program. It uses an

Page: 148

INI file so that that it does not need to be recompiled when you change the COM port. You can also modify the
program code to suite you own needs and/or preferences. It is compiled with the FreeBasic compiler.

PC Alternatives: Microsoft

There are several alternatives that you might wish to consider for producing PC based programs for you Arduino.
Without question that list would have to contain Microsoft Visual Studio that provides Visual Basic, C#, J# and
C++ variants. The current version is Visual Studio 2012 and is a very expensive option. However there is an
“Express” version of the Visual Studio 2010 that is free (requires registration). When this document was being
written it was available at the URL:

http://www.microsoft.com/visualstudio/eng/downloads#d-2010-express

The 200 MB download does not include any help or documentation. That must be added on after the fact and
from my experience is of limited value (unlike the help system that came with Visual Basic 5 or 6). | should also
mention that the language elements (at least Visual Basic) bear no resemblance to the classical programing
languages. Numerous keywords are completely missing with no equivalent. Where there is an equivalent it is
likely buried somewhere deeply within a “.net” class library and in some cases requires a completely different
syntax. One of these reasons for these changes was in order to use a single compiler for all of the languages.
Another was that someone has decided that any program that is written should be written with managed object
orienteered class libraries and conform to modern “C++” standards. That is all well and good for professionals
that spend their life writing code for large, complex projects but it completely ignores the existence of the rest
of us. Having used the BASIC programing language since the days of CPM, Atari, Apple Il and Commodore Vic 20
computers | am personally offended by the effort Microsoft has put forth to destroy the Basic programing
language.

To be fair | must mention that Microsoft has some lesser products available such as “Power Shell” and “Small
Basic”. Power shell is a Microsoft proprietary scripting utility. It is dependent on run time environment and has
no interactive debugger. However it is quite powerful, extendable and used in a number of organizations for
network management. “Small Basic” is very limited, short on documentation (i.e. there is no keyword
reference), uses “C” type arrays and “.net” syntax. It has no resemblance to Basic. (also not this is not the
SmallBasic originally written for the Palm OS).

If you happen to have a legal copy of Visual Basic 5 or Visual Basic 6 hang on to it. These are by far and without
guestion the very best implementations of the Basic language. They are still viable for all versions of Microsoft
Windows.

PC Alternatives: Non-Microsoft

The first scripting language that must be mentioned is BASH as used on the Linux and Unix systems. It is far older
than and arguably as powerful as PowerShell as well as being multi-platform. It does not have the Microsoft
Network management extensions that PowerShell has although | am almost certain that this is a limitation that
could be addressed. | have Bash shell scripts that | use on both Windows and Linux platforms without any
modifications.

Another popular Windows scripting implementation is Autolt. | will use their description:

Autolt v3 is a freeware BASIC-like scripting language designed for automating the Windows GUI and general
scripting. It uses a combination of simulated keystrokes, mouse movement and window/control manipulation in
order to automate tasks in a way not possible or reliable with other languages (e.g. VBScript and SendKeys).
Autolt is also very small, self-contained and will run on all versions of Windows out-of-the-box with no annoying
"runtimes" required!

. Easy to learn BASIC-like syntax

Page: 141

http://www.microsoft.com/visualstudio/eng/downloads#d-2010-express

. Simulate keystrokes and mouse movements

o Manipulate windows and processes

° Interact with all standard windows controls

. Scripts can be compiled into standalone executables

. Create Graphical User Interfaces (GUIs)

o COM support

o Regular expressions

. Directly call external DLL and Windows API functions

o Scriptable RunAs functions

° Detailed helpfile and large community-based support forums
. Compatible with Windows 2000 / XP / 2003 / Vista / 2008 / 7
. Unicode and x64 support

. Digitally signed for peace of mind

. Works with Windows Vista's User Account Control (UAC)

Autolt has been designed to be as small as possible and stand-alone with no external .dll files or registry entries
required making it safe to use on Servers. Scripts can be compiled into stand-alone executables.

The problem with Autolt is it has no native RS-232 support. There is an add but the source is not available and
long term support depends on a single individual updating the software. Autoit can be downloaded at the URL:
http://www.autoitscript.com/site/autoit/

Sharp Develop is an Open Source Development Environment for .NET. That being said it is dependent on
Microsoft. It has the same advantages and disadvantages as Microsoft Visual Studio. In fact the help system
must be downloaded from Microsoft. The two major advantages it has are open source and price: it is free. The
Sharp Develop web site URL is:

http://www.icsharpcode.net/OpenSource/SD/Default.aspx

PowerBasic is commercial compiler that uses classical Basic language. It was written in assembler bas in the days
of MS-DOS and Windows 3.1. It was an excellent product. They eventually produced a Windows based IDE and
Windows console compiler. The IDE never could never compete with the “point and shoot” type IDE that
Microsoft had in the Visual Basic line. In addition and perhaps more importantly the Visual Basic IDE had a fully
integrated line by line debugger that allowed one in many cases to change the code without recompiling.
However Microsoft has since abandoned classical Basic language. Thus PowerBasic may deserve a fresh look.
One advantage they do have over FreeBasic is an effective integrated debugger.

Why FreeBasic

First | should mention that | have access to all of the products mentioned above including Microsoft Visual
Studio 2012 Professional. | have used both Visual Studio 2012 and Microsoft Visual Basic 6 in a professional
setting during previous employment. | chose not to use either of these products for this project because of cost.
For this project | wanted something that was free to anyone with an internet connection.

| also wanted something that was available on multiple platforms (i.e. Windows, Linux and Mac). That
eliminated anything based on “.net”. There is a multi-platform implementation of “.net” called “mono” but it
has a bit of a reputation for being an immature product.

FreeBasic turned out to be the only free true compiler with a simple IDE that | could find that would operate on
both the Linux and Windows environments (unfortunately this leaves the MAC OS out). It also has the advantage
that it uses a single source file to produce a single executable file without any need for any run time libraries or
"DLL” files (until you get into the advance graphic functions, external databases, etc.). It uses a classic
implementation of the BASIC language and has extremely good help system that is integrated into the FBIDE
environment. The debugger on the other hand leaves something to be desired.

Page: 142

http://www.autoitscript.com/site/autoit/
http://www.icsharpcode.net/OpenSource/SD/Default.aspx

ArduinoThermometer.exe

ArduinoThermometer is actually a set of programs written in FreeBasic to run in a console window under
Windows or Linux and capture the data from the Arduino Thermometer application. Full source for both
programs is included in the Appendix: Thermometer.exe. The main program is a customized version of the
Arduino Receiver program mentioned in the previous section. The program supports all the standard options for
the Receiver program plus it has been modified so that a number of single character keystroke can be used to
control the Arduino:

Keys *1*' to '@' set report Times

Key 'RA" toggles AVR mode

Key *"B' Restore from Backup

Key 'C" toggles Celsius mode

Key 'D' toggles Debug mode

Key *E' toggles EEPROM mode

Key 'F' toggles Fahrenheit mode

Key *L* 1ists AVR commands

Key *M* turns on Minimal mode (Fahrenheit only)
Key "Q"' prints AVR storage

Key *R"' toggles Rounding mode

Key 'S" prints AVR Status

Key *V' toggles Raw Reading mode

Key '>" increase Degree Offset by 6.25 Fahrenheit
Key *<' decrease Degree Offset by 0.25 Fahrenheit

Noticeably missing are any commands to change the calibration or write new parameters to the EEPROM. That
was intentional because this program is intended to be used to capture the data not to calibrate the device.
However there is a way around that. The program allows the user to define five “user” strings via the “.ini” file.
These commands are sent by pressing the “U” key followed immediately by a numeric key “1”, “2”, “3”, “4” or
“5”. There is a one second timeout for the second key. As provide the first three of these are defined as follows:

Key 'Ul' INI defined string: "Z1", urite test data set 1 to EEPROM
Key 'U2' INI defined string: "Z2", urite test data set 2 to EEPROM
Key 'U3' INI defined string: "ZD", Hex/ASCII dump of EEPROM

Because the Thermometer application allows the use of a space as a delimiter a series of commands may be

included in a single user defined string. That is the way that the ‘M’ keystroke works. It sends the command
string "RF CF IF FT ST".

Page: 143

[z Command Prompt - Ardunio_Thermometer.exe

True
False
True
True
Celsius True
Avpr False
Round True
Minutes: 1
Uoltage: 1.8699
Sensor ID: SainSmartMano328
A._8888

===flpduino_Thermometer.exe Uerld.@.5 (8 October 2813>
Using IMI file:

Ardunio_Thermometer.indi

Uzing Port Str: COM12:9680.M.8.1.CD.CS.DS.0P.BIN
Appending datestime to data.

Logging data to: Thermometer_BBH1 .LOG

Delimiter: Tab

EOL: carriage return plus line feed

Start: 18-087-28013 @5:38:579

Prezs 7' or *'»' to redispaly thiz message

Prezs *Ezcape’ kew to exit.

to ‘A" =zet report Times
toggles AUR mode
Reztore from Backup
toggles Celsius mode
toggles Debug mode
toggles EEPROM mode
toggles Fahrenheit mode
lists AUR commands
turns on Minimal mode (Fahrenheit onlyl
prints AUR storage
toggles Rounding mode
prints AUR Status
toggles Raw Reading mode
increase Degree Offset by B.25 Fahrenheit
decrease Degree Offset by B.25 Fahrenheit
U1’ INI defined string: "Z1"
‘U2’ INI defined string: ""Z2"
Key *U3*' IMI defined string: "ZD'

2013-16-@7 B@5:48:81 a7a3 23.88
A5:41:681 a7a3 23.88
A5:42:681 a7a3 23.88
2013-18-A7 @5:43:81 a7az 23.88

Page: 144

Strip Semicolon Lines Utility

The main program writes everything it receives from the device to a tab demitted text file specified in the “.ini”
file. Every line that Arduino application sends that is not an actual report line is prefixed with a semicolon.
StripSemicolonLines.exe is a utility used to separate or extract the report lines. It was written with a number of
options including the ability to mark a point in the input file where it last processed the lines. Running the
program with a “?” as the parameter will print out the options.

Syntax: StripSemicolonLines.exe filel file2 file3 [options]
filel = input filename
file2 = output filename

file3 = output filename with stripped lines (optional)
Options:
/0 = Overurite any existing output file

/A = Append to any existing output file (overrides /0)

/D = Delete input file

/R = Retain blank lines

/S = 5plit lines at semicolon and delete trailing portion

/X = Deletes all lines with semicolon regardless of location
/M = Mark end of file with ";;--PROCESSED--;;"

/E = Execute program with output file

/V = Verbose prints statistics before exiting

/? = display help and exit

The “filel” is the input file that was produced by the main program. “file2” is the output file where you want the
report lines written. Both of these file names are required and may include a full or relative path specification.
“file3” is optional. If included the lines that are stripped from the input file will be written to this file. The
“overwrite” or “append” option tells the program what to do if you specify a filename for a file that already
exists. If you do not specify an option and the file exists then the program aborts. If the “append” open is
specified then the “overwrite” option is ignored. The “delete” option can be used to delete the original file after
it is processed. Normally the program skips all blank lines however you can use the “Retain” option to keep
them (why you want to | have no idea). The “Split” option divides any lines that have a semicolon somewhere
other than the first character. It writes the first part to “file2” and the full line to “file3”. The “X” option has the
opposite effect. It deletes any lines with semicolons anywhere in the line. The “Mark” option writes the line “;;--
PROCESSED--;;” to the end of the input file after it has processed it. When the program is run with the “Mark” it
reads the entire input file looking for the last occurrence of this line. It then begins processing at the next line. If
the line is not found then it begins processing at the beginning of the file. This is useful for extracting data from
an active log file. The “Execute” will pass the output file to a program such as a spreadsheet or charting
program. The program name must include the full path and should be enclosed in quotes (due to spaces in the
path or file name). The “Verbose” option prints the number of input lines, output lines, blank lines and
semicolon lines before the program exits.

Although all the options are shown with forward slashes “/” the dash “-“ can be used as well. The options may
be in in order or case. These are some examples of valid command lines.

StripSemicolonLines.exe Thermometer.LOG work.txt

StripSemicolonLines.exe Thermometer.LOG work.txt dump.txt

StripSemicolonLines.exe Thermometer.LO0G work.txt dump.txt /X /0 /D /V
StripSemicolonLines.exe Thermometer.LOG work.txt dump.txt -o -D -X -V
StripSemicolonLines.exe Thermometer.LOG work.txt -0 /x -V /M /d
StripSemicolonLines.exe Thermometer.LOG work.txt /E:”c:\program Files\suite\sheet.exe”

Page: 145

»cd G:vbhin“FreeBASICwprojectz~Ardunio_Thermometer

»BtripfemicolonLines

C:“Program Files

Total Lines
Semicolon Lines
OQutput Lines

>pause

Fress any key to

38
13
25

.exe Thermometer_ABAA1 _LOG Work.txt Dump.txt ~A ~H U0 M ~E:"
(xB6 2 Microsoft Office~0fficeld~excel.exe"

continue

@9 s
m Haome Insert
‘__‘] "* Calibri
Ea -
Paste ¥ B 7 U~
Cliphoard
G29 -
2 B

1 Date Time

2 |07 0ct 2013 5:40:01
3 |07 0Oct 2013 5:41:01
4 070ct2013 54201
5 |07 0Oct 2013 5:43:01
6 |07 Oct 2013 514401
7 070ct2013 S:453::01
8 |07 0ct 2013 S:46:01
9 |07 Oct 2013 54701
10 07 Oct 2013 S:48:01
11 07 Oct 2013 5:45:01
12 07 Oct 2013 S:50:01
13 07 Oct 2013 5:51:01
14 07 Oct 2013 55201
15 07 Oct 2013 5:53:01
16 07 Oct 2013 55401
17 07 Oct 2013 5:55:01
18 07 Oct 2013 5:56:01
19 07 Oct 2013 55701
20 07 Oct 2013 S:58:01
21 07 Oct 2013 55501
22 07 Oct 2013 e:00:01
23 07 0Oct 2013 60101
2407 Oct 2013 &:02:01
25 07 Oct 2013 &:03:00
26 07 Oct 2013 60400
27

28

29

14 W work /T

Ready |

Page Layout Farmulas Data
11 o A A
- A-
Alignment
Je

© (] E

Raw Celcius Fahrenheit
703 23.00 73.50
703 23.00 73.50
703 23.00 73.50
703 23.00 73.50
702 23.00 73.50
702 23.00 73.50
702 23.00 73.50
702 23.00 73.50
702 23.00 73.50
702 23.00 73.50
702 23.00 73.50
703 23.00 73.50
704 23.00 73.50
704 23.00 73.50
704 23.00 73.50
704 23.00 73.50
704 23.00 73.50
704 23.00 73.50
704 23.00 73.50
703 23.00 73.50
703 23.00 73.50
704 23.00 73.50
703 23.00 73.50
703 23.00 73.50
703 23.00 73.50

Work.txt - Microsoft Excel o B ER
Rewiew e a @ == =
= General - _-’% Conditional Farmatting = ‘—’Insert -
= ; 77 &
$ - % + [Formatas Tahle ~ I Delete = j
:E' «0 .00 . Sort & Find &
TG0 $.0 = Cell Styles ~ EdFormat | 27 Fiter~ select~
Mumber Styles Cells Editing
v
F G H il K L I N a
g0.00
70.00
&0.00
50.00
40.00 _
m— Celoius
&0.00 Fahrenheit
20.00
10.00
0.00
Mo N Y N D N Y N D
AD7 (ST (BT O BT 0T O O S ST 07O
0 SO A N
‘3 Gt BT 6T 9T &7
1 3
4 »
||[EE|E 0 100% (= +

Page: 146

Receiver Modifications:

The changes to this program are NOT sophisticated. Rather the structure of the program is designed to allow
someone to add new functionality fairly simply. The file “Ardunio_Thermometer_Globals.Bas” had several global
variables added to support the new features. Those variables also have their default values set in this file.

Dim Shared
Dim Shared
Dim Shared
Dim Shared
Dim Shared
Dim Shared
Dim Shared
Dim Shared
Dim Shared
Dim Shared
Dim Shared
Dim Shared
Dim Shared

' These are
DebugMode=F
CelsiusMode
FahrenheitM
AvrMode=Fal
EEMode=Fals
RawMode=Tru
RoundMode=T
UserStrl ="
UserStr2 ="
UserStr3 ="
UserStr4 ="
UserStrs ="
OffsetVal=0

DebugMode as Byte
CelsiusMode as Byte
FahrenheitMode as Byte
AvrMode as Byte
EEMode as Byte
RawMode as Byte
RoundMode as Byte
UserStrl as String
UserStr2 as String
UserStr3 as String
UserStr4 as String
UserStr5 as String
OffsetVal as Single

the default modes
alse
=True
ode=True
se

e

e

rue

Z1"

2"

A

False=0, True<>0;
False=0, True<>0;
False=0, True<>0;
False=0, True<>0;
False=8, True<>0;
False=08, True<>0;
False=0, True<>0;
user defined string in
user defined string in
user defined string in
user defined string in
user defined string in
used to store current

INI file
INI file
INI file
INI file
INI file
degree offset

The additions to the “Ardunio_Thermometer_Functions.Bas” are a bit more involved but not difficult to follow.

First there were changes to read the new user strings from the “.ini” file in the function ReadIniFile ():

Case "USERSTR1"

If Lcase(ValsStr)<>"" then

Case "USERSTR2"

If Lcase(ValStr)<>"" then

Case "USERSTR3"

If Lcase(Valstr)<>"" then

Case "USERSTR4"

If Lcase(Valstr)<>"" then

Case "USERSTR5"

If Lcase(ValStr)<>"" then

UserStri=Trim(Valstr)
UserStr2=Trim(Valstr)
UserStr3=Trim(ValStr)
UserStr4=Trim(Valstr)

UserStr5=Trim(Valstr)

Ne

xt the new functions were added to the status string in the function BuildStatusStr():

' Add A
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

plication help here
= Status & EOL

= Status & " Keys 'I'
= Status & " Key 'A'
= Status & " Key 'B'
= Status & " Key 'C'
= Status & " Key 'D'
= Status & " Key 'E'
= Status & " Key 'F'
= Status & " Key ‘L'
= Status & " Key 'M'

to '@' set report Times" & EOL

toggles
Restore
toggles
toggles
toggles
toggles
lists A

turns on Minimal mode (Fahrenheit only)" & EOL

AVR mode" & EOL
from Backup" & EOL
Celsius mode" & EOL
Debug mode" & EOL
EEPROM mode" & EOL

Fahrenheit mode" & EOL

VR commands" & EOL

Page: 147

Status
Status
Status
Status
Status
if (Use
if (Use
if (Use
if (Use

if (Use

Status =

= Status &
= Status &
= Status &
= Status &
= Status &
= Status &
rstri<e>"")

rstr2<>"")
rstr3<"")
rstr4<m)

rStrse”)

" Key 'Q'
" Key 'R’
" Key 'S’
" Key 'V’
" Key "'
" Key '<'
then Status

then Status

then Status
then Status

then Status

prints AVR storage" & EOL

toggles Rounding mode" & EOL

prints AVR Status" & EOL

toggles Raw Reading mode" & EOL

increase Degree 0ffset by 0.25 Fahrenheit" & EOL

decrease Degree Offset by 0.25 Fahrenheit" &

= Status & " Key 'Ul' INI defined string: " &
chr(34) & UserStrl & chr(34) & EOL

= Status & " Key 'U2' INI defined string: " &
chr(34) & UserStr2 & chr(34) & EOL

= Status & " Key 'U3' INI defined string: " &
chr(34) & UserStr3 & chr(34) & EOL

= Status & " Key 'U4' INI defined string: " &
chr(34) & UserStr4 & chr(34) & EOL

= Status & " Key 'U5' INI defined string: " &
chr(34) & UserStr5 & chr(34) & EOL

The most extensive changes were to the Communications() function where the key handling had to be added.

Case 49

Print #2, "T1"

Print "Report Time
Case 58

Print #2, "T2"

Print "Report Time
Case 51

Print #2, "T3"

Print “Report Time
Case 52

Print #2, "T4"

Print “Report Time
Case 53

Print #2, "T5"

Print “Report Time
Case 54

Print #2, "Té"

Print “Report Time
Case 55

Print #2, "T7"

Print “Report Time
Case 55

Print #2, "T8"

Print “Report Time
Case 55

Print #2, "T9"

Print “Report Time
Case 55

Print #2, "T@"

Print “Report Time
Case 68,100

Print #2, "DB"

application key inserted here--------------------——-

' numeric key "1"
' set timing to 1 minute
1 minute"
numeric key "2"
set timing to 2 minutes
2 minutes"
numeric key "3"
set timing to 3 minutes
3 minutes"
numeric key "4"
set timing to 4 minutes
4 minutes"
numeric key "5"
set timing to 5 minutes
5 minutes"
numeric key "6"
set timing to 18 minutes
18 minutes"
numeric key "7"
set timing to 15 minutes
15 minutes”
numeric key "8"
set timing to 20 minutes
20 minutes"
numeric key "9"
set timing to 30 minutes
30 minutes”
numeric key "@"
set timing to 60 minutes
set to 68 minutes"
' Alpha Key "D" or
' set debug mode

set to

set to

set to

set to

set to

set to

set to

set to

set to

nge

if (DebugMode=False) then
DebugMode=True
Print "Turn Debug mode on"

else

DebugMode=False
Print "Turn Debug mode off"

End if

Case 70,1802
if (FahrenheitMode=False) then
FahrenheitMode=True
Print "Turn Fahrenheit Mode on"
Print #2, "FT"

else

' Alpha Key "F" or "f"

Page: 148

FahrenheitMode=False
Print "Turn Fahrenheit Mode off"
Print #2, "FF"
End if
Case 67,99 ' Alpha Key "C" or "c"
if (CelsiusMode=False) then
CelsiusMode=True
Print "Turn Celsius Mode on"
Print #2, "CT"
else
CelsiusMode=False
Print "Turn Celsius Mode off"
Print #2, "CF"
End if
Case 65,97 ' Alpha Key "A" or "A"
if (AVRMode=False) then
AVRMode=True
Print "Turn Avr Internal Mode on"
Print #2, "IT"
else
AVRMode=False
Print "Turn AVR Internal Mode off"
Print #2, "IF"
End if
Case 69,101 ' Alpha Key "E" or "e"
if (EEMode=False) then
EEMode=True
Print "Turn EEMode Mode on, ***NEXT AVR RESTART***"
Print #2, "E+"
else
EEMode=False
Print "Turn EEMode Mode off, ***NEXT AVR RESTART***"

Print #2, "E-"
End if
Case 82,114 ' Alpha Key "R"™ or "r"
Print #2, "@@"

if (RoundMode=False) then
RoundMode=True
Print "Turn Rounding Mode on"
else
RoundMode=False
Print "Turn Rounding Mode off"
End if
Case 86,118 ' Alpha Key "V" or "v"
if (RawMode=False) then
RawMode=True
Print "Turn Raw Reading Mode on"
Print #2, "RT"
else
RawMode=False
Print "Turn Raw Reading Mode off"
Print #2, "RF"
End if

Case 77,109 ' Alpha Key "M" or "m"
Print "Setting minimal mode (Fahrenheit only)"
if (DebugMode=True) then Print #2, "DB"
DebugMode=False
if (RoundMode=False) then Print #2, "@e"
DebugMode=True
Print #2, "RF CF IF FT ST" ' Set minimal mode
RawMode=False
CelsiusMode=False
AvrMode=False
FahrenheitMode=True

Page:

149

Case 66,98 ' Alpha Key "B" or "b"

Print #2, "W-" ' restore from backup
Case 83,115 ' Alpha Key "S" or "s"
Print #2, "ST" ' print Status
Case 81,113 ' Alpha Key "Q" or "g"
Print #2, "ED" ' Dump EEPROM Storage
Case 76,1868 ' Alpha Key "L" or "1"
Print #2, "??" ' print AVR help
Case 85,117,26,122 ' Alpha Key "U" or "u"

' Send user defined String, String is defined in INI file
' This violates the 'Keep it shut' rule
' but this application only sends data once a minute
Sleep (1060) ' allow up to one second second keypress
K=ASC(InKey)
if (K=49) and UserStri1<>"" then print #2, UserStrl
if (K=508) and UserStr2<>"" then print #2, UserStr2
if (K=51) and UserStr3<>"" then print #2, UserStr3
if (K=52) and UserStr4<>"" then print #2, UserStr4
if (K=53) and UserStr5<>"" then print #2, UserStr5

case 60,44 ' keys '<' and ',
OffsetVal=0ffsetVal-0.25
if 0ffsetVal=8 then OffsetVal=0.0001
Print #2, "D0 " & OffsetVal

case 62,46 ' keys '>' and '.'
OffsetVal=0ffsetVal+8.25
if 0ffsetVal=8 then OffsetVal=0.0001
Print #2, "DO " & OffsetVal

The most challenging changes were to the ProcessData() function. In this case we needed to do two things. First
we need to capture the “Degree Offset” value when it is sent from the Arduino as part of the startup or when

the user requests the Status to be printed. Two variables were added to the function to support this effort.

' added for Thermometer Application
Dim C as String ' used for first character of string
Dim P as Byte = @ ‘ index to location in string

'--- added for thermometer application --------

' check to see if this is a non-report line

' we do not want to add date and time to non-report lines
' secondly we want to capture the degree offset if we can
C=Left(Buffer,1)

if C=";" then ' we have a non-report line
if instr(Buffer,"Offset:")>8 then ' check for Degree 0Offset
P=Instr(Buffer, chr(9)) " find TAB character
Of fsetVal=Val(trim(Mid(Buffer,P+1))) ' capture and convert value
end if
end if

Secondly we need to AVOID printing the data and time for non-report lines. The previously defined variable “C”

was added as a condition to the control statements.

fmmmm - display urite ------
' If (AddDateTime) then
If ((AddDateTime) and (C <>™;"™)) then

fmmmmmm e file urite ------
If SendToFile<>8 then
' setup for file flush
LogFileHandle=cast (FILE Ptr,Fileattr(3,fbFilefAttrHandle))
' If (AddDateTime) then
If ((AddDateTime) and (C <>™;™)) then

Page: 158

Note:
During testing two bugs were found in the original Receiver program. These were corrected and the changes
were rolled back into the original code.

Page: 151

Conclusion

It has taken a lot more time than | thought --- months instead of days. In the end | believe that | have succeeded
in creating the device that | was desired. It will require some of amount of time and observation to verify that. It
is however something that can be built upon and enhanced.

Possible Enhancements

Temperature Accuracy

Increasing the accuracy is obvious. That comes down to three variables. The first is the sensor. The good news is
that if one has implemented the sensor extension via the 3.5mm audio jack then replacing the sensor is very
simple. If one shops carefully one might be able to obtain the more accurate versions at a discount. In the end |
found a supplier with the LM34CAH deeply discounted.

The second variable is the voltage reference. The internal reference that we are using is convenient but not very
accurate. Atmel’s specifications give it a variance of 10%. Replacing the Reference voltage source with a
precision external IC such as the LT1004-1.2 would yield a much more predictable output as well as raising the
top of the temperature range to 120 degrees Fahrenheit. This would require some additional capacitors and a
bit more wiring.

The last variable is the accuracy/quality of our temperature calibration source. The more accurate our reference
thermometer is the more accurate our calibration can be. An alternative is shaved ice bath calibration but that
only gives us one point of reference. NIST certified fractionally calibrated laboratory thermometers may
sometimes be acquired used from sources such as EBAY.com. These retail new in the range of US$300 to
USS$600.

EEPROM Storage Mode

An alternate power source is needed for this mode. A convenient solution is a compatible iPhone charge or
battery pack. The Nano has 13 digital pins. The use of a resistor and a two position switch on one of these pins
might be a more convenient method of controlling the EEPROM storage mode. A more sophisticated storage
algorithm could be developed to increase the amount of data stored in this mode (especially in the case of the
ATMegal68). One might want to incorporate a SD Card for massive data storage.

Number of sensors

The Nano has 8 analog pins. It can support up to eight sensors. This would require a number of changes in the
software but the underlying structure is provided in both the code and protocol. A larger breadboard or shield
would be needed or perhaps even a dedicated purpose built circuit board.

Remote Data Collection

There are numerous wireless and Ethernet based modules available for the Arduino line. One of the more
interesting ones is called the Electric IMP. One of these might be used to allow collecting data from the Nano in
remote locations.

LCD Display
There are several LCD displays available and an Arduino library as well. The application could be converted to a

standalone application with its own power supply and display. In this case you might want to consider using a
UNO instead of a Nano.

GUI Interface

We have defined a protocol for communicating with the Arduino Temperature device. That protocol could be
used to develop a GUI (Graphic User Interface) program to control the device. Unfortunately at this time the

Page: 152

http://cds.linear.com/docs/en/datasheet/1004fb.pdf
http://www.gravitech.us/teadforarna.html
https://www.sparkfun.com/products/11401

availability of a stable cross platform GUI API may limit this to a single OS. That is the principle reason that the
program developed in this document targeted used a CUI (Character User Interface) environment.

Page: 153

Photo Gallery

These are some random pictures of the hardware used during the development.

This is an 305mm Omega -50 to 50 Degree Celsius full immersion spirit thermometer (Part number: GT-736620)
frozen in ice to check the calibration at zero degrees. It looks close enough (there is a different background
because | had to move it to get a close up). It was purchased from Omega but it is actually manufactured by Sper
Scientific in Taiwan. This is a new acquisition. | have not had the opportunity yet to compare it the Arduino but |
did compare it the BCR and the two seem to coincide with each other (for a change).

Page: 154

http://www.sperdirect.com/
http://www.sperdirect.com/

ar -

ciel N B FOFOESROROLS) " HOROND
012 B11 D10 pe 08 07 "os "ps 04302 GnORST nxow
- N o par . o

-
Y . N \ N\ X
a2 Geeetech.com

— ol
o ’ |

M - -‘:“- — r l. m
oot 3
DI3 3V3REF MO Al A2 A3 A4 AS A6 7 SV RET GND VIN
. '\. {)™ .. ! - | b] L 1] ol I |

This was my first attempt to make a plug-in sensor that could have an extension. | tried to attach use CAT 6 LAN
cable with pieces of an 8 pin DIP socket. The cable was way too stiff even when striped down to two pair. Trying
to solder the wires to the tiny pins also proved to be a challenge. That is when | came up with the idea of using

the stereo cables. The missing pin was so that the sensor could not be plugged in backwards. Note that the
matching hole is filled with solder.

Page: 155

This was the primary development/testing platform. The cardboard box served two purposes. One was to
minimize the effects of any stray air currents. The other and more important was to hold the mercury bulb
thermometer in close proximity where | could read it.

Page: 156

-

A A I R R
7 N AR - e W MY
% 5 ¥ ¥ " " " m %" " woEumu

2

¥

This is a close up of the Nano on the breadboard in the cardboard box. The heat sink was added to the top of the
MPU to try and bring it closer to the air temperature (did not work). That is the LM34 temperature sensor in the
lower right corner.

T ET . T
- o N AT . - A a2
AT R BT R S L S 228
E it N NAy
RIS i
ia gTada
s Ug s

]

gV A i g gt iy
I 5 4 4 5 2 at rL -

B AP

(//ua{‘im{m} T[T

BCR mercury bulb thermometer acquired via EBAY. As far as | can tell it is fairly accurate. It is a bit difficult to
read (due to the small size and my less than perfect 6 decade old eyes).

Page: 157

Appendix: Atmel MPU Table

These two tables list some of the common Atmel AVR MPU’s that you may encounter.

Sig Byte | Sig Byte | SigByte | FLASH EEPROM | SRAM Boot o ADC USAR | Voltage | Speed
Atmel MPU 0X000 0X001 0X002 (bytes) (bytes) | (bytes) | Loader | Pins | PWM ADC Chns T (range) | (max) USB Serial #
ATmega1280 0x1E 0x97 0x03 131,072 4,09 | 8192 | Yes 86 12 10 bits 16 4 2755 | 16Mhz No No
ATmega1280V 0x1E 0x97 0x03 131,072 409 | 8192 | Yes 86 12 10 bits 16 4 1.8-55 | 8Mhz No No
ATmega1281 0x1E 0x97 0x04 131,072 409 | 8192 | Yes 54 6 10 bits 8 2 2755 | 16Mhz No No
ATmega1281V 0x1E 0x97 0x04 131,072 409 | 8192 | Yes 54 6 10 bits 8 2 1.8-55 | 8Mhz No No
ATmega168 *** 0x1E 0x94 0x06 16,384 512 1,024 | Yes 23 6 10 bits 6or8 1 2755 | 20MHz No No
ATmega168A 0x1E 0x94 0x06 16,384 512 1,024 | Yes 23 6 10 bits 6or8 1 1.8-5.5 | 20MHz No No
ATmega168P 0x1E 0x92 0x0B 16,384 512 1,024 | Yes 23 6 10 bits 6or8 1 2755 | 20MHz No No
ATmega168PA 0x1E 0x94 0x0B 16,384 512 1,024 | Yes 23 6 10 bits 6or8 1 1.8-55 | 20MHz No No
ATmega168PV 0x1E 0x92 0x0B 16,384 512 1,024 | Yes 23 6 10 bits 6or8 1 1.8-55 | 10MHz No No
ATmega16U2 0x1E 0x94 0x89 16,384 512 512 | Yes 22 2 No No 1 2755 | 16Mhz Yes Yes
ATmega16U4 0x1E 0x94 0x88 16,384 512 1280 | Yes 26 8 10 bits 124 1 2755 | 16Mhz Yes Yes
ATmega2560 0x1E 0x98 0x01 262,144 409 | 8192 | Yes 86 12 10 bits 16 4 4555 | 16Mhz No No
ATmega2560V 0x1E 0x98 0x01 262,144 409 | 8192 | Yes 86 12 10 bits 16 4 1.8-55 | 8Mhz No No
ATmega2561 0x1E 0x98 0x02 262,144 409 | 8192 | Yes 54 6 10 bits 8 2 4555 | 16Mhz No No
ATmega2561V 0x1E 0x98 0x02 262,144 4,09 | 8192 | Yes 54 6 10 bits 8 2 1.8-55 | 8Mhz No No
ATmega328 0x1E 0x95 0x14 32,768 1,024 | 2,048 | Yes 23 6 10 bits 6or8 i 1 1.8-5.5 | 20MHz No No
ATmega328P ** | Ox1E 0x95 0x0F 32,768 1,024 | 2,048 | Yes 23 6 10 bits 6or8 1 1.8-5.5 | 20MHz No No
ATmega32U2 0x1E 0x95 0x8A 32,768 1,024 1,024 | Yes 22 2 No No 1 2755 | 16Mhz Yes Yes
ATmega32U4 ** | Ox1E 0x95 0x87 32,768 1,024 2560 | Yes 26 8 10 bits 124 1 2755 | 16Mhz Yes Yes
ATmega48P 0x1E 0x92 0x0A 4,096 256 512 No 23 6 10 bits Bor8 1 2755 | 20MHz No No
ATmegad8PA 0x1E 0x92 0x0A 4,096 256 512 No 23 6 10 bits 6or8 1 1.8-55 | 20MHz No No
ATmega48PV 0x1E 0x92 0x0A 4,096 256 512 No 23 6 10 bits 6or8 1 1.8-55 | 10MHz No No
ATmega640 0x1E 0x96 0x08 64,096 409 | 8192 | Yes 86 12 10 bits 16 4 2755 | 16Mhz No No
ATmega640V Ox1E 0x96 0x08 64,096 4,096 | 8,192 | Yes 86 12 10 bits 16 4 1.8-55 | 8Mhz No No

Page: 158

Sig Byte | Sig Byte | SigByte | FLASH EEPROM | SRAM Boot 0] ADC USAR | Voltage | Speed
Atmel MPU 0X000 0X001 0X002 (bytes) (bytes) | (bytes) | Loader | Pins | PWM ADC Chns T (max) (max) USB Serial #
ATmega88A 0x1E 0x93 0x0A 8,192 512 1,024 | Yes 23 6 10 bits Gor8 1 1.8-5.5 | 20MHz No No
ATmega88P 0x1E 0x92 0x0F 8,192 512 1,024 | Yes 23 6 10 bits Gor8 1 2.7-55 | 20MHz No No
ATmega88PA 0x1E 0x93 0x0F 8,192 512 1,024 | Yes 23 6 10 bits 6or8 1 1.8-55 | 20MHz No No
ATmega88PV 0x1E 0x92 0x0F 8,192 512 1,024 | Yes 23 6 10 bits Gor8 1 1.8-55 | 10MHz No No
ATmega8U2 0x1E 0x93 0x89 8,192 512 512 | Yes 22 2 No No 1 2.7-55 | 16Mhz Yes Yes
ATtiny10 0x1E 0x90 0x03 1,024 No 32 No 4 2 8 bits 4 No 1.8-5.5 12MHz No No
ATtiny25 Ox1E 0x91 0x08 2,048 128 128 Yes 6 2 10 bits 4 No 2.7-55 20MHz No No
ATtiny25V Ox1E 0x91 0x08 2,048 128 128 Yes 6 2 10 bits 4 No 1.8-5.5 10MHz No No
ATtiny4 Ox1E 0x8F 0x0A 512 No 32 No 4 2 No No No 1.8-5.5 12MHz No No
ATtiny45 O0x1E 0x92 0x06 4,096 256 256 Yes 6 2 10 bits 4 No 2.7-55 20MHz No No
ATtiny45V O0x1E 0x92 0x06 4,096 256 256 Yes 6 2 10 bits 4 No 1.8-5.5 10MHz No No
ATtiny5 O0x1E 0x8F 0x09 512 No 32 No 4 2 8 bits 4 No 1.8-5.5 12MHz No No
ATtiny85 0x1E 0x93 0x08 8,192 512 512 Yes 6 2 10 bits 4 No 2.7-55 20MHz No No
ATtiny85V 0x1E 0x93 0x08 8,192 512 512 Yes 6 2 10 bits 4 No 1.8-5.5 16Mhz No No
ATtiny9 0x1E 0x90 0x08 1,024 No 32 No 4 2 No No No 1.8-5.5 12MHz No No

*** These chips are known to have been used in boards sold as Arduino Nano or labeled Arduino Nano compatible

in the “ADC chns” column means that an internal temperature sensor is also included (/ have not verified the rest).

These values were taken directly from the Atmel datasheets. Any inaccuracies are the results (particularly in the Speed and voltage columns) of

deciphering the sometimes confusing layout of those datasheets. Actual operating speed and voltage are directly linked.

All Atmel microcontrollers have a three-byte signature code which identifies the device. Those are identified in this table as: Sig Byte. These are NOT
unique identifiers as several MPUs share the same signature bytes.

Depending on the MPU package the number of available ADC channels may vary.

USART is the acronym for “Universal asynchronous receiver/transmitter”. In this table it is used to indicate the number of hardware based TTL serial
communication channels supported.

Page: 159

http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter

Appendix: Arduino Check Speed

What if you have gotten an Arduino from a source off the internet that claimed it was a 16 Mhz device but you
think it might be somewhat slower. You look at the crystal first but it turns out that the speed is not listed or

illegible. Is there a way to verify the speed?

Yes there is. The Arduino IDE allows you to imbed assembly instructions. The one of interest he is called “nop”
and means no operation. It takes does nothing but requires exactly one machine cycle. Well how long does a

machine cycle take ?

At 20 MHS
At 16 MHS
At 12 MHS

At
At
At

8 MHS
6 MHS
4 MHS

one cycle =
one cycle =
one cycle =
one cycle =
one cycle =
one cycle =

1/20,000,000 =
1/16,000,000 =
1/12,000,000 =
1/08,000,000 =

1/06,000,000 =
1/04,000,000 =

O O OO oo

.0000000500
.0000000625
.0000000833
.0000001250
.0000001667
.0000002500

seconds
seconds
seconds
seconds
seconds
seconds

The concept of this program is first check the internal clock of the Arduino by comparing a delay (10000)
instruction to an external clock. Then we execute 1,000 “nop” instructions and compare the time to what we

expect the value to be. Both numbers should be close. If not then you need to dig a bit further.
=]

Send |

o CoM14

The number
The number
The number
The number
The number

¥ Autoscroll

Thiz will be a delay

should
should
should
should
should

Send any key to begin

First test the internal clock.
(l1o0oaoy.
Compare to external clock for 10 seconds.
The number printed shoud be:~100000083

Send any key to begin : lo0oo0oos

Second test the machine cycles.
This will be 1000

nop instructions.

ke close
ke close
ke close
ke close
ke close

to
to
to
to
to

50
a0
g0
120
250
a0

for a Z0 Mh=z
for a 16 Mhz
for a 12 Mh=z
for a 08 Mh=z
for a 04 Mh=z

mp.

mp.
mp.
mp.
mp.

Mo line ending LI I%DD baud LI

(The font size had to be reduced to get this in to MS word).

At 20 MHS
At 16 MHS
At 12 MHS
At 8 MHS
At 6 MHS
At 4 MHS

/* CheckSpeed */
/* what speed is the Arduino running at

one cycle = 1/20,000,000
one cycle = 1/16,000,000
one cycle = 1/12,000,000
one cycle = 1/08,000,000
one cycle = 1/06,000,000
one cycle = 1/04,000,000

http://playground. arduino.cc/Main/AVR
"For shorter delays use assembly language call 'nop' (no operation).
Each 'nop' statement executes in one machine cycle

(at 16 MHz) yielding a 62.5 ns (nanosecond) delay. "

one nano second = 1 second /1,000,000,000
0.0000000500
.00000080625
.0000000833
.0000001258
.0000001667
.0000002500

nwmwnnn
OO0 O®

and how can it be verified ?

Page: 168

byte junk = @; */
unsigned long Time;

unsigned long Start;

/* incoming serial byte

void setup()
{

// First verify the timer is correct by check th
Serial.begin (9600);

Serial.printin (“First test the internal clock."
Serial.printin ("
Serial.printin ("
Serial.printin (

Compare to external clock for 1
"The number printed shoud be:~10

Serial.print (“Send any key to begin: ")
while (Serial.available() == 8);
while (Serial.available() > 8) {junk = Serial.re

Start=micros();

delay (16008);

Time=micros()-Start;

// Serial.printin("Check Time 18 seconds:
Serial.printin (Time);

)8

Serial.printin ();

Serial.printin ("Second test the machine cycles.'
Serial.printin ("This will be 1888 nop instructi
Serial.printin (“The number should be close to
Serial.printin ("The number should be close to
Serial.printin ("The number should be close to
Serial.printin ("The number should be close to 1
Serial.printin (“The number should be close to 2
Serial.print ("Send any key to begin:

while (Serial. available() == 0),

while (Serial.available()) {junk = Serial.re
Start=micros();
// each line is 10 nop instructions
_asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm ("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__ ("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
_asm__ ("nop\n\t“ "nop\n\t" "nop\n\t" "nop\n\t"
__asm ("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
//---—1
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
_asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
/1----2
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
//-—=-3
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
_asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
__asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
_asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"

This will be a delay (10660).");

e number of seconds against an external clock

)8

0 seconds.");

3 ™)g

000008") ;

// wait for key from user
ad();} // collect and discard user input

s

ons.");
58 for a 20 Mhz mpu.");
68 for a 16 Mhz mpu.");
80 for a 12 Mhz mpu.");
28 for a 88 Mhz mpu.");
58 for a 84 Mhz mpu.");

// wait for key from user
ad();} // collect and discard user input
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" “nop\n\t" "nop\n\t" “nop\n\t" "“nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" “nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" “nop\n\t" "nop\n\t" “nop\n\t" *“nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" “nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" “nop\n\t" “nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" “nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" *“nop\n\t" "nop\n\t" “nop\n\t" *“nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" '
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" “nop\n\t" "nop\n\t" “nop\n\t" "“nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"
"nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");

"nop\n\t");

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");

—_——— —

"nop\n\t");
”nop\n\t'

‘nop\n\t"
"nop\n\t"
"nop\n\t"

— — — — —

3
H
H
H
H

"nop\n\t"
"nop\n\t"

NN

Page:

161

_asm__(
__asm__("
7/----4
_asm__(
_asm__(
_asm__("
__asm__("
__asm__("

_asm__
_asm__
_asm__
_asm__
J===="5
_asm__
_asm__
_asm__
_asm__
_asm__

("
("
("
(

f\f\f\f\’\

_asm__
_asm__
_asm__

~asm__
_asm__

_asm__
_asm__
_asm__
__asm
77----1
_asm__
_asm__

("
("
__asm__("
(
(

("
("
("
__("

_asm__
_asm__

_asm__

_asm__
_asm__
//----8
__asm__("
__asm__("
__asm__("

("

_ ("

__asm

_asm__
_asm__
_asm__
_asm__

77—

f\’\f\/\

__asm__(
__asm ("
__asm__("
_asm__(
_asm__(

__asm__("
__asm__("
_asm__(

_asm__(
//----10

(
__asm__("

(

(

"nop\n\t"
nop\n\t"

"nop\n\t"

"nop\n\t“
nop\n\t"
nop\n\t"
nop\n\t"

nop\n\t"
nop\n\t"
nop\n\t"

nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

nop\n\t"
nop\n\t"
nop\n\t"
nop\n\t"

nop\n\t"

nop\n\t"

nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
nop\n\t"
"nop\n\t"
"nop\n\t"

nop\n\t"
nop\n\t"
nop\n\t"
nop\n\t"
nop\n\t"

'nop\n\t“
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
nop\n\t"
nop\n\t"

"nop\n\t"

"nop\n\t"

nop\n\t"

nop\n\t"
"nop\n\t"
"nop\n\t"

“nop\n\t”
"nop\n\t"

"nop\n\t"
”nop\n\t”

"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
“nop\n\t”

"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
”nop\n\t“

"nop\n\t"

"nop\n\t"
"nop\n\t"
”nop\n\t”

"nop\n\t"

"nop\n\t"
"nop\n\t"
”nop\n\t”

"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
“nop\n\t”

"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

”nop\n\t“

"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
“nop\n\t”

"nop\n\t"
“nop\n\t"
"nop\n\t"

“nop\n\t”

"nop\n\t"
"nop\n\t"
"nop\n\t"

Time=micros()-Start;
Serial.printin (Time);

3

void loop
{;} // do

0
nothing

"nop\m\t”
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\m\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
“nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t”
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\m\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
“nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
“nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t”
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"

“nop\n\t”);
"nop\n\t");

"nop\n\t");
“nop\n\t'),
"nop\n\t");
"nop\n\t");
"nop\n\t");

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
”nop\n\t'),
"nop\n\t");
"nop\n\t");

"nop\n\t");

“nop\n\t
"nop\n\t"

"nop\n\t"

—— — —

3
H
5
H

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");

"nop\n\t");
"nop\n\t");
”nop\n\t'),
"nop\n\t");
"nop\n\t");

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");
”nop\n\t”),

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");

"nop\n\t");
"nop\n\t");
"nop\n\t");
"nop\n\t");

3
3
3
3

Page:

162

Appendix: AVR ADC Sensor Registers

ADC Links:
http://www.marulaberry.co.za/index.php/tutorials/code/arduino-adc/ (Marulaberry Projects)
Arduino Playground, Internal Temperature Sensor (arduino.cc)
AVR122: Calibration of the AVR's internal temperature reference (Atmel)
Arduino / AVR internal temperature sensor interface (avdweb)
ANALOG INPUTS (ANALOG TO DIGITAL CONVERTER) (QEEWiki)
Analogue to Digital Conversion on an ATmegal68 (protostack)

ADMUX, ADCH, ADCL are AVR eight bit registers (a “register” is special dedicated memory location in the heart of
the processor). The ADMUX register holds the operational settings for the Analog to Digital converter. ADSCRA is
the Control and Status register for the Analog to Digital converter. ADCH (high byte) and ADCL (low byte) are
used to store the result from the conversion.

Register bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
ADMUX REFS1 REFSO ADLAR - MUX3 MUX2 MUX1 MUXO0
ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPSO

The top two bits of ADMUX (REFS1 and REFSO) control the source of the reference voltage.

REFS1 | REFSO Source Reference Voltage Source
0 0 External AREF Pin, Internal voltage reference turned off, Nano Pin number 18
0 1 Default AVcc with external capacitor on AREF pin
1 0 n/a Reserved
1 1 Internal*** | Internal, 1.1 volts for ATmegal68/328 or 2.56 for the ATMega8

*** The external AREF pin is directly connected to the ADC, and the reference voltage can be made more
immune to noise by connecting a capacitor between the AREF pin and ground. VREF can also be measured at the
AREF pin with a high impedance voltmeter.

The bottom four bits of ADMUX (MUX3, MUX2, MUX1 and MUXO0) control the source of the voltage to be read.
The ADC is optimized for analog signals with an output impedance of approximately 10 k ohms or less.

MUX 3,2,1,0 (binary) Input Voltage Source
0000 ADCO, analog pin 0, Nano pin number 19, (AQ)
0001 ADC1, analog pin 1, Nano pin number 20, (A1)
0010 ADC2, analog pin 2, Nano pin number 21, (A2)
0011 ADC3, analog pin 3, Nano pin number 22, (A3)
0100 ADC4, analog pin 4, Nano pin number 23, (A4)
0101 ADCS5, analog pin 5, Nano pin number 24, (A5)
0110 ADCS6, analog pin 5, Nano pin number 24, (A6)
0111 ADC7, analog pin 6, Nano pin number 25, (A7)
1000 ADCS, analog pin 7, Nano pin number 26, (Internal Temperature Sensor)

1001 -1101 (reserved)
1110 1.1 volt (internal reference voltage)
1111 0 volts (ground)

ADALAR controls how the Analog to Digital converter stores the result in the two registers ADCH and ADCL. One
must be careful when reading these two storage registers. Reading ADCH causes the ADC to update. So always
read ADHL first. The second mode is useful if you only want an 8 bit AD conversion and read ADHC. You might
use this if you are trying to build a really fast routine where speed is more important than range (perhaps a
software Oscilloscope).

Page: 163

http://www.marulaberry.co.za/index.php/tutorials/code/arduino-adc/
http://playground.arduino.cc/Main/InternalTemperatureSensor
http://www.atmel.com/Images/doc8108.pdf
http://www.avdweb.nl/arduino/hardware-interfacing/temperature-measurement.html
https://sites.google.com/site/qeewiki/books/avr-guide/analog-input
http://www.protostack.com/blog/2011/02/analogue-to-digital-conversion-on-an-atmega168/

ADALAR | Register bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0 ADCH - - - - - ADC9 ADC8
0 ADCL ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO
1 ADCH ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2
1 ADCL ADC1 ADCO - - - - -

Now about the ADSCSRB register ... | found this one a bit confusing.

Register bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPSO

ADEN (Analog to Digital Enable) enables the AD converter subsystem. This bit needs to be set before any
conversion takes place.

ADSC (Analog to Digital Start) is set to 1 when you want to start an AD conversion process. When the conversion
is finished, the value reverts back to 0.

ADATE (Analog to Digital Auto Trigger Enable) is used to set the mode of operation. The default is 0 for single
read. The alternative is a “triggered” operation (see ADCSRB below).

ADIF (Analog to Digital Interrupt Finished)

ADIE (Analog to Digital Interrupt Enable)

ADPS, ADPS1 and ADPSO are used to specify a system clock division factor for ADC speed.

ADPS 2,1,0 (binary) Division Factor

000 2

001 2

010 4

011 8

100 16

101 32

110 64

111 128

The ADC has a recommended maximum ADC clock speed of 200 kHz. “However, frequencies up to 1 MHz

(50,000 samples per second) do not reduce the ADC resolution significantly”. The default division factor is 128:

At 16 Mhz: 16,000,000/128 = 125,000 (or 125 kHz or approximately 8,621 samples per second)

The ATmegal68 and ATmega328 have an additional ADC control register ADSCRB to use with “Free Running”
mode. We will not be using it but for the sake of completeness the description is included.

Register bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

ADCSRB - ACME - - - ADTS2 ADTS1 ADTSO

ACME (Analog Comparator Multiplexer Enable) must be set to 1 to use the ADC multiplexer.
The bottom three bits of ADCSRB (ADTS2, ADTS1 and ADTSO0) set the trigger source to begin an ADC conversion.

ADTS 2,1,0 (binary) ADC Trigger Source
000 Free Running. When a ADC conversion is done another begins
This is the same as as ATMega. (note: a conversion takes ~ 13.5 clock cycles)
001 Analog Comparator (compares
010 External Interrupt request O
011 Timer/Counter0 Compare Match A
100 Timer/Counter0 Overflow
101 Timer/Counterl Compare Match B
110 Timer/Counterl Overflow
111 Timer/Counterl Capture Event

Page: 164

Appendix: ADC Function test

| have some “Iduino Nano version 3.0” boards with Atmegal68 mpu chips. | was perplexed that | was getting

strange readings from the internal temperature sensor. So | wrote this program to test the operation of the ADC

using the internal references. Then | found out that the ATmegal68 does NOT have an internal temperature

sensor. Still maybe the program will be useful.

B coMi16

=1ol]

Send |

Read
This

Read
This

Read
This

Read
This

Read
This

v autascrol

Sainfmart Arduinge UNO wersion 2 @5Volts/léMhz

Internal Temp Sensor (1.1V internal ref).

reading should be on the order of 350-375:

Internal BandGap (1.1V internal ref).
reading shoud be 1023: 1023

Internal BandGap (Default 5V ref).

reading should be on the order of 220-225:

Internal Ground {(1.1V internal ref).
reading should be zerc (0): O

Internal Ground (Default 5V ref):
reading should be zero (0): 0O

377

222

Mo line ending LI I%DD baud ;I

Main Program Code:

unsigned long Time;
float save;

void setup()

{ word rauw;
Serial.begin(9600);

Serial.printin();

Serial.printin(rauw);
Serial.printin();

Serial.printin(rau);
Serial.printin();

Serial.printin(rauw);
Serial.printin();

// put arduino board description here
Serial.printin("Board Description

raw = avrRawTemp(1624);
Serial.printin("Read Internal Temp Sensor (1.1V internal ref).");
Serial.print("This reading should be on the order of 325-408: ");

raw = avrBandGapl(1624);
Serial.printin('Read Internal BandGap (1.1V internal ref).");
Serial.print("This reading shoud be 1823: ");

raw = avrBandGap2(1624);
Serial.printin("Read Internal BandGap (Default 5V ref).");
Serial.print("This reading should be on the order of 220-225: ");

/* Program to test Internal function ADC using internal references */

Page:

165

raw = avrGround1(1024);

Serial.printin("Read Internal Ground (1.1V internal ref).");
Serial.print("This reading should be zero (0): ");
Serial.printin(rau);

Serial.printin();

raw = avrGround2(1024);

Serial.printin("Read Internal Ground (Default 5V ref): ");
Serial.print("This reading should be zero (0): ");
Serial.printin(rau);

Serial.printin();

3
void loop() {

3

Function Code:

// cbi and sbi are standard (AVR) methods for setting,
// or clearing, bits in PORT (and other) variables.
#ifndef cbi

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~ BV(bit))
#endif

#ifndef sbi

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

word avrRauwTemp (word samples)
{ // gets raw reading in the range @ to 1823 from internal temperature sensor
// using internal volt 1.1 voltage ref
// Should return ~325-466 for normal enviroment temperatures

unsigned long RawSum=8; // used to sum samples for averaging

word RawuTemp=0; // used to accumalate 16 bit ADC readings

word test=0; // used to count samples

byte exp=0; // samples = 2 to the exp power, used as
shift operand

unsigned long Start=micros(); // this was used for benchmark timeing

// set system clock devisor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 56-208 KHz range.

sbi(ADCSRA, ADPS2); // bit 2 of ADCSRA, system clock devisor
sbi (ADCSRA, ADPS1); // bit 1 of ADCSRA, system clock devisor
sbi(ADCSRA, ADPSB); // bit @ of ADCSRA, system clock devisor
cbi(ADCSRA, ADATE); // bit 5 of ADCSRA, disable auto trigger mode
sbi (ADCSRA, ADEN); // bit 7 of ADCSRA, enable ADC
// turn on internal reference, right-shift ADC buffer,ADC channel = internal temp sensor
ADMUX = B11001600; // High Nibble: 1180 = internal 1.1 Vref

// Louw Nibble: 1860 = ADC chn 8 Temp sensor
delay(1e); // uwait a bit for the analog reference to stabilize

// as "C" lacks an expodential or power function (or operator)
// uwe must use a resort to loops to calculate the binary exponent

while (samples>1) { samples /=2; exp++;} // calculate pouwer of 2

samples=1; // make sure samples = 1 (not @)

while (test++ < exp) { samples *=2;3} // set samples value to power of tuwo

test=0; // reset test because we have abused it

while (test++ < samples) // oversampling loop (for averaging)

{ ADCSRA |= _BV(ADSC); // start the conversion by setting ADSC=1
while (bit_is_set(ADCSRA, ADSC)); // ADSC is cleared when the conversion
finishes

Page: 166

RauTemp = (ADCL | (ADCH << 8)); // get the ADC reading (low byte first)

RawSum += RauwTemp; // accumalate 10 bit ADC value
3
Time=micros()-Start; // record benchmark time
return ((RawSum)>>exp); // averag by shifting bit position,
// LSBs lost
3
et

word avrBandGapl (word samples)
{ // gets raw reading in the range @ to 1823 from internal Band Gap reference
// using internal volt 1.1 voltage ref
// Should return 1623
unsigned long RawSum=8;
word RawTemp=8;
word test=0;
byte exp=0;
unsigned long Start=micros();

sbi (ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
sbi (ADCSRA, ADPSB);
cbi (ADCSRA, ADATE);
sbi (ADCSRA, ADEN);

ADMUX = Bl1@@1110; // High Nibble: 1188 = internal 1.1 Vref
delay(1e); // Low Nibble: 1118 = 1.1V BandGap (Vbg)
while (samples>1) { samples /=2; exp++;3}

samples=1;

while (test++ < exp) { samples *=2;3}

test=0;
while (test++ < samples)
{ ADCSRA |= _BV(ADSC);
while (bit_is_set(ADCSRA, ADSC));
RawTemp = (ADCL | (ADCH << 8));
RawSum += RauTemp;
RawTemp=0;
3
Time=micros()-Start;
return ((RawSum)>>exp);

word avrBandGap2(word samples)
{ // gets raw reading in the range @ to 1823 from internal Band Gap reference
// using internal volt ref AVCC= 5 voltage ref
// should return ~225
unsigned long RawSum=8;
word RauTemp=0;
word test=0;
byte exp=0;
unsigned long Start=micros();

sbi (ADCSRA, ADPS2);
sbi(RADCSRA, ADPS1);
sbi(ADCSRA, ADPSB);
cbi (ADCSRA, ADATE);
sbi(ADCSRA, ADEN);

ADMUX = Bole@1110; // High Nibble: 8108 = internal 5.8 Vref
delay(1e); // Low Nibble: 1110 = 1.1V BandGap (Vbg)
while (samples>1) { samples /=2; exp++;3}

Page: 167

Wwo

wo

samples=1;
while (test++ < exp) { samples *=2;3}

test=0;
while (test++ < samples)
{ ADCSRA [= _BV(ADSC);
while (bit_is_set(ADCSRA, ADSC));
RawTemp = (ADCL | (ADCH << 8));
RawSum += RauwTemp;
3
Time=micros()-Start;
return ((RawSum)>>exp);

rd avrGroundl (word samples)
{ // gets raw reading in the range @ to 1823 from from internal ground reference
// using internal volt 1.1 voltage ref
// This should return zero
unsigned long RawSum=8;
word RauTemp=0;
word test=0;
byte exp=0;
unsigned long Start=micros();

sbi (ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
sbi (ADCSRA, ADPSB);
cbi (ADCSRA, ADATE);
sbi (ADCSRA, ADEN);

ADMUX = Bl1@@1111; // High Nibble: 1108 = internal 1.1 Vref
delay(1e); // Low Nibble: 1111 = Internal Ground Ref
while (samples>1) { samples /=2; exp++;3}

samples=1;

while (test++ < exp) { samples *=2;3}

test=0;
while (test++ < samples)
{ ADCSRA |= _BV(ADSC);
while (bit_is_set(ADCSRA, ADSC));
RawTemp = (ADCL | (ADCH << 8));
RawSum += RauTemp;
3
Time=micros()-Start;
return ((RawSum)>>exp);

rd avrGround2(word samples)
{ // gets raw reading in the range @ to 1823 from from internal ground reference
// using internal volt ref AVCC= 5 voltage ref
// This should return zero
unsigned long RawSum=8;
word RawTemp=8;
word test=0;
byte exp=0;
unsigned long Start=micros();

sbi (ADCSRA, ADPS2);
sbi (ADCSRA, ADPS1);
sbi(RADCSRA, ADPSB);
cbi (ADCSRA, ADATE);
sbi (ADCSRA, ADEN);

Page:

168

ADMUX = B@le@1111; // High Nibble: 8180 = internal 5.8 Vref
delay(1e); // Low Nibble: 1111 = Internal Ground Ref

while (samples>1) { samples /=2; exp++;}
samples=1;
while (test++ < exp) { samples *=2;3}

test=0;
while (test++ < samples)
{ ADCSRA |= _BV(ADSC);
while (bit_is _set(ADCSRA, ADSC));
RauTemp = (ADCL | (ADCH << 8));
RawSum += RauTemp;
3
Time=micros()-Start;
return ((RawSum)>>exp);

Page: 169

Appendix: Disabling Auto Reset

Someone in their infinite wisdom decided that the Arduino should automatically reset every time the serial port
is opened by the PC.

Reference: http://arduino.cc/en/Main/ArduinoBoardNano

Automatic (Software) Reset

Rather then requiring a physical press of the reset button before an upload, the Arduino Nano is
designed in a way that allows it to be reset by software running on a connected computer. One of
the hardware flow control lines (DTR) of the FT232RL is connected to the reset line of the
ATmegal68 or ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the
reset line drops long enough to reset the chip. The Arduino software uses this capability to
allow you to upload code by simply pressing the upload button in the Arduino environment. This
means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-
coordinated with the start of the upload.

This setup has other implications. When the Nano is connected to either a computer running Mac OS

X or Linux, it resets each time a connection is made to it from software (via USB). For the
following half-second or so, the bootloader is running on the Nano. While it is programmed to
ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first

few bytes of data sent to the board after a connection is opened. If a sketch running on the
board receives one-time configuration or other data when it first starts, make sure that the
software with which it communicates waits a second after opening the connection and before
sending this data.

That makes it easier to use with the IDE because the IDE can reset it to upload a new program. This sounds like a
fine idea if the only time that the device is attached to the PCis when it is being programed. The are however
some situations where the auto reset feature is a problem: However two implications that are not mentioned in
the Arduino guide are:

The Arduino Nano (and most other Arduino boards) cannot be used with a ISCP hardware debugger.
The Arduino Nano (and most other Arduino boards) cannot be used as an ISCP programmer.

A third situation is a the target application where the Nano is ALWAYS attached to the PC and one would rather
not have it resetting every time the open serial port is opened so one could uses multiple applications to
communicate with the device. Some versions of the Arduino have a small trace that can be cut to disable this
irritating behavior but appears that GRAVITECH did not consider this a useful feature. There are a couple of
alternatives:

Reference: http://playground.arduino.cc/Main/DisablingAutoResetOnSerialConnection

“Stick a 120 ohm resistor in the headers between 5v and reset (you can find these on the isp
connector too). 120 is hard to find so just combine resistors. Don't go below 110 ohms or above
124 ohms, and don't do this with an isp programmer attached. You can just pull out the resistor
when you want auto-reset back.”

“Another way to avoid autoreset is connecting a capacitor between reset pin and ground. 10 uf

should be enough. The}¥Trnega168 is reset by pulsing its reset pin to GND. The Arduino IDE
itself cannot create such pulses, but by setting the DTR line to LOW and adding a capacitor (R3
on the pcb, marked red), the reset pin gets sucked to LOW until the capacitor is charged through
the internal pull up resistor and Rl - which resets the chip. This works in the same spirit as
adding "auto reset" to a chip for proper startup after connecting power.”

Neither method is useful in the case of using a hardware debugger.

Page: 178

http://arduino.cc/en/Main/ArduinoBoardNano
http://playground.arduino.cc/Main/DisablingAutoResetOnSerialConnection

This is a drawing of the traces on the underside of the Nano board (looking from the bottom point of view). The
rest circuit traces are shown in orange. The offending trace is shown in red inside the yellow highlighted circle.
Cut this trace and Auto Reset will be disabled. The rest of the reset circuit (and functions) will be left intact.

For reference this is the top of the Nano board (looking from the top point of view) with the reset circuit traces
shown in orange.

Page: 171

Appendix: Arduino EIfDump

This is a small utility written in FreeBasic to read the Arduino preferences file and find the build.path. Then it
searches for the matching sketch directory and writes a CMD file to use avr-readelf to create a header file
(foo.hdr.txt) and avr-objdump to create an assembler file (foo.asm.txt). The CMD files can be edited to change
the options. The program is open source and public domain. The command lines for these two utilities are
somewhat long and complex. This simplifies the task of creating those command lines. This is a sample of the
output “.CMD” file. The command lines are “wrapped” as three lines in the example. Note that the basic options

for each of the utilities are included as well.

"C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\avr-objdump.exe" -S
"c:\users\your.name\documents\arduino\build\ThermometerOne.cpp.elf" > "c:\users\ your.name
\documents\arduino\sketches\ThermometerOne\ThermometerOne.asm. txt"

"C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\avr-readelf.exe" -e "c:\users\ your.name
\documents\arduino\build\ThermometerOne.cpp.elf" > "c:\users\ your.name
\documents\arduino\sketches\ThermometerOne\ThermometerOne.hrd. txt"

exit
avr-objdump

Options are:
-a, --archive-headers Display archive header information

-f, --file-headers Display the contents of the overall file header
-p, --private-headers Display object format specific file header contents
-h, --[section-]headers Display the contents of the section headers
-X, --all-headers Display the contents of all headers
-d, --disassemble Display assembler contents of executable sections
-D, --disassemble-all Display assembler contents of all sections
-S, --source Intermix source code with disassembly
-s, --full-contents Display the full contents of all sections requested
-g, ——debugging Display debug information in object file
-e, --debugging-tags Display debug information using ctags style
-G, --stabs Display (in raw form) any STABS info in the file
-W, --duwarf Display DWARF info in the file
-t, --syms Display the contents of the symbol table(s)
-T, --dynamic-syms Display the contents of the dynamic symbol table
-r, --reloc Display the relocation entries in the file
-R, --dynamic-reloc Display the dynamic relocation entries in the file
readelf
Options are:
-a —-all Equivalent to: -h -1 -S -s -r -d -V -A -I
-h --file-header Display the ELF file header

-1 --program-headers Display the program headers
-S --section-headers Display the sections' header
-g --section-groups Display the section groups

-t --section-details Display the section details

-e --headers Equivalent to: -h -1 -S

-s --symbols Display the symbol table

-n --notes Display the core notes (if present)

-r --relocs Display the relocations (if present)

-u --unwind Display the unuwind info (if present)

-d --dynamic Display the dynamic section (if present)

-V --version-info Display the version sections (if present)

-A --arch-specific Display architecture specific information (if any).
-c --archive-index Display the symbol/file index in an archive

-D --use-dynamic Use the dynamic section info when displaying symbols

This is the FreeBasic Source code for the utility.

/' small propgram to automate dumping dissassebly from elf file
<ARDUINOPATH> /harduware/tools/avr/bin/avr-objdump -d
<BUILDPATH>/<PROJECTNAME>.cpp.elf > <PROJECTNAME>.asm

Source code is placed in public domain: August 2013, Lewis Balentine, lewis@keyuwild.com
Target compiler: FreeBasic, http://uww.freebasic.net/
Note: This is written to run as a console application under Windous.

I suspect numerous changes would be needed for Tinux.

Page: 172

Include "dir.bi"
dim HomePath as string

dim AppDataPath as string '
dim PrefFile as string
Dim SketchPath as String

Dim BuildPath as String

Dim EIfFile as String

Dim ProjName as String
Dim AvrObjDump as String

users HOMEDRIVE and HOMEPATH
users HOMEDRIVE and APPDATA
users's Arduino preferencesfile
users's Arduino Sketchbook
Arduino build directory

E1f file name (with path)
Arduino project name
Avr-0bjDump.exe with full path
Dim AvrReadElf as String Avr-readelf.exe with full path
Dim CmdFile as String "' CMD file with full path

Dim Cr as String "' Carriage return/line feed (ASCII 13,18)
Dim HelpStr as String command line Help

Dim DmpOpts as String Options for Avr-0bjDump.exe

Dim E1fOpts as String "' Options for Avr-readelf.exe

Dim Buffer as String
Dim TempStr as String

working buffer for reading files
working string

Dim P as Integer "' position from instr

HelpStr= "Arduino-elf-dump.exe is a small program written in FreeBasic to automate the" & Cr & _
"process of creating dume files from the elf file produced by the Ardunio IDE." & Cr & _
"The program attempts to write a CMD file to the project directory and execute" & Cr & _
"it. The CMD file allows the Avr-ObjDump and/or Avr-readelf options to be" & Cr & _
"edited as desired. The dump files are also placed in the project directory. " & Cr & _
Cr &
"This program requires that 'build.path' be specified in the user's Ardunio" & Cr & _
"preferences file. Please set up a directory for builds and add it to your " & Cr & _
"preferences file.Please also set preproc.save_build_files to true." & Cr & _
Cr &
"The program searches the following directories for Avr-0bjDump & Avr-readelf:" & Cr & _
" C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\" & Cr & _
" C:\Program Files\Arduino\hardware\tools\avr\bin\" & Cr & _
" C:\Arduino\hardware\tools\avr\bin\" & Cr & _
" C:\bin\Arduino\hardware\tools\avr\bin\" & Cr & _
Cr &
"The program searches the following directories for project directory:" & Cr & _
" Sketchbook (as defined in Arduino preferences file)" & Cr & _
" <users home path>\Documents\Arduino" & Cr & _
" <users home path>\My Documents\Arduino" & Cr & _

<users home path>\Documents\Projects" & Cr & _

<users home path>\My Documents\Projects" & Cr & _
"If project directory can be found then the CMD file is written to the build" & Cr & _
"is written to the build directory." & Cr & _
Cr &
"There are no command line options.” & Cr & _
"This program is Public Domain open source." & Cr

DmpOpts= Cr & Cr & "exit" & Cr & Cr & _
"avr-objdump” & Cr & _
"Options are:" & Cr & _
" -3, --archive-headers Display archive header information" & Cr &

" -f, --file-headers Display the contents of the overall file header" & Cr & _

" -p, —-private-headers Display object format specific file header contents"” & Cr & _

" -h, --[section-]headers Display the contents of the section headers" & Cr & _

" -X, --all-headers Display the contents of all headers" & Cr & _

" -d, --disassemble Display assembler contents of executable sections" & Cr & _

" -D, --disassemble-all Display assembler contents of all sections" & Cr & _

" -5, --source Intermix source code with disassembly" & Cr & _

" -s, --full-contents Display the full contents of all sections requested" & Cr & _

" -g, --debugging Display debug information in object file" & Cr & _

" -e, --debugging-tags Display debug information using ctags style" & Cr & _

" -G, --stabs Display (in raw form) any STABS info in the file" & Cr & _

" -W, --duwarf Display DWARF info in the file" & Cr & _

" -t, --syms Display the contents of the symbol table(s)" & Cr & _

" =T, --dynamic-syms Display the contents of the dynamic symbol table" & Cr & _

" -r, --reloc Display the relocation entries in the file" & Cr & _

" -R, --dynamic-reloc Display the dynamic relocation entries in the file" & Cr & Cr
ElfOpts= Cr &

"readelf" & Cr & _
"Options are:" & Cr & _
" -a --all Equivalent to: -h -1 -S -s -r -d -V -A -I" & Cr & _

Page: 173

" -h --file-header Display the ELF file header" & Cr & _
" -1 --program-headers Display the program headers" & Cr & _
" -S --section-headers Display the sections' header" & Cr & _
" -g --section-groups Display the section groups" & Cr & _

" -t --section-details Display the section details" & Cr & _

" -e --headers Equivalent to: -h -1 -S" & Cr & _

" -5 --symbols Display the symbol table" & Cr & _

" -n --notes Display the core notes (if present)" & Cr & _

" -r --relocs Display the relocations (if present)" & Cr & _

" -u --unwind Display the unwind info (if present)" & Cr & _

" -d --dynamic Display the dynamic section (if present)" & Cr & _

" -V --version-info Display the version sections (if present)" & Cr & _

" -A --arch-specific Display architecture specific information (if any)." & Cr & _
" -c --archive-index Display the symbol/file index in an archive" & Cr & _

" -D --use-dynamic Use the dynamic section info when displaying symbols" & Cr

' check for command line arguments
TempStr = Command (-1)
If TempStr <> "" then
Print HelpStr
End @
End if

' Get users HOMEDRIVE and HOMEPATH from enviroment
HomePath = Environ(''HomeDrive") & Environ(''HomePath") & "\"
' Print HomePath

' Get users HOMEDRIVE and APPDATA from enviroment
AppDataPath = Environ('AppData") & "\"
' Print AppDataPath

' Find Arduino preferences file

' <AppData>\Arduino\preferences. txt

PrefFile=AppDataPath & "\Arduino\preferences. txt"

If Dir(PrefFile) = "" then
Print "**ERROR** Can not find Ardunio preferences file:
Print PrefFile
Sleep ' sleep waits for a keypress before continueing
End -1

End If

'Open file and look for build.path & sketchbook.path
' build.path=<users path>\Documents\Arduino\Build
' sketchbook.path=<users path>\Documents\Arduino
' preproc.save_build_files=true
Open PrefFile for input as #1
If Err>8 Then
Print "**Error** opening Ardunio preferences file:"
Print PrefFile
sleep
End -1
End If

BuildPath=""
SketchPath=""
Do Until EOF(1) "' loop until we have reached the end of the file
Line Input #1, buffer "' read a line of text
buffer=Lcase(Trim(buffer)) "' we should not need this but ..
If InStr (buffer, "build.path")=1 then BuildPath=buffer
If InStr (buffer, "sketchbook.path")=1 then SketchPath=buffer
Loop
Close #1

' for this to work we reuire that a build path be set in the Ardunio preferences file
If Len(BuildPath) < 20 then
Print "**ERROR** This program requires that the 'build.path' is specified"

Print " in the user's Ardunio preferences file. Please set up a"
Print " directory for builds and add it to your preferences file."
Print " Example:"

Print " build.path=" & HomePath & "Documents\Arduino\Build"

Print ""

Print " Please also set preproc.save_build files to true."

Print ""

Print "Your Ardunio preferences file is:"
Print PrefFile
Sleep

Page: 174

End -1
End If

' Now go find the the build
' First we need to strip off "build.path="
P=InStr (BuildPath, "=")
BuildPath = Trim(Mid (BuildPath, P+1)) & "\"
ElfFile =""
E1fFile = Dir (BuildPath & "*.elf")
If E1fFile ="" then
Print "**ERROR** Can not find '*.elf' file in build directory:"
Print BuildPath
Sleep
End -1
End If

' Extract project name ... example: HelloWorid_881.cpp.elf
' this should be everything in front of .cpp.elf
P=InStr (E1fFile, ".cpp.elf")
ProjName=Trim(Left (EI1fFile,P-1))
' Now see if we can find the project directory
if SketchPath<>"" then
P=InStr (SketchPath, "=")
' SketchPath = Trim(Mid (SketchPath, P+1)) & "\sketches\" & ProjName
TempStr = Trim(Mid (SketchPath, P+1)) & "\sketches\" & ProjName & "\"
end if
if dir(TempStr & ProjName & ".ino")="" then
' try an alternative
TempStr = Trim(Mid (SketchPath, P+1)) & "\" & ProjName &"\"
end if
if dir(TempStr & ProjName & ".ino")="" then
' try an alternative
TempStr = HomePath & "Documents\Projects\" & ProjName &"\"
end if
if dir(TempStr & ProjName & ".ino")="" then
' try an alternative
TempStr = HomePath & "My Documents\Projects\" & ProjName &"\"
end if
if dir(TempStr & ProjName & ".ino")="" then
' try an alternative
TempStr = HomePath & "Documents\Arduino\" & ProjName &"\"
end if
if dir(TempStr & ProjName & ".ino")="" then
' try an alternative
TempStr = HomePath & "My Documents\Arduino\" & ProjName &"\"
end if

If dir(TempStr & ProjName & ".ino")="" then
' instead of an error we are going to dump the assembly output to
' the build directory
SketchPath=BuildPath
else
SketchPath=TempStr
end If

' now find the avr-objdump
' <ARDUINOPATH>/harduware/tools/avr/bin/avr-objdump
' C:\Program Files (x86)\Arduino\harduare\tools\avr\bin
AvrOb jDump=""
TempStr = "C:\Program Files (x86)\Arduino\harduare\tools\avr\bin\avr-objdump.exe"
If Dir(TempStr)<>"" then AvrObjDump=TempStr
TempStr = "C:\Program Files\Arduino\harduware\tools\avr\bin\avr-objdump.exe"
If Dir(TempStr)<>"" then AvrObjDump=TempStr
TempStr = "C:\Arduino\hardware\tools\avr\bin\avr-objdump.exe"
If Dir(TempStr)<>"" then AvrObjDump=TempStr
TempStr = "C:\bin\Arduino\hardware\tools\avr\bin\avr-objdump.exe"
If Dir(TempStr)<>"" then AvrObjDump=TempStr
If AvrObjDump ="" then
Print "**ERROR** Can not find 'avr-objdump.exe'."
Print "Searched:"

Print " C:\Program Files (x86)\Arduino\harduware\tools\avr\bin\"
Print " C:\Program Files\Arduino\hardware\tools\avr\bin\"
Print " C:\Arduino\hardware\tools\avr\bin\"
Print " C:\bin\Arduino\harduware\tools\avr\bin\"
Sleep
End -1
End If

Page: 175

P=Instr(Avrob;jDump,'avr-objdump.exe")
AvrReadElf=Left(AvrObjDump,P-1) & "avr-readelf.exe"

' Now build our command string ...

CmdFile = SketchPath & ProjName & "_dump.cmd"
open CmdFile for output as #1

TempStr = chr(34)
TempStr = TempStr
TempStr = TempStr

Print

#1, TempStr

TempStr = chr(34)
TempStr = TempStr
TempStr = TempStr

Print
Print
Print
Close
Shell
end @

#1, TempStr
#1, DmpOpts
#1, ElfOpts
#1

CmdFile

&
&
&

&
&
&

AvrObjDump & chr(34) & " -S "
chr(34) & BuildPath & E1fFile & chr(34)
"> " & chr(34) & SketchPath & ProjName & ".asm.txt" & chr(34)

AvrReadElf & chr(34) & " -e "
chr(34) & BuildPath & E1fFile & chr(34)
"> " & chr(34) & SketchPath & ProjName & ".hrd.txt" & chr(34)

Page: 176

Appendix: Arduino Receiver

duino_Reciever' Arduino_Recei

1454, 89.68, 227528

-13 14:46:56 1454, 89.68, 227528

-13 14:48:57 1454, 89.68, 227528

2813 B? 13 14:48:58 1454, 87.68, 227528

=== filrduino Receiver Uerl.5.5 (12 September 2013> ===
Uzing INI file: C:xbhin“FreeBASIC\projects“Arduino_Reciever Arduino_Receiver.ini
Using Port Str: COM12:9680.N.8.1.CD.CS.DS.OF.BIN

EOL: carriage return plus line feed
Date: B9-13-2813
Time: B7:086:23
'3 opr /' to redispaly this message
*Ezcape’ key to exit.

-13 14:4@: . 227528
-13 14:41: . 227528
13 14:41: - 227528
14:41: - 227528
14:41: . 227528
3 14:=41: . 227528
14:41: B . 227516

Arduino Receiver is an enhanced version of the Serial Port Monitor program presented in the main text. The

program was developed and tested under the Windows 7 operating system. It is also known to be fully
functional on Windows XP. It was written in a manner such that it should also function under X86 Linux

operating systems with appropriate COM port strings in the INI file but has not been tested in this environment.

This program (along with the source code) is available for download from:

http://www.keywild.com/arduino/index.htm (current version)

A copy was posted in The Arduino “Other Software Development: Arduino Receiver, PC RS-232 data logger”

Forum Thread at:

http://forum.arduino.cc/index.php?topic=187396.0 (Version 1.5.5)

Program Name: Arduino_ Receiver.exe

Program Vers: 1.5.5

Program Date: September 13, 2013

Author: Lewis Balentine, http://www.keywild.com

This program placed in the Public Domain by the author.

No warranties of any kind either expressed or implied.

Please read 'Arduino Receiver.ini' & 'Arduino Receiver Notes.txt' for help.

arduino reciever(1.5.5).zip
ZIP file contains EXE, INI, TXT and BAS(source) files.

Description:

This program monitors a serial port and displays the received ASCII lines in a console window.
All Parameters are controlled by a INI file of the same name but there is a command line option
to use an alternate INI file. Options in the INI file include:

.PortStr = All parameters for COM port (Range=ANY: see notes for detailed options)
..SwitchHrs = Sequential log file names rotated on the hour (range 0-24 hours, default 0))

. .ApndTime = Appends Date/time to front of each line of received data (default false)

. .StdOut = Suppress status messages. Error message are always output. (default false)
.FileStr = If defined will send data to a log file as well as Standard Out (default False)
..Delimiter = Specify delimiter to go between Date/Time and received data (default TAB)

.EOL = Specify end of line character for output file (CR/LF, CR, or LF)

.ExitKey = Define specific key for exit (default Escape Key)

PortStr is the ONLY required parameter line.
All INI parameter lines, port Options and error codes are fully Documented in included files.

Page:

177

http://www.keywild.com/arduino/index.htm
http://forum.arduino.cc/index.php?topic=187396.0

If PortStr is the only INI Parameter line used then operation is exactly like the Serial Port Monitor program with
the exception that Error Checking has been implemented for all COM port and File Input/Output operations.
Sixteen (16) error codes/messages are defined to assist in trouble shooting. Exit codes are produced on every
exit except abnormal termination (i.e. program closed by Operation System).

! exit code 50: normal exit, user pressed exit key

' exit code 51: normal exit, End Of Transmission received

! exit code 52: normal exit, user requested help

! exit code 53: ini file not found

! exit code 54: error opening ini file

! exit code 55: error reading ini file

! exit code 56: error closing ini file

! exit code 57: PortStr not found in ini file

! exit code 58: error opening COM port

! exit code 59: error opening output file

! exit code 60: error reading COM port

! exit code 61: error writing output file

! exit code 62: error closing COM port

! exit code 63: error closing output file

! exit code 64: error closing output file during file switch
! exit code 65: error opening output file during file switch

File flushing takes place on every log file write to guard against data-loss in the event of abnormal exit, power
interruption or similar problems. Existing log files are NOT overwritten and may be opened by other applications
during logging operations. All output goes to “standard out” which defaults to the console window display.

The source code is HEAVILY commented and written to be used as a template for other applications. The source

code is broken into three files:
Arduino_Receiver.Bas
Arduino_Receiver_Globals.Bas
Arduino_Receiver_Functions.Bas

The main program code is 20 lines long:

Main source code

Global Variables (shared among all modules/functions)

Functions used by Main Program

' ———- libraries

#include Once "string.bi"
#include once "crt.bi"
#include once "file.bi"
include global varriables

' needed for format function
' for file flush (see notes)
' for file flush (see notes)#include once '

#include once "Arduino Receiver Functions.bas"
main program code
VoidByte = InitalizeGlobals ()

' find, read and parse INI file

If ReadIniFile()<>0 then End(ExitCode)

' evaluate global variables read from INI

If EvalGlobals()<>0 then End(ExitCode)

' opens Com Port and optional Log File

If OpenCommunications ()<>0 then End(ExitCode)
' process serial data loop

VoidByte = Communications ()

' close com port and optional log file

End (CloseCommunications())

#include once "Ardunio Receiver Globals.Bas" !

U oooos minel OF Fill@=—=m=mmososoommomomosomomm—e—

Global Variables
' function defined for this prog

The Functions module is somewhat longer: approximately 650 lines. There are probably more comments than

actual source code. Functions included are:

searches for INI file among several options provided
to strip comments and stray characters

to read and parse INI file

for log file

display start time,
initialize operations,
open com port and optional log file
close com port and optional log file
switch optional log file

log file, INI options

validate INI parameters, etc

GetIniFileName () v
CleanIniStr () ' used
ReadIniFile () ' used
BuildFileStr () ' used
BuildStatusStr () ' used to
EvalGlobals () ‘' used to
OpenCommunications () ' used to
CloseCommunications () ‘Y used to
CheckTime () ' used to
ProcessData () Y used to
Communications () ‘' main

write serial data to display and optional log file

program loop used to read serial port and keyboard

Page: 178

The function “ReadlIniFile()” uses a case structure so that adding additional options to the INI file is simple. The
function “Communications()” includes provisions to allow commands to be sent to Arduino device (or other
serial device for that matter).

A provision has been included in “GetlniFileName()” to test the command line for “user help request”. This
request may be any of several help request conventions (i.e. HELP /? -? --? /h —h --h). As the program is written
this request is answer with the program name, version and suggestion to read the INI file. It could be easily

expanded (two alternatives are launching a PDF reader or Web Browser with a specific reference).

Of course there is always the option to use it just as it is.

Page: 179

Appendix: Thermometer.exe

All code that was specifically added for the Thermometer application is shown in BOLD characters.

Main Program Code

Code File for Thermometer.exe = Ardunio_Thermometer.bas
This is the file that must be active when you select Compile in the FBIDE editor.

" ---= libraries -----m--mmoommoomm oo
#include Once "string.bi" needed for format function

#include once "crt.bi" ' for file flush (see notes)
#include once "file.bi" ' for file flush (see notes)

' include global varriables

#include once "Ardunio_Thermometer_Globals.Bas" ' Global Variables

#include once "Ardunio_Thermometer_Functions.Bas" ' function defined for this prog

------ main program code -—-—--—-----------—- -
VoidByte = InitalizeGlobals()

' find, read and parse INI file

If ReadIniFile()<>8 then End(ExitCode)

' evaluate global variables read from INI

If EvalGlobals()<>0 then End(ExitCode)

' opens Com Port and optional Log File

If OpenCommunications()<>@ then End(ExitCode)

' process serial data loop

VoidByte = Communications()

' close com port and optional log file

End (CloseCommunications())

) omoes B O R N e e

Global Variables

Code File for Thermometer.exe = Ardunio_Thermometer_Globals.Bas

' Global Variables for the Arduino Reciever Program

' -———- libraries ---------------""""-—--—-—"-—————————
#include Once "string.bi" ' needed for format function
#include once "crt.bi" ' for file flush (see notes)
#include once "file.bi" ' for file flush (see notes)

#ifndef FALSE
#define FALSE ©
#endif

#ifndef False
#define False @
#endif

#ifndef false
#define false @
#endif

#ifndef TRUE
#define TRUE -1
#endif

#ifndef true
#define true -1
#endif

#ifndef True
#define True -1
#endif

Dim SHARED VoidByte as Byte = 0 ' BECASUE FREEBASIC DOES NOT SUPPORT VOID

Page: 188

" revision October 2013 -- moved from checktime function in order to eliminate
' firs pass requirement

Dim
Dim

SHARED PrevHour as Byte ' holds last hout counted
SHARED NowHour as Byte ' holds last current hour
SHARED HourCount as Byte =8 ' holds hour count

SHARED ProgramName as String ' used to display program Name ..

Dim SHARED ProgramVer as String ' used to display program Version ...
Dim SHARED IdString as String ' imbed program name, version, date
Dim SHARED Status as String ' used to display program status ...
Dim SHARED IniName as String ' name of ini file
Dim SHARED PortStr as String ' hold parameters for opening com port
Dim SHARED AddDateTime as Byte ' if not zero then append time to string
Dim SHARED FileStr as String ' optional file name for output
Dim SHARED SendToFile as Byte ' if not zero then append to file
Dim SHARED SwitchHrs as Byte ' used to increment file name
Dim SHARED Delimiter as String ' string used between date/time and data
Dim SHARED EOL as String ' Carriage Return / Line Feed
Dim SHARED StdOutFlg as Byte ' Flag to send to Standard out only
Dim SHARED LogFileHandle as FILE ptr ' used to flush file buffer to disk
Dim SHARED ExitKey as Byte ' used to define specific key for exit
Dim SHARED TStart as String ' used to calculate run time
Dim SHARED DStart as String ' hold start day, used to calculate run time
Dim SHARED ExitCode as Integer ' used to pass exit code
‘ variables added for Thermometer application
Dim Shared DebugMode as Byte ' False=0, True<>0;
Dim Shared CelsiusMode as Byte ' False=0, True<>0;
Dim Shared FahrenheitMode as Byte ' False=0, True<>0;
Dim Shared AvrMode as Byte ' False=0, True<>0;
Dim Shared EEMode as Byte ' False=0, True<>0;
Dim Shared RauMode as Byte ' False=0, True<>0;
Dim Shared RoundMode as Byte ' False=0, True<>0;
Dim Shared UserStrl as String ' user defined strin in INI file
Dim Shared UserStr2 as String * user defined strin in INI file
Dim Shared UserStr3 as String * user defined strin in INI file
Dim Shared UserStr4 as String ' user defined strin in INI file
Dim Shared UserStr5 as String * user defined strin in INI file
Dim Shared OffsetVal as Single ' used to store current degree offset
' Initalize all global variables
Function InitalizeGlobals()as byte
EOL = Chr(13) &chr(10) ' This si the default EOL until INI is read

ProgramName = "Arduino_Thermometer.exe"

ProgramVer = "1.8.5 (8 October 2813)"

b IdString is defined Globally to imbed within Object code -------

IdString = "Program Name: " & ProgramName & EOL & _
"Program Vers: " & ProgramVer & EOL & _
"Author: Lewis Balentine, http://www.keywild.com" & EOL & _
"This program placed in the Public Domain by the author." & EOL & _
"No warranties of any kind either expressed or implied." & EOL & _
"Please read 'Arduino_Thermometer.ini' for help." & EOL

PortStr = ""

FileStr = ""

ExitCode=0

SendToFile = @

AddDateTime=0

StdOutF1g=0

SwitchHrs=8

ExitKey=27

Delimiter = chr(9)

DStart= Date ' get the start date

TStart= Time ' get the start time (24 hour format)

Page:

181

' revision October 20813 -- initalize checktime parameters
NowHour=val(Left(time,2))

PrevHour=NowHour

HourCount=0

' These are the default modes
DebugMode=False
CelsiusMode=True
FahrenheitMode=True
AvrMode=False
EEMode=False
RauMode=True
RoundMode=True
UsersStrl ="71"
UsersStr2 ="72"
Userstr3 ="7ZD"
UserStr4 =""
UsersStrb =""
OffsetVal=0
Return 0
End Function
e) G e I e e e e e

Thermometer Functions

Code File for Thermometer.exe = Ardunio_Thermometer_Functions.bas

" Functions defined for the program Arduino Reciever
' Functions defined before USE do not require declarations
' Place this module at the TOP of the main source module

' -—-- libraries -—--------—--——m—m
#include Once "string.bi" ' needed for format function
#include once "crt.bi" ' for file flush (see notes)
#include once "file.bi" ' for file flush (see notes)

' include global varriables
#include once "Ardunio_Thermometer_Globals.Bas" ' Global Variables

Funct1on GetIniFileName (HelpStr as String, Default as String) as Byte
This function is used to get the ini file name as well as
' check for user requested help.
' If help request is found this function terminates the program
" If INI file is not found this function terminates the program

' Input:

' HelpStr = string to be printed if help is requested on command line
' OutPut:

' Returns INI file name. Aborts if file not found.

Dim Buffer As String ' used to read command line arguments
Dim P as Byte ' working numeric variable

Dim TryString as String ' Various INI names tried

TryString="These filneames were tried:" & EOL
' check for command Tine help request
Buffer=Trim(Ucase(Command(-1))) ' returns ENTIRE command line
If Buffer<>"" then
' there are number of possible conventions
If (Buffer = "?") or _
(Buffer = "HELP") or _
(Instr(Buffer, "/2")>0) or _
(Instr(Buffer, "/H")>0) or _

Page: 182

(Instr(Buffer, "-2")>0) or _
(Instr(Buffer, "-H")>@) or _
(Instr(Buffer, "--?")>0) or _
(Instr(Buffer, "--H")>@) or _
(Instr(Buffer, "/HELP")>8) then
Print HelpStr

Print "Normal exit, ExitCode: 52"

ExitCode=52
Return(ExitCode)
End If
End If
' Check for command line specifying INI file ——=-—=-=-—=-—-——-————-————-————
Buffer=Trim(Command(1)) ' returns first parameter

If Buffer <> "" then
' we must have a alternate ini file name, but is it valid ?
TryString= TryString & Buffer & EOL
If DIR(Buffer)<>"" then
IniName = Buffer
return 0
End If
End If
' Check for INI file matching EXE name ---------—--------""---—--—-——-————
' get the actual command string and set the default ini filename to match
' This allouws the executable to be renamed with not change to source
Buffer=Trim(Command(0)) ' includes path if used
if lcase(right(Buffer,4))=".exe" then
P=Len(Buffer)-3
Buffer=Left(Buffer,P) & "ini"
Else
Buffer=Buffer & ".ini"
End If
' do we have a valid file name
TryString= TryString & Buffer & EOL
If DIR(Buffer)<>"" then
IniName = Buffer
return 0
End If
' Check for default INI file name -------——=————————————————————
TryString= TryString & Default & EOL
If DIR(Default)<>"" then
IniName = Default
Return 0
End If
' If we fall through to this point then report error and abort
Print HelpStr
Print "*** FATAL ERROR ****: No INI file found."
Print TryString
Print "***ERROR*** exit, ExitCode: 53"
ExitCode=62
Return(ExitCode)
End Function

Function CleanIniStr (Buffer as String, _
ByRef KeyStr as String, _
ByRef ValStr as String) As Byte
' This function is used to strip comments, non-printing characters and
' quotes from a INI file String.
" Input:
' Buffer = String to be cleaned

' KeyStr = Holds Prarmeter name string on return
' ValStr = Holds Prarmeter value string on return
' OutPut:

' Returns @ if Buffer is NOT a valid parameter line
' Returns -1 if Buffer is a valid parameter line

Page:

183

Dim P as Byte = @ ' used as index into buffer
Dim Work as String = "" ' working storage
Dim C as Byte holds value for single character
' remove any spaces
Buffer=Trim(Buffer)
' strip off comments
P=Instr(Buffer, ";")
If P=1 then Return 0
If P>1 then Buffer=Trim(Left(Buffer, P-1))
' check for empty string
If Buffer="" then Return @
‘ clean up strange characters ...
' mostly to eliminate any tab characters or qoutes
For P = 1 to Len(Buffer)
C=Asc(Mid(Buffer,P,1))
' only accept characters that match our criteria
* chr(34) = double quote, chr(39) = single quote
If (C>31) and (C<127) and (C<>34) and (C<>39) then
Work=Work & Chr(C)
End If
Next P
' again check for spaces after possible tabs/quotes removed
Work=Trim(Work)
If Work="" then Return @
P=Instr(Work, '=")
If (P=8) or (P=1) or (P=len(work)) then Return 8
KeyStr=Ucase(Trim(Left (Buffer, P-1)))
Valstr=Trim(Mid(Buffer, P+1))
If (KeyStr="") or (ValStr="") then Return 0
Return -1

End Function

Function ReadIniFile () As Byte

This function is used to read the ini file. Should be first function used.
' Uses previous defined function: "GetIniFileName"
' Uses previous defined function: "CleanIniStr"
Input:
none
' OutPut:
' Returns ExitCode on Error, Else ©
Dim ErrCode as Integer used to hold Err code
Dim P as Byte used as index into string
Dim Buffer as String used to hold input line
Dim KeyStr as String used in parsing ini file
Dim ValStr as String used in parsing ini file
Dim EnvStr as String used to expand enviroment string
If GetIniFileName (IdString, "Arduino_Receiver.ini")<>@ then
Return ExitCode
End If
open IniName for input as #1
ErrCode=Err
If ErrCode<>8 then
Print "*** FATAL ERROR ****: opening: " & IniName
Print "Error code returned was: " & ErrCode
Print "***ERROR*** exit, ExitCode: 54"

reading error code destroyes it

ExitCode=54
Return ExitCode

' read each line of the ini file checking for parameters

Page:

184

While not (eof(1))
Line Input #1, Buffer
ErrCode=Err ' reading error code destroyes it
If ErrCode<>@ then
Print "#*** FATAL ERROR **** reading: " & IniName
Print "Error code returned was: " & ErrCode
Print "***ERROR*** exit, ExitCode: 55"
ExitCode=55
Return ExitCode
End If
* CleanIniStr return 8 for non-parameter line
If CleanIniStr(Buffer, KeyStr, ValStr)<>@ then
" print KeyStr, ValStr: sleep ' for debugging
Select Case KeyStr
Case "PORTSTR"
PortStr=ValStr
Case "APNDTIME"
ValStr=Ucase(Valstr)
if (ValStr="TRUE") or (ValStr="YES") then AddDateTime=1
Case "STDOUT"
ValStr=Ucase(Valstr)
if (ValStr="TRUE") or (ValStr="YES") then StdOutFlg=1
Case "FILESTR"
FileStr=ValStr
SendToFile=1
' expand enviromental variable
"I am a bit perplexed by the offsets used
' but they seem to work (trial & error until success)
If Left(FileStr,1) = "%" then
‘Print FileStr ‘debugging
P=Instr(2,Buffer, "%")
EnvStr=Mid(Left(FileStr,P-2),2)

‘Print EnvStr 'debugging
EnvStr=Environ(EnvStr)
‘Print EnvStr ‘debugging
FileStr=EnvStr & Mid(FileStr, P)

End If

Case "SWITCHHRS"
' print KeyStr, ValStr: sleep ' for debugging
SwitchHrs=Abs(Int(Val(Valstr)))
If SwitchHrs>24 then SwitchHrs=24
' print SwitchHrs, ValStr: sleep ' for debugging
Case "DELIMITER"
if ValStr="TAB" then: Delimiter=chr(09)
elseif ValStr="COMMA" then Delimiter=", "
elseif ValStr="COLLON" then Delimiter=": "
elseif Abs(Val(ValsStr)) >8 then _
Delimiter=Space(Int(Val(Valstr)))
elseif Left(ValStr,1)="0" then Delimiter=""
elseif Lcase(ValStr)="zero" then Delimiter=""
else DELIMITER=chr(9)
end if
Case "EOL"
ValsStr=Left(Valstr,1)
if ValStr="@" then: EOL=chr(13) & chr(18)
elseif ValsStr="1" then EOL=chr(18)
elseif ValStr="2" then EOL=chr(13)
else EOL=chr(13) & chr(1e)
end if
Case "EXITKEY"
If Lcase(ValStr)="escape" then
ExitKey=27
Elseif Lcase(ValStr)="ctlx" then
ExitKey=24
Else

Page: 185

ExitKey=Abs(Int(Val(Valstr)))
If ExitKey<>@ then
If ExitKey>126 then ExitKey=27
If ExitKey<32 then ExitKey=27
End If

add addtional case statements for new options in INI file
' Example:
‘Case "BULLWINKLE"
' BULLWINKLE code goes here
‘Case "ROCKYRACOON"
' ROCKYRACOON code goes here
‘case keyword MUST be UPPERCASE (in INI file it can be upper or lower)
‘for reliability include spaces in keyword
Case "USERSTR1™
If Lcase(Valstr)<o ™" then Userstri=Trim(Valstr)
Case "USERSTR2™
If Lcase(Valstr)<>"™ then UserStr2=Trim(Valstr)
Case "USERSTR3™
If Lcase(Valstr)<>"™ then UserStr3=Trim(Valstr)
Case "USERSTR4™
If Lcase(Valstr)<© ™" then UserStr4=Trim(vValstr)
Case "USERSTR5™
If Lcase(Valstr)<>"™ then Userstr5=Trim(Valstr)
Case Else
‘ignore it
End Select ' case KeyStr
End If ' CleanIniStr
Wend 'not (eof(1))
Close #1
ErrCode=Err ' reading error code destroyes it
If ErrCode<>8 then
Print "#*** FATAL ERROR **** closing: " & IniName
Print "Error code returned was: " & ErrCode
Print "***ERROR*** exit, ExitCode: 56"
ExitCode=56
Return ExitCode
End If
Return ExitCode
End Function

Function BuildFileStr () as String
' This function is used build sequential file names when SuwitchHrs>@

" Input:

' none

" OutPut:

' Returns valid FileStr UNLESS SendToFile=0

Static BaseFileStr@ as String ' holds FileStr as defined in INI file
Static BaseFileStrl as String ' holds first part of FileStr

Static BaseFileStr2 as String ' holds last part of FileStr

Static SwitchHrsNdx as Integer=-1 ' holds current iteration of filename
Dim P as Integer ' index into string

Dim Exist as String="xxx" ' used to check for existence of file

' by definition if SendToFile=8 then FileStr=""

If SendToFile=8 then Return ""

' If SwitchHrs=6 then default FileStr is to be used
If SwitchHrs=08 then Return FileStr

' This is only executed on the first call

If SwitchHrsNdx = -1 then

Page:

186

" This is the first time into the function
P=Instr(FileStr, "0008")
If P=6 then
' user has failed to specify appropriate file string
' disable SwitchHrs and return
SwitchHrs=0
Return FileStr
Else
BaseFileStro=FileStr ' save it just in case
BaseFileStri=Left(FileStr,P-1)
BaseFileStr2=Mid(FileStr,P)
' regardless of what was in the INI file
' we are only going to use four zeros
While Left(BaseFileStr2,1)="0"
BaseFileStr2=Mid(BaseFileStr2,2)
Wend
End If
End If
' This is executed on the every call
While Exist <> ""
SwitchHrsNdx=SwitchHrsNdx +1
FileStr=BaseFileStrl & _
Right("00080" & Trim(Str(SwitchHrsNdx)),4) & _
BaseFileStre2
Exist=Dir(FileStr)
Wend
Return (FileStr)

End Function

Function BuildStatusStr () as Byte

' This function is used to build the status line message that is displayed
' when the user presses "?" or "/".

" Input:

none

' OutPut:

' Returns StdOutFlg

Status = EOL & _
"=== firduino Receiver Ver" & ProgramVer & " ===" & EOL & _
"Using INI file: " & EOL & IniName & EOL & _
"Using Port Str: " & PortStr & EOL
If AddDateTime<>8 then Status = Status & "Appending date/time to data." & EOL
If FileStr<>"" then
Status = Status & "Logging data to: " & FileStr & EOL
‘ display EOL and Delimiter are a bit more complicated
' Fortunately there are a limited numebr of possibilities.
If Delimiter=", " then: Status = Status & "Delimiter: Comma" & EOL
elseIf Delimiter=": " then Status = Status & "Delimiter: Collon" & EOL
elseIf Delimiter=chr(9) then Status = Status & "Delimiter: Tab" & EOL
elseIf Delimiter="" then Status = Status & "Delimiter: none" & EOL
else Status = Status & "Delimiter: " & chr(34) & Delimiter & Chr(34) & EOL
end if
If EOL=chr(13) then: Status = Status & "EOL: carriage return" & EOL
elseIlf EOL=chr(1@8) then Status = Status & "EOL: line feed" & EOL
else Status = Status & "EOL: carriage return plus line feed" & EOL

end if
End If
Status = Status & "Start: " & Dstart & " " & Tstart & EOL

Status = Status & "Press '?' or '/' to redispaly this message" & EOL
If ExitKey = 24 then

Status = Status & "Press 'Ctrl' and 'X' to exit." & EOL
ElseIf ExitKey = 27 then

Status = Status & "Press 'Escape' key to exit." & EOL

Page:

187

Else

Status = Status & "Press

End If

" & Chr(ExitkKey) & "' key to exit." & EOL

' Add Aplication help here

Status =
Status =
Status =
Status =
Status =
Status =
Status =
Status =
Status =
Status =
Status =
Status =
Status =
Status =
Status =
Status =

Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

020 2020 00X 0N XX PP XPN

if (Userstrio™")

if (UserStr2o™™)

if (UserStr3o™™)

if (UserStr4o™")

if (UserStrs5o™™)

Return StdOutFig

End Function

EOL

" Keys "1°
" Key 'A*
* Key 'B*
" Key 'C*
" Key 'D'
" Key 'E*
" Key 'F'
" Key ‘L'
* Key ‘M*
" Key '0Q°
" Key 'R’
* Key *S°
" Key V'
" Key "'
" Key '<'

then Status

then Status

then Status

then Status

then Status

to '0' set report Times"™ & EOL

toggles AVR mode™ & EOL

Restore from Backup™ & EOL

toggles Celsius mode™ & EOL

toggles Debug mode™ & EOL

toggles EEPROM mode™ & EOL

toggles Fahrenheit mode™ & EOL

lists AVR commands™ & EOL

turns on Minimal mode (Fahrenheit only)™ & EOL

prints AVR storage™ & EOL

toggles Rounding mode™ & EOL

prints AVR Status™ & EOL

toggles Raw Reading mode™ & EOL

increase Degree Offset by 0.25 Fahrenheit™ & EOL

decrease Degree Offset by 0.25 Fahrenheit™ & EOL

= Status & " Key 'Ul*' INI defined string: " &
chr(34) & UserStril & chr(34) & EOL

= Status & " Key 'U2' INI defined string: " &
chr(34) & UserStr2 & chr(34) & EOL

= Status & " Key °U3" INI defined string: " &
chr(34) & UserStr3 & chr(34) & EOL

= Status & " Key 'U4' INI defined string: " &
chr(34) & UserStr4 & chr(34) & EOL

= Status & " Key ‘U5° INI defined string: " &
chr(34) & UserStr5 & chr(34) & EOL

Funct1on EvalGlobals () as Byte
This function is used to read the ini file. Should be first function used.

Input:
none

' OQutPut:
Returns ExitCode on failure, Else @

Uses previous defined function: "BuildFileStr"
Uses previous defined function: "BuildStatusStr"

Print

End If

Port String is required
If PortStr="" then
Print

"**% FATAL ERROR ****: PortStr not found in " & IniName
"***FRROR*** exit, ExitCode: 57"

ExitCode=57
Return ExitCode

" If SwitchHrs<>@ then we need to build our FileStr
If SwitchHrs<> @ then FileStr=BuildFileStr
If BuildStatusStr()<> @ then print Status
Return ExitCode

End Function

Function OpenCommunications() as Byte
' This function is used to open the Serial port and the optional log file

" Input:
' none

' QutPut:

Page:

188

' Returns ExitCode

' One alternative is to use this function to open a Database
' Data could then be sent to the Database in the ProcessData function
' Add code to CloseCommunications to close DataBase.
Open Com(PortStr) AS #2
ErrCode=Err ' reading error code destroyes it
If ErrCode<>8 then
Print "***Fatal Error*** opening com port using string: "
Print PortStr
Print "Error code was: " & ErrCode
Print "***ERROR*** exit, ExitCode: 58"
ExitCode=58

If SendToFile<>@ then
Open FileStr for Append as #3
ErrCode=Err
If ErrCode<>@ then
Print “***Error*** opening file: " & FileStr
Print "Error reported was: " & ErrCode
Close #2
print "***ERROR*** exit, ExitCode: 59"
ExitCode=59
End If
End If
Return ExitCode
End Function

Function CloseCommunications() as Byte
' This function is used to close the Serial port and the optional log file

" Input:

' none

" OutPut:

' always Returns @

Dim ErrCode as Integer ' used to hold Err code

Dim SaveCode as Integer ' used to hold Err code

SaveCode = ExitCode ' save the reason we are exiting
Close #2

ErrCode=Err

If ErrCode<>@ then
Print “***Error*** closing file COM port"
Print "Error reported was: " & ErrCode
ExitCode=62

If SendToFile<>@ then

' if open failed then we never got here ...

" log the reason the program is exiting

Print #3, "Exit Code: " & SaveCode & " at " & Time & " on " & Date

Close #3

ErrCode=Err

If ErrCode<>8 then
Print “***Error*** closing file: " & FileStr
Print "Error reported was: " & ErrCode
ExitCode=63

End If

Page:

189

Select Case SaveCode
Case 58

print “Normal exit, User pressed exit key"
Case 51

print “Normal exit, EOT recieved in data stream"
Case Else

print "***ERROR*** exit, ExitCode: " & SaveCode
End Select
Return ExitCode

End Function

Function CheckTime() as Byte

This function is used tally hours for sequential files filanems.
' If the total hours is greater thatn ot equal to SwitchHrs then
the current log file is close and a new one is opened.
' Uses previous defined function: "BuildFileStr"
' Uses previous defined function: "BuildStatusStr"
Input:

none
" OutPut:

returns ExitCode on Failure, else @
' revision October 2013 --
" NowHour, PrevHour, HourCount made into Global Variables
" Eliminated first pass code -- Variables initalized Globally
' Faster exit when hours have not changed
Fixed updating PrevHour bug
Dim ErrCode as Integer used to hold Err code
Dim SaveCode as Integer used to hold Err code
Dim DateStr as String used to reformat date/time into useable format
Dim K as Byte = @ ' error trigger
always check for unintended calls
If SwitchHrs=8 then return @
' check hours
NowHour=val(Left(time,2))
if NowHour=PrevHour then return @
' ExitCode=08 ' keep current exit code unless ther is an error

' if we get this far then we need to increment our parameters
PrevHour=NowHour
HourCount=HourCount+1
' now check for the file switch
If HourCount> SwitchHrs then
' time to change our socks ...
print “changeing socks ..."
Close #3
ErrCode=Err
If ErrCode<>@ then
Print "***Error*** closing file during file switch: " & FileStr
Print "Error reported was: " & ErrCode
ExitCode = 64
Return 64
End If
Open BuildFileStr() for Append as #3
ErrCode=Err
If ErrCode<>@ then
Print "***Error*** opening file during file switch: " & FileStr
Print "Error reported was: " & ErrCode
print "***ERROR*** ExitCode: 65"
ExitCode = 65
Return 65
End If

: sleep

Page:

198

VoidByte=BuildStatusStr()
HourCount=0

End If

Return ExitCode

End Function

Function ProcessData(ByRef Buffer as String) as Byte

This function is used to process a single line of filtered ASCII data
' that has been collected from the serial port.
' A1l data uwrites take place in this function.
' Input:
none
' OutPut:
! Returns ExitCode=66 on error, else 0
' revision October 2013 --
' moved checktime function call to this function
Dim ErrCode as Integer used to hold Err code
Dim SaveCode as Integer ' used to hold Err code
Dim DateStrl as String " used to reformat date/time into useable format

Dim DateStr2 as String ' used to reformat date/time into useable format
Dim Counter as Integer ' used to trigger CheckTime
Dim K as Byte = @ " error trigger

' added for Thermometer Application

Dim C as String ' used for first character of string
Dim P as Byte = 0

' Place any addition processing code in this function.

' Keep it SHORT. Reading the COM is 'paused' for this function.
Pommmmmm e added for thermometer application --------

' check to see if this is a non-report line

' we do not want to add date and time to non-report lines

' secondly uve want to capture the degree offset if we can
C=Left(Buffer,1)

if C=";" then ' we have a non-report line
if instr(Buffer,"0ffset:")>0 then ' check for Degree Offset
P=Instr(Buffer, chr(9)) ' find TAB character
OffsetVal=Val (trim(Mid(Buffer,P+1))) ' capture and convert value
end if
end if
fmmmmmmm - display urite ------

' next line modified for Thermometer application
' If (AddDateTime) then
If ((AddDateTime) and (C <>";")) then

DateStrl=mid(Date,7,4) & "-" ' get year
DateStri=DateStrl & Left(Date,2) & "-" ' get month
DateStri=DateStrl & Mid(Date,4,2) ' get day
DateStr2=DateStrl & Delimiter & Time ' get time for file
DateStrl=DateStrl & " " & Time ' get time for display
If StdOutF1g=@ then
Print DateStrl & " " & buffer
Else
Print DateStr2 & Delimiter & buffer
End If
Else
Print buffer
End If
fmmmmmmm e file urite ------

If SendToFile<>8 then

Page:

191

" revision October 2013 --
' The only time that we actually need to check the time
' is when we are uwriting to a file
CheckTime
' setup for file flush
LogFileHandle=cast (FILE Ptr,Fileattr(3,fbFileAttrHandle))
' next line modified for Thermometer application
' If (AddDateTime) then
If ((AddDateTime) and (C <>";™)) then
Print #3,DateStr2 & Delimiter & buffer & EOL;
ErrCode=Err
fflush(LogFileHandle) ' no error to check for
Else
Print #3, buffer & EOL;
ErrCode=Err
fflush(LogFileHandle) ' no error to check for
End If
If ErrCode<>@ then
Print "***Epror*** yritting file: " & FileStr
Print "Error reported was: " & ErrCode
ExitCode = 61
Return 61
End If
End If ' SendToFile<>8
fmmmmm clear input buffer ------
Buffer=""
Return ExitCode

End Function

Function Communications() as Byte

' This function is the main process loop for collecting data from both the
' serial port and the keyboard. A1l data reads take place in this function.
' The Serial data is filtered for ASCII characters only. When an EOL
' is recieved then the data string is sent to the ProcessData function.
' Com port & optional log file must be opened prior to calling this function.
' Uses previous defined function: "ProcessData"
' Uses previous defined function: "CheckTime"
Input:

none
" OutPut:
' Returns ExitCode
' revision October 2013 --
' moved checktime function call from this function to ProcessData function
Dim ErrCode as Integer used to hold Err code
Dim C As Byte = @ ' this is our incoming byte of data
Dim K as Integer =8 ' used to read keyboard & trigger exit
Dim Buffer As String = ' this is our buffer to collect the bytes

" Dim Counter as Integer ' used to trigger CheckTime

While InKey<> ** ‘empty the keyboard buffer ... just in case
Wend

' Toop untill there is an exit trigger

While ExitCode=0
" The first line checks to see if there is anything waiting in the COM
" buffer. Without it one is subject to reading a bunch of garbage.
If EOF(2) then
' Call Sleep with 25ms or less to release time-slice when waiting

' for user input or looping inside a thread.This will prevent the
' program from unnecessarily hogging the CPU.
Sleep 25

Else

Page:

192

get a single byte from the serial port

Get #2,0,C,1

ErrCode=Err

If ErrCode<>@ then

Print "***Fatal Error*** reading com port"
Print PortStr

Print "Error code was: " & ErrCode
ExitCode=60
End If

filter recieved data
characters below ASCII 32 are 'non-printing characters

' characters above ASCII 126 are not defined (by ASCII)

' append any printable character to the string

include an exception for horizontal tab characters

If ((C > 31) and (C < 127)) or (C = 9) Then Buffer = Buffer + Chr(C)
" Linux/Unix terminate strings with a line feed (ASCII 10)

' MACs terminate lines with a carriage return (ASCII 13)

' Microsoft and Arduino use carriage return/linefeed (ASCII 13,18)

" End of Transmission is ASCII 04

' If we get any of the above then print the string

' but only if we have something to process.

If ((C=13) Or (C=18) or (C=684)) And (Len(Buffer) >8) Then

ExitCode = ProcessData(buffer)
End If ' ((C=13) Or (C=18) ...
' check for end of tranmission code in data stream
If C=64 then
ExitCode=51
End If
End If ' Not(EOF(2))

revision October 2013 --
if we are writing to sequential file names then we need to
check if a log file needs to be changed
If SwitchHrs>@ then
Counter=Counter+1
If Counter > 2648 then '
ExitCode=CheckTime
Counter=0
End If
End If
" if we do not already have an exit flag then read the key board
If ExitCode=0 then
K=ASC(InKey)
Select Case K
Case 63,47 !
Print Status '
Case ExitKey

abitrary number, change as needed

ASCII 63 ="?" question mark
ASCII 47 ="/" question mark

ExitCode=58 ' set exit code, normal exit
* thermometer application key inserted below--------------------—-
Case 49 ' numeric key "1"

Print #2, “T1" ' set timing to 1 minute

Print “"Report Time set to 1 minute®

Case 50 numeric key "2"
Print #2, “T2" ' set timing to 2 minutes
Print "Report Time set to 2 minutes™

Case 51 ' numeric key "3"
Print #2, “T3" ' set timing to 3 minutes
Print “Report Time set to 3 minutes®

Case 52 ' numeric key "4"
Print #2, “T4" ' set timing to 4 minutes
Print “Report Time set to 4 minutes”

Case 53 ' numeric key "5"
Print #2, “T5" ' set timing to 5 minutes
Print “Report Time set to 5 minutes”

Case 54 ' numeric key "6"
Print #2, “Té6"™ * set timing to 10 minutes

Page:

193

Print “Report Time set to 10 minutes™

Case 55 ' numeric key "7"
Print #2, "T7" ' set timing to 15 minutes
Print “"Report Time set to 15 minutes™

Case 55 numeric key “8"
Print #2, "T8" ' set timing to 20 minutes
Print "Report Time set to 20 minutes™

Case 55 ' numeric key "9*
Print #2, "T9" ' set timing to 30 minutes
Print "Report Time set to 30 minutes™

Case 55 ' numeric key "0"
Print #2, "To" ' set timing to 60 minutes
Print “Report Time set to 60 minutes™

Case 68,100 ' Alpha Key “D™ or “d“
Print #2, "DB" ' set debug mode

if (DebugMode=False) then
DebugMode=True
Print “Turn Debug mode on*
else
DebugMode=False
Print “Turn Debug mode off™
End if
Case 70,102 ' Alpha Key “F™ or “f"
if (FahrenheitMode=False) then
FahrenheitMode=True
Print "Turn Fahrenheit Mode on*
Print #2, "FT"
else
FahrenheitMode=False
Print "Turn Fahrenheit Mode of f™
Print #2, "FF"
End if
Case 67,99 ' Alpha Key “C™ or “c"
if (CelsiusMode=False) then
CelsiusMode=True
Print "Turn Celsius Mode on"
Print #2, "CT"
else
CelsiusMode=False
Print "Turn Celsius Mode off™
Print #2, "CF"
End if
Case 65,97 ' Alpha Key "A™ or "A™
if (AVRMode=False) then
AVRMode=True
Print "Turn Avr Internal Mode on*
Print #2, "IT"
else
AVRMode=False
Print "Turn AVR Internal Mode off™
Print #2, "IF"
End if
Case 69,101 ' Alpha Key “E™ or “e“
if (EEMode=False) then
EEMode=True
Print "Turn EEMode Mode on, ***NEXT AVR RESTART***"
Print #2, "E+"
else
EEMode=False
Print "Turn EEMode Mode off, ***NEXT AVR RESTART***"

Print #2, "E-"
End if
Case 82,114 ' Alpha Key “R™ or "r"
Print #2, "00"

if (RoundMode=False) then

Page:

194

Roundiode=True
Print “Turn Rounding Mode on*
else
Roundiode=False
Print “Turn Rounding Mode off*"
End if
Case 86,118 ' Alpha Key “V" or "v“
if (RauMode=False) then
RauMode=True
Print "Turn Raw Reading Mode on™
Print #2, "RT"
else
RauMode=False
Print “Turn Raw Reading Mode off*"
Print #2, "RF"
End if

Case 77,109 ' Alpha Key “M™ or “m“
Print "Setting minimal mode (Fahrenheit only)"
if (DebugMode=True) then Print #2, "DB"
DebugMode=False
if (RoundMode=False) then Print #2, "00"
DebugMode=True
Print #2, “"RF CF IF FT ST " Set minimal mode
RauMode=False
CelsiusMode=False
AvrMode=False
FahrenheitMode=True

Case 66,98 ' Alpha Key “B™ or “b“
Print #2, "N-" ' restore from backup

Case 83,115 ' Alpha Key “S™ or “s“
Print #2, “ST* ' print Status

Case 81,113 ' Alpha Key “0Q" or "q“
Print #2, “ED" ' Dump EEPROM Storage

Case 76,108 ' Alpha Key “L™ or “1*
Print #2, "?2?" * print AVR help

Case 85,117,26,122 ' Alpha Key "U™ or "u“

Send user defined String, String is defined in INI file
This violates the ‘Keep it shut’ rule
but this application only sends data once a minute
Sleep (1000) * allouw up to one second second keypress
K=ASC(InKey)
if (K=49) and UserStri<>"" then print #2, UserStrl
if (K=50) and UserStr2<>"" then print #2, UserStr2
if (K=51) and UserStr3<>"" then print #2, UserStr3
if (K=52) and UserStr4<>"" then print #2, UserStr4
if (K=53) and UserStr5<>"" then print #2, UserStr5
case 60,44 ' keys '<' and ',°*
Of fsetVal=0ffsetVal-0.25
if OffsetVal=0 then OffsetVal=0.0001
Print #2, DO " & OffsetVal
case 62,46 *'keys >' and *.°*
Of fsetVal=0ffsetVal+0.25
if OffsetVal=0 then OffsetVal=0.0001
Print #2, "DO0 " & OffsetVal
' thermometer application key inserted above ----------—--—--—-------—-
Case Else
' Add additional case statements for other Keyboard codes.
' Use TestKeyCode.exe to identify ASC() keycodes.
' Hint:You can use mapped keys for longer sequences:
Case 65,97 then print #2, "Long command line Here".
' "A"=65, "a"=97

" Or place Keyboard handling code here.
' Example:

Page: 195

if you need to send special commands

out the serial port to control the Arduino

! A=Ucase(chr(K))

' If instr("@123456789ABCDEF",A) then Print #2, A;

' Keep it SHORT ... the COM port will not be read again
" until this sequence is completed.
' It is best handle one key stroke at a time at a time.
' Otherwise:
' 1) Increase the size of the recieve buffer using the PortStr
! extended option RB (i.e. RB64 or RB128 or RB256 or RB1624)
' 2) Launch a seperate thread for keyboard handling/processing
' and replace this section with access to a shared variable

End Select
End If
Wend
Return ExitCode
End Function

'===End of File

Ini File for Main Program

Ardunio_Thermometer.ini
PortStr = COM12:9600,N,8,1,CD,CS,DS,0P,BIN

Arduino Thermometer monitors a specific COM port and displays any ASCII strings it receives.
No warranties of any kind either expressed or implied.
Note that the program only updates the display when it recieves an "end of line" character.
any end of line characer: carriage return and/or linefeed
empty lines (end of line character only) are discarded
only ASCII characters between 32 and 126 are used
with the exception horizontal tabs (ASCII 89)

To exit the program press the Escape Key.

Press "?" or "/" to print status information.

(see parameter line "ExitKey" to define a different keypress for exit)

The ASCII EOT character in the data stream will also terminate the application.
EOT (End Of Transmission) = decimal ©4.

This file "Arduino_Thermometer.ini" is the default INI file.

THe program looks for an INI file with the same name as the executable (including path).
A different INI file may be specified on the command line to allow for multiple
instances or alternate configurations.

In the INI file:
semicolons indicate remarks, the program ignores anything on a line following a semicolon
parameters are NOT case sensitive
either YES or TRUE evaluate to True
a parameter line may appear anyuwhere in the ini file
the last instance of any parameter line is used

The only REQUIRED parameter line is PortStr.
There are number of optional parameter 1lines.
See details below for each parameter line.

PortStr is used directly (without any changes) by the program to open a com port.
Any of these strings except the last will work in the X86 Windous.
The first seems to be reliable.

PortStr = "COM12:9660,N,8,1,CD,
PortStr = "COM12:960606,N,8,1,CD,

S,DS,0P,BIN"

c
cs,Dbs,0P,ASC, FE, TBB,RBO"

Page: 196

PortStr = "COM12:9600,N,8,1,CD,CS,DS,0P"
PortStr = "COM12:9600,N,8,1,CD,CS,DS"
PortStr "COM12:96006,N,8,1,CD,CS" /' does not work for Arduino '/
"Com##: [####][, [parity][, [data_bits][, [stop_bits][, [extended options]]1]1]"
(see Arduino_Receiver_Notes.bas for specific details)
This is a ***REQUIRED*** parameter 1line.

PortStr = COM12:96606,N,8,1,CD, CS,DS, 0OP,BIN
(PortStr moved to top of file for 'obvious' easy access for new users)

If ApndStr = True then the Date and Time are appended to the beginining of each string
A delimiter (see below) is used to seperate that value from the string

The format of the date/time string is: YYYY-MM-DD HH:MM:SS

Resolution is limited to one second.

This is an optional parameter. Default is false.

pndTime = TRUE

StdOut is used for all display output.

Setting this parameter to true suppresses status and some error messages.
(***Fatal Error*** messages are NOT suppressed)

It also forces the delimiter parameter to be used for display output.
This is an optional parameter. Default is false.

tdOut = False

FileStr, if not empty, is used by the program to open a file.

Whatever is received on the com port is appended to the file as well as the display.

If you want the file in specific directory then include the directory path as well.

Quotes are NOT required around FileStr (and deleted if found before any other processing).
A ***SINGLE*** envirometnal variable of the form %VARIABLENAME% may be used at the
beginning of the file/path name (i.e. %HOMEPATH%\Documents\My Logs\XXX.1og).

Relative paths may be used as well.

This is an optional parameter. Default is no output file.

ileStr = Thermometer_00080.L0G

SwitchHrs will cause filename to be incremented periodically based on hours.

The Valid range is from 1 (one) to 24 (twenty-four).This is done by looking for "@660"
in the FileStr and incremetning it. Existing matching file names are skipped.

This is an optional parameter. Default is 8.

witchHrs = 12

Delimiter options are:

TAB ... Places one character code 09 between Date/Time and Data in file
COMMA ... Places ", " between Date/Time and Data in file

Collon ... Places ": " between Date/Time and Data in file

Number ... Places number spaces between Date/Time and Data in file

@ (zero) is a valid option and effectively eliminates the Delimiter
This is an optional parameter. Default is TAB character.

elimiter = TAB

EOL sets the end of line termiantion used in the output file.
EOL = @ for carriage return plus line feed (Windows/DOS)
EOL = 1 for line feed (Linux ?)
EOL = 2 for carriage return (MAC ?)
EOL when defined is also used for terminations of Display strings.

Page:

197

; (Except for the inital command line help request which is called before the INI file is read.)
; This is an optional parameter. Default is carraige return plus line feed.

; ExitKey allows a specif key to be used to exit the program. This is usefule to avoid
; accidental exits. The ASCII value must be in the range 32 to 126 a keyword is used:
; "Escape" = ASCII 27 (the escape Key).

; "CtiX" = ASCII 24 (Control X)

g Note: Control "C" will cause an 'abnormal termination'.

; The utility TestKeyCode.exe can be used to indetify specific keycodes.

; This is an optional parameter. Default is Escape key.

E

XxitKey = Escape

; USERSTR#: USERSTR1, USERSTR2, USERSTR3, USERSTR4, USERSTRS

; This was added for the Arduino Thermometer application.

; The user can define up to five string that will be sent when the user presses
; the "U" key follouwed by "1", "2", "3", "4" or "5" within one second.

; These are an optional parameters.

USERSTR1=71 ;default is Z1 = load default data set 1

USERSTR2=272 ; default is Z2 = load default data set 2
USERSTR3=ZD ; default is ZD = Dump EEPROM

; End of File

Utility Program

Code File for stripsemicolonlines.exe = stripsemicolonlines.bas
This is the file that must be active when you select Compile in the FBIDE editor.

#ifndef FALSE
#define FALSE ©
#endif

#ifndef False
#define False @
#endif

#ifndef false
#define false @
#endif

Y ommes define True-----------
#ifndef TRUE
#define TRUE -1
#endif

#ifndef true
#define true -1
#endif

#ifndef True
#define True -1
#endif

‘--declare variables ------—------------——————-
Dim SHARED FileIn as String

Dim SHARED FileQut as String

Dim SHARED SemiOut as String

Dim SHARED Work as String

Dim SHARED Buffer as String

Dim SHARED HlpStr as String

Dim SHARED PrgStr as String

Dim SHARED EOL as String

Dim SHARED C as String

Page: 198

Dim SHARED P as Integer

Dim SHARED I as Integer

Dim SHARED OverWrite as Byte
Dim SHARED AppendMode as Byte
Dim SHARED DeleteFile as Byte
Dim SHARED SplitLine as Byte
Dim SHARED AllLines as Byte
Dim SHARED Retain as Byte

Dim SHARED MarkMode as Byte
Dim SHARED Verbose as Byte
Dim SHARED DeBugMe as Byte
Dim SHARED RtnCode as Integer
Dim SHARED SemiCount as Long
Dim SHARED LineCount as Long
Dim SHARED BlankCount as Long
Dim SHARED PartialCount as Long
Dim SHARED MarkLine as Long

' set defaults ---------——------—-—-—-—— -
PrgStr=""

EOL=chr(13) & Chr(18)

OverWrite=False

AppendMode=False

DeleteFile=False

SplitLine=False

Al1Lines=False

Retain=False

MarkMode=False

DeBugMe=False

Verbose=False

SemiCount=0

LineCount=0

BlankCount=0

PartialCount=8

MarkLine=0

I=0

P=0

' define Help string--------—--------------———————-
HlpStr="Syntax: StripSemicolonLines.exe filel file2 file3 [options]" & EOL & _
" filel = input filename" & EOL & _
" file2 = output filename" & EOL & _
" file3 = output filename with stripped lines (optional)" & EOL & _
"Options:" & EOL & _
" /0 = Overurite any existing output file" & EOL & _
" /R = Append to any existing output file (overrides /0)" & EOL & _
" /D = Delete input file" & EOL & _
" /R = Retain blank lines" & EOL & _
" /S = Split lines at semicolon and delete trailing portion" & EOL & _
" /X = Deletes all lines with semicolon regardless of location" & EOL & _
" /M = Mark end of file with " & chr(34) & ";;--PROCESSED--;;" & chr(34) & EOL & _
On next run seeks to last marker before processing" & EOL & _
" /E = Execute program with output file" & EOL & _
" Program name is delimited by a collon" & EOL & _
" Example /E:" & chr(34) & "full path\MyProgram.exe" & chr(34) & EOL & _
" /V = Verbose prints statistics before exiting" & EOL & EOL & _
" /? = display help and exit" & EOL & EOL & _
"A11 lines that begin with semicolons will be removed from oputput file" & EOL & _
"Unless /R option is used all blank lines will also be removed from oputput file" & EOL & _
"Trailing blanks are deleted in any case" & EOL & _
Moo This program placed in the PUBLIC DOMAIN October 2813------ "
' get the command line -—----—---------—-—————————-————————
Buffer=Command(1)
If Buffer="/DB" then DeBugMe=True ‘ undocumented debug mode

Page:

199

p=1
While (Buffer<>"")
Buffer=Trim(Ucase(Command(P)))
If (DeBugMe=True) then print Buffer: Sleep
If Buffer="?" then Print HlpStr: End: end If

If len(Buffer)=2 then
If Buffer="/?" then Print HlpStr: End: end If
If Buffer="-?" then Print HIpStr: End: end If
If Buffer="??" then Print HIpStr: End: end If

If Buffer="/0" then OverWrite=True
If Buffer="/A" then AppendMode=True
If Buffer="/D" then DeleteFile=True
If Buffer="/S" then SplitLine=True
If Buffer="/X" then AllLines=True
If Buffer="/R" then Retain=True

If Buffer="/M" then MarkMode=True
If Buffer="/V" then Verbose=True

If Buffer="-0" then OverWrite=True
If Buffer="-A" then AppendMode=True
If Buffer="-D" then DeleteFile=True
If Buffer="-S" then SplitLine=True
If Buffer="-X" then AllLines=True
If Buffer="-R" then Retain=True

If Buffer="-M" then MarkMode=True
If Buffer="-V" then Verbose=True

else
If Left(Buffer,3)= "/E:" then
' allow for upper/louwer case
PrgStr=Trim(Mid(Trim(Command(P)),4))

else
If Buffer="/DB" then
' do nothing
Else ' must be a filename
I=1+1
If I=1 then FileIn=Trim(Command(P))
If I=2 then FileOut=Trim(Command(P))
If I=3 then SemiOut=Trim(Command(P))
End If
end If
end If
' next command parameter
P=P+1

Wend

' Appendmode overrides Overwrite mode ----------
if AppendMode=true then OverWrite=False

' debug ------

if (DeBugMe=True) then
Print " FileIn: " & Fileln
Print " FileOut: " & FileOut
Print " SemiOut: " & SemiOut
Print " PrgStr: " & PrgStr
Print " OverWrite: " & OverHrite
Print "AppendMode: " & AppendMode
Print "DeleteFile: " & DeleteFile
Print " SplitLine: " & SplitLine
Print " AllLines: " & AllLines
Print " Retain: " & Retain
Print " MarkMode: " & MarkMode

Page: 208

Print " Verbose: " & Verbose
sleep

end if

' check file names -----—--——-————---——-

if (FileIn="") then Print EOL & HlpStr: End: end If

if dir(FileIn)="" then
Print EOL & "***ERROR*** Input file not found" & EOL
Print Fileln
end

End If

if (FileOut="") then
Print EOL & "***ERROR*** No output file specified" & EOL
End

end If

If dir(FileOut)<> "" then
if (OverWrite=true) then
ki1l (FileOut)
RtnCode=Err
if (RtnCode<>0) then
Print EOL & "***ERROR*** Cannot delete existing output file"

Print " " & FileOut
Print " Error= " & RtnCode
End

end if

else
If AppendMode=false then
Print EOL & "***ERROR*** Qutput file exists."
Print " Overurite option not specified."
Print " Append option not specified."

Print " " & FileOut
Print EOL & HIpStr
End if
end if
End If

If SemiOut<>"" then
If dir(SemiOut)<> "" then
if (OverWrite=true) then
kill (SemiOut)
RtnCode=Err
if (RtnCode<>0) then
Print EOL & "***ERROR*** Cannot delete existing output file"

Print " " & SemiOut
Print " Error= " & RtnCode
End

end if

else
If AppendMode=false then
Print EOL & "***ERROR*** Qutput file exists.”
Print " Overurite option not specified."
Print " Append option not specified.”

Print " " & SemiQut
Print EOL & HlpStr
End if
end if
End If

End If

" Find last mark ?? --------—-—--
if (MarkMode=True) then
Open FileIn for Input as #l
While not(eof(1))

Page: 201

Line Input #1, Buffer
LineCount=LineCount+1

if Buffer=";;--PROCESSED--;;" then MarkLine=LineCount

Wend

Close #1

LineCount=0

If (DeBugMe=True) then print "Mark Line: " & MarkLine :
end If

' Open Files ---—=—--—-—--—-—-
Open FileIn for Input as #1
RtnCode=Err
If (RtnCode) <>0@ then
Print EOL & "***ERROR*** Can not open Input file."
Print " " & Fileln
Print " Error= " & RtnCode
End
End If

Open Fileout for Append as #2
RtnCode=Err
If(RtnCode) <>8 then
Print EOL & "***ERROR*** Can not open Output file."

Print " " & FileOut
Print " Error= " & RtnCode
End

End If

If SemiOQut<>"" then
Open SemiOut for Append as #3
RtnCode=Err
If(RtnCode) <>8 then
Print EOL & "***ERROR*** Can not open Output file."

Print " " & SemiOut
Print " Error= " & RtnCode
End

End If

End If
If (DeBugMe=True) then print "files opened": Sleep

---- process file —-—-—----—---—-————-—-
see to last file mark
While LineCount<MarkLine
Line Input #1, Buffer
LineCount=LineCount+1
Wend
LineCount=0

While not (EOF(1))
Line Input #1, Buffer
if Trim(buffer)="" then
BlankCount=BlankCount+1
If (Retain=True) then Print #2,""
Else
C=left(trim(buffer),1)
If C=";" then
SemiCount=SemiCount+1
If SemiQut<>"" then Print #3,rtrim(buffer)
else
P=Instr(Buffer,";")
if (Al1Lines=True) and (P>8) then
SemiCount=SemiCount+1
If SemiQut<>"" then Print #3,rtrim(buffer)
Else

Sleep

Page: 2082

if (SplitLine=True) and (P>8) then
SemiCount=SemiCount+1
PartialCount=PartialCount+l
If SemiQut<>"" then Print #3,rtrim(buffer)
Buffer = Left(Buffer, P-1)
Print #2, rtrim(BUffer)
Else
LineCount=LineCount+1
Print #2, rtrim(BUffer)
end if
end if
end If
end If
Wend
If (DeBugMe=True) then print "files processed": Sleep
' close files ——————=———————————————————————
close #1
close #2
If SemiOut<>"" then Close #3
if DeleteFile=True then
ki1l (FileIn)
RtnCode=Err
if (RtnCode<>8) then
Print EOL & "***ERROR*** Cannot delete input file"

Print " " & FileIn
Print " Error= " & RtnCode
End

end if

End If
If (DeBugMe=True) then print "files closed": Sleep

' Mark file as processed -----------------—-————-
if (MarkMode=True) then
Open FileIn for Append as #1
print #1, ";;--PROCESSED--;;"
Close #1
If (DeBugMe=True) then print "File Marked": Sleep
end If
' report -------—-—--—---—
If Verbose=True then
Print EOL & " Total Lines: " & BlankCount+SemiCount+LineCount
Print "Semicolon Lines: " & SemiCount
if (SplitLine=True) and (PartialCount>@) then Print " Partial Lines:
if (BlankCount>@) then Print " Blank Lines: " & BlankCount
if (SplitLine=True) then LineCount=LineCount+PartialCount
If (Retain=True) then LineCount=LineCount+BlankCount
Print " Output Lines: " & LineCount
End If

N U I e e e e
If PrgStr<>"" then
If (DeBugMe=True) then
print "Executing Program: "
print PrgStr & " " & chr(34) & Fileout & chr(34)
Sleep
end if
RtnCode=Run (PrgStr, chr(34) & Fileout & chr(34))
If RtnCode<>@ then
print "***ERROR*** Execution failed:"
print PrgStr & " " & chr(34) & Fileout & chr(34)
end if
end If
If (DeBugMe=True) then print "Program Complete": Sleep

" & PartialCount

Page: 203

go auway
end

sleep waits for a key press

Page: 204

Appendix: Thermometer One Program Code (Plan “A”)

Thermometer One Main Program File

/* ThermometerOne */
#include <avr/sleep.h>
#include <EEPROM.h>
#include <HexDecAsc.h>

// EEPROM Address Constants

const word EEmask = 0; // 1
const word EEflag = 1; /71
const word EEoffsetR= 2; // 2
const word EEcelsius= 4; // 2
const word EEminutes= 6; // 2
const word EEunusedé= 8; // 2
const word EEunusedi= 10; // 2
const word EEunused2= 12; // 2
const word EEunused3= 14; // 2
const word EEidtring= 16; // 1D
const word EEidsize = 16; // 24

const word StorageWorking=EEmask;
// EEPROM start for backup copy of constants

// note we have to add 1 to the value

// Becasue addresses begin with zero not one
const word StorageBackup =((E2END-(EEwdsize))+1);

// EEPROM addresses variables

// Conversion Factors/Calibraton Data
const float CovrtFactor=65532;

byte
byte
byte
byte
byte
byte
byte
byte
byte

string w/o termiantion size (16)
byte location of IdString
const word EEwdsize = EEidtring+EEidsize; // Working data storage size

lTocation
lTocation
lTocation
lTocation
lTocation
lTocation
lTocation
location
location

of
of
of
of
of

// needed for shutdown function
// needed for EEPROM read and write
// used for EEPROM dump A1l

EEPROM
EEPROM

CovrtOffset
Covrt2Celsius

Report
unused
unused
unused
unused

// EEPROM start for working calibration data

word StorageBegin =StorageWorking+EEwdsize;// begin storage for report data

word StorageMark =StorageBegin; // marks start of current segment
word StorageEnd =StorageBackup; // marks end of current segment
word StorageIndex =StorageBegin; // index for next EEPROM urite

char IdString[EEidsize+1]; // ID/Location string for this device

word CovrtOffsetR; // Rauw Reading offset

const word CovrtOffsetC=20; // Celsius temperature offset (default 28)
const word CovrtOffsetF=68; // Fahrenheit temperature offset (default 68)
float Covrt2Celsius; // Linear scale factor for Celsius (default 8.25)
float Covrt2Fahrenheit; // Linear scale factor for Fahrenheit (default 8.45)
float Celsius; // Last conversion to Celsius Temperature

float Fahrenheit; // Last conversion to Fahrenheit Temperature

byte newflg=0; // used to indicate new conversion factors in memory
// Global operational mode Variables // set default operation modes

boolean ReportMode = true; // True = reporting, False = Command Mode

boolean RtnRawRead = true; // True = include Rau

boolean RtnFahrenh = true; // True = include Fahrenheit

boolean RtnCelsius = true; // True = include Celsius

boolean DeBug = false; // True = extended reporting for debugging

boolean SleepMode = false; // False - sleepmode not implimented

boolean EepromMode = false; // False - uwrite data to EEPROM

// Global work Variables

char cmd[] = {0,0,03; // used to store two character command

char prevemd]] = {0,0,03; // used to store previous two character command

word MinuteTarget = 1; // Number of minutes between report lines

// word SecondsMinute = 10000; // --- to speed things up a bit for debugging

word SecondsMinute = 606000; // added so calibraton timining can be reduced
unsigned long SecondsTarget = 0; // Number of seconds betuween report lines

storage mode mask
storage mode flag

Target Minutes

(32)

Page: 285

unsigned long Accumalator 0; 1/
unsigned long CycleCount = 0; /!
unsigned long RptStartTime = 0; //
unsigned long RptTrigger = 8; 1/
unsigned long CycleStart = 0; /!
unsigned long CycleTime = 0; //
word LastRead = 8; /!
byte Consecutive = @; //
byte gap = 0; //
//
[/ === e
void setup()
{ char c;
Serial.begin (9600);
pinMode(13, OUTPUT); //

EnableADC();

delay (1000);

while (Serial.available()>8)
c=Serial.read();

Read_Calibration_Data();

Check_EEPROM();

// calculate seconds between report lines

// uwe have to "cast" the two word values or

SecondsTarget=long(MinuteTarget)*1ong(Secon

//delay (56000); //

if (EepromMode==false) ReportStatus(); //

Accumalator = 0; //
CycleCount = 0;

RptTrigger = millis() + SecondsTarget;
RptStartTime= millis();

[/====== debugging stuff----------------—--—-

// Serial.printin ("Got here");
// while (true);

3
At ittt ittt
void loop()

{ char cl, c2;

word wtemp;

// ---- This is where we check for command

if ((Serial.available()>2) & & (EepromMode==
{ if(ReadTuwoCharacters()) CmdProcessor();

// ---- This is uhere we collect our temper

// gap is used to increase the amount of ti
// This Insures that we will not miss any d
if (gap++ == 9)
{ gap=6;
// cycle times are only used if debuggi
if (DeBug == true) CycleStart= millis()
avrRauTemp();

if (DeBug == true) CycleTime = CycleTim

---- This is where we output the teperat
The time required to read 64 samples is
within 125 milliseconds of the Report Tr
With the these timing numbers there are
64 virtual 12 bit samples per minute.
Added condition for millis exceeding rep
(((RptTrigger-millis())< 125) || (millis
{ // Serial.printin ("Got here: RptTrigge
while (millis() < RptTrigger);

Accumalate temperature reads

Cycles per Report line

Time between report lines

Target Time for report

Target Time for report

Target Time for report

Stores previous RawRead Average

used to count consective equal readings
used to increase gap between reads
There are 1086 milliseconds in a second

so we can blink it later during urites
enables the ADC and set ADC clock factor
let serial library complete setup

drain any data from the serial buffer

read and set conversion factors from EEPROM
see if we are writing to EEPROM vs Serial

we will get a word value for the result
dsMinute);

allow PC 5 seconds to get setup

report default parameters

set startup parameters

input
false))
3

ature data
me between reading sampling the ADC.
ata transmitted on the serial port.

ng is turned on

3

e+(millis()-CycleStart);

ure data

about 119-120 milliseconds. If we get
igger Time then we wait for it.

508 reads of

ort trigger (possible with long commands)
()>RptTrigger))
rt;

Page:

206

// We want the new trigger time set as close as possible to when the previous trigger
// went off --- so we put ti first.

RptTrigger= (millis() + (SecondsTarget));

// Serial.print (F("Got Here: RptTrigger, milliseconds to wait= "));

// Serial.printin (SecondsTarget);

Report();

3

//
void CmdProcessor()
{// this function is the main command handler
// not many comments because I think the code is obviuos
if (DeBug == true)
{ Serial.print (F("; Command Processor "));
DebugPrintCharacters (cmd[8],cmd[1]);

3
if ((cmd[@]=="1") && (cmd[1]=='D")) {Serial.print(F("; ")); Print_IdString();3}
else if ((cmd[@]=='S') & (cmd[1]=='T')) ReportStatus();
else if ((cmd[B]=='0") && (cmd[1]==':')) NeuwOffsetR();
else if ((cmd[B]=='C') && (cmd[1]==':"')) NeuwCelsius();
else if ((cmd[@]=='C') && (cmd[1]=='="')) CelsiusEquals();
else if ((cmd[B]=='F') && (cmd[1]==':')) NewFahrenheit();
else if ((cmd[B]=='F') && (cmd[1]=='=")) FahrenheitEquals();
else if ((cmd[@]=='L"') && (cmd[1]==':"')) NeuwIdString();
else if ((cmd[@]=='D') & (cmd[1]=='B')) ToggleDebugMode();
else if ((cmd[B]=="H') && (cmd[1]=='W"')) Write_Calibration_Data();
else if ((cmd[@]=='W') && (cmd[1]=='+")) OveruriteBackup();
else if ((cmd[@]=='W') && (cmd[1]=='-"')) RestoreFromBackup();
else if ((cmd[@]=='L') && (cmd[1]=='L"')) HelpMe();
else if ((cmd[@]=='?"') && (cmd[1]=='?")) HelpMe();
else if ((cmd[B]=='S') && (cmd[1]=='S"')) ShutDouwn();
else if ((cmd[B]=="!") && (cmd[1]=="'!")) software_Reset()
else if ((cmd[@]=='E') && (cmd[1]=='+"')) EEmodeFlagSet();
else if ((cmd[@]=='E') && (cmd[1]=='-"')) EEmodeFlagClear();
else if ((cmd[8]=="E') && (cmd[1]=='C')) ClearStorage();
else if ((cmd[@]=='E') & (cmd[1]=='D"')) DumpStorage();
// else if ((cmd[@B]=='T') && (cmd[1]=='T')) TestTest();
else if (cmd[B]=='R") SetRawReadMode();
else if (cmd[B]=='F") SetFahrenheitdMode();
else if (cmd[B]=='C") SetCelsiusMode();
else if (cmd[B]=='T") NewReportTime();
else if (cmd[B]=='P") SetReportMode();
// example of commands not implemented
else if ((cmd[B]=="'A") && (cmd[1]==':")) PrintNotImplemented();
else if ((cmd[@]=='S') && (cmd[1]==':"')) PrintNotImplemented();

// example of application specific command implimneted

// these two commands write test data to the EEPROM working storage
else if ((cmd[B]=='Z") && (cmd[1]=='1"')) TestDatal();

else if ((cmd[B]=='Z"') && (cmd[1]=='2"')) TestData2();

// this command used for calibration, changes reporting to 5 seconds
else if ((cmd[B]=='Z") && (cmd[1]=='Z')) CalibrationMode();

// this command used to dump entire EEPROM to Serail Port

else if ((cmd[B]=="Z"') && (cmd[1]=='D")) EepromDumpAl1();

else PrintNotRecognized(); // not recognized

//void TestTest()
// { for (byte i=8; i< 28; i++)
// { QuickBlink();
// delay (200);
3

Page: 2087

void HelpMe()
//Serial.printin(F("This string will be stored in flash memory"));
{ PrintSeperatorLine();

Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial

.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";
.printin(F(";

Arduino AtMega328 Internal Temperature Sensor 1.8"));

ID
ST
RT
RF
FT
FF
F=
CT
CF
C=
Tl
T2
T3
T4
T5
Té6
17
T8
T9
T0
TA
B
TC
TD
TE
TF
PF
PT
DB
L:
0:
F:
C:
WW
W+
N_
E+
E_
EC
ED
LL
??

SS

Responce 'XX'

Output ID string"));

Output Status"));

Raw=True"));

Raw=False"));

Fahrenheit=True"));
Fahrenheit=False"));

Enter Current Fahrenheit"));
Celsius=True"));

Celsius=False"));

Enter Current Celsius"));

Report time = 81 minutes"));
Report time = 82 minutes"))

Report time = @3 minutes"));
Report time = 84 minutes"));
Report time = 85 minutes"));
Report time = 18 minutes"));
Report time = 15 minutes"));
Report time = 20 minutes"));
Report time = 38 minutes"));
Report time = 60 minutes"));
Report time = 82 hours"));

Report time = 04 hours"));

Report time = 86 hours"));

Report time = 88 hours"));

Report time = 12 hours"));

Report time = 24 hours"));

Print mode = False"));

Print mode = True"));

Debug mode toggle"));

New Location"));

New Rauw Offset"));

New Fahrenheit Factor"));

New Celsius Factor"));

Write Calibraton data to EEPROM"))
Overwrtite Backup Calibraton data"));
Restore from Backup Calibraton data"));
Set Flag to send next run to EEPROM"));
Clear Flag to send next run to EEPROM"));
Clear EEPROM Storage"));

Dump data stored in EEPROM"));
List implimented commands"));

List implimented commands"));
Shutdoun (send twice)"));

Reset (send twice)"));

not implemented"));

Responce '??' = not recognized"))
PrintSeperatorLine();
// example of application specific command implimneted

// these two commands uwrite test data to the EEPROM working storage
Serial.printIn(F("; Z1 Write test data 1"));

Serial.printin(F("; Z2 Write test data 2"));

// special calibration mode

Serial.printin(F("; ZZ 5 Second reporting for calibration"));

// Dump all EEPROM memory to Serial in Hex and ASCII
Serial.printin(F("; ZD Dump ALLL EEPROM to serial"));
PrintSeperatorLine();

void PrintSeperatorLine()

Page:

208

S e T I TR G e "));
3

//
boolean ReadTuoCharacters()
{ char cl1=0,c2=0,c3=-1;
byte m=0;
boolean EOC=true; // End of Command Terminator
boolean OurReturn=false;

// It is not to be believed how much effort went into creating this simple function to read
// tuwo characters. I noted a bit of problem reading characters from the serail port when

// the loop was too fast therefore I have added a bit of a delay to insure the serial port

// library can keep up. Worst case senario this function can take more than 258 milliseconds.
// Normally when this functionis called we expect the htree bytes uwe need to be in the buffer
// but if there is noise on the line or a parrot randomly pecking at the keyboard it could

// take a bit longer.

// by defintion we are looking for two characters followed by a terminator

// uwe define a command terminatore to be a carriage return, new line or null character

// --- for good measure we are including the tab character and space as uell

// space uwas added because it is impossible to send a tab character from the Ardunion IDE

// we wWill accept any combination of those characters as a single terminator

// we wWill accept the Tast two printable ASCII characters before a terminator for our command
// uwe keep reading until we get a terminator, but we will only read for a short period

// but before we do anything else we are going to save the rpevious command for posterity
prevcmd[8]=cmd[0]; // actually we are saving it so that shutdouwn
prevemd[1]=cmd[1]; // and reset can check it before they execute

while ((c3 != 13) && (c3 != 18) && (c3 != 9) && (c3 != 8) && (c3 != 32) && (m<25))
{ // if we have a valid ASCII character for c3 then roll the charaters doun
if (Serial.available()>0)
{ c3=Serial.read();
if (c3>32) {cl=c2; c2=c3;1}

// we need a bit of a delay to let the serial interface catch up
// after 25 empty reads we give up
else { delay (10); m++;3
3
// DebugPrintCharacters (cl,c2,c3,m);

// we are very liberal about what we will accept for a command terminator

// but uwe insist on having one.

if ((c3 != 13) && (c3 != 10) && (c3 != 9) && (c3 != 8) && (c3 != 32)) EOC= false;

// we need to drain any remaining command terminator characters from the serail buffer
else DrainCmdTermiantors();

// now check for valid ASCII charaters and End of Line
if ((c1>32) && (c2>32) && EOC)
{ // 0K... we have something to work with
// Convert lower case to UPPER case excpet "u"
// DebugPrintCharacters (cl,c2,c3);
if ((cl != 'w') & (cl >96) && (cl <123)) cl = (cl -32);
if ((c2 != 'u') && (c2 >96) && (c2 <123)) c2 (c2 -32);
// DebugPrintCharacters (cl1,c2);
cmd[B8]=cl;
cmd[1]=c2;
OQurReturn=true;
3
// whatever it was that was sent did not meet our criteria
// inform the parrot that he or she must do better
else Serial.printin(F("; ?? ?2?2"))
return OurReturn;

Page: 2089

void DrainCmdTermiantors()
{ char c¢3=8;
// removed leading command terminators from serial buffer
delay (18); c3=Serial.peek();
while ((c3==13) || (c3==18) || (c3==9) || (c3==8) || (c3 == 32))
{ c3=Serial.read();
delay (18);
c3=Serial.peek();
3
// ¢3 should at this point should be -1 unless there are more commands/charaters in the
buffer

3

//
// overloaded debugging function for debugging the above input routine
void DebugPrintCharacters (char cl, char c2, char c3, byte m)

if (DeBug == true)
{ Serial.print ("Received: ");
Serial.print (cl);
// Serial.print (" ");
Serial.print (c2);
Serial.print (" ");
if (c3 !=109)
{ Serial.print (c3, DEC);
Serial.print (" ");
3
if (m != @) Serial.print (m, DEC);
Serial.printin ();
3
3
void DebugPrintCharacters (char cl, char c2, char c3)
{ byte m=8;
DebugPrintCharacters (cl,c2,c3,m);
3
void DebugPrintCharacters (char cl, char c2)
{ byte m=0;
char c¢3=0;
DebugPrintCharacters (cl,c2,c3,m);

3

Thermometer One Functions Module

// cbi and sbi are standard (AVR) methods for setting,
// or clearing, bits in PORT (and other) variables.
#ifndef cbi

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~ BV(bit))
#endif

#ifndef sbi

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

void EnableADC()
{ // This is probably not needed but
// set system clock devisor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 56-208 KHz range.
sbi(ADCSRA, ADPS2); // bit 2 of ADCSRA, system clock devisor
sbi(ADCSRA, ADPS1); // bit 1 of ADCSRA, system clock devisor

Page: 218

sbi(ADCSRA, ADPSB); // bit @ of ADCSRA, system clock devisor
cbi(ADCSRA, ADATE); // bit 5 of ADCSRA, disable auto trigger mode
sbi (ADCSRA, ADEN); // bit 7 of ADCSRA, enable ADC

void Read_Calibration_Data()
{ // This is more or less taken straight from the
// EEPROM_TempSensor_Calibration_Constants program
byte i=0, j=0;
float saveflt;
word TempWord;

// detect a virgin device --- well at least try

if ((EEPROM.read(EEminutes)==0xFF) &&
(EEPROM.read(EEminutes+1)==8xFF))
TestDatal();

// Get the rauwreading offset;
CovrtOffsetR= EEPROM.read(EEoffsetR)<<8;
CovrtOffsetR= (CovrtOffsetR + EEPROM.read(EEoffsetR +1));

// Get the Covrt2Celsius factor;

TempWord= EEPROM.read(EEcelsius)<<8;

TempWord= TempWord + EEPROM.read(EEcelsius +1);
// now we need to convert it

Covrt2Celsius = float(TempWord)/CovrtFactor ;

// calculate Covrt2Fahrenheit factor;
Covrt2Fahrenheit = Covrt2Celsius * 1.8000;

// ID String ---—-—--—=--=——————————m

i=0; c=1;

while (c!=8,i< EEidsize)

{c=EEPROM.read(EEidtring + i); // read the ID string
IdString [i++]=c;

3

IdString [EEidsize]=8; // just in case

// Set MinuteTarget from default minutes
MinuteTarget=(EEPROM.read(EEminutes)<<8) + EEPROM.read(EEminutes +1);
if (MinuteTarget<1l)MinuteTarget=1;

// this is a bit flag to indicate when the current constants
// in memory are different from those stored in working storage
newf1g=0;

// Get the unused---------------——————-———-———
// TempWord= EEPROM.read(EEunused)<<8;

// TempWord= TempWord + EEPROM.read(EEunused+1);
// unused=TempWord

// CovrtOffsetR=1389;

// Covrt2Celsius = 0.25;

// Covrt2Fahrenheit = 0.45;

// MinuteTarget=1;

3
ittt ittt
void Write_Calibration_Data()
{ word i=0;

// float saveflt;
word TempWord;
char c=-1;

// New location

Page: 211

if ((newflg & BBPOOGBO1) == BOOBBOBA1)
{// Serial.printin ("Got Here: Write _Calibration_Data, Location");
for (i=0;i<EEidsize; i++) {EEPROM.urite((EEidtring +i), IdString[i]);3
3

// New Offset Constant
if ((newflg & BOGOOGB10O) == BOOBEOB1O)
{// Serial.printin ("Got Here: Write_Calibration_Data, Offset");
TempWord=word(CovrtOffsetR);
EEPROM.urite(EEoffsetR , highByte(TempWord));
EEPROM.urite(EEoffsetR +1, TowByte (TempWord));
3
// New Celsius Factor
if ((newflg & BAOOOA100) == BOOGBO16O)
{ //Serial.printin ("Got Here: Write_Calibration_Data, Celsius Factor");
TempWord = word(Covrt2Celsius * CovrtFactor);

EEPROM.urite(EEcelsius , highByte(TempWord));
EEPROM.urite(EEcelsius +1, lowByte (TempWord));
// Note:

// When the EEPROM data is read
// Covrt2Fahrenheit is calculated from Covrt2Celsius

3

// New MinuteTarget
if ((newflg & BOPO16GE0) == BOBB1006A)

{// Serial.printin ("Got Here: Write _Calibration_Data, MinuteTarget");
EEPROM.urite(EEminutes , highByte(MinuteTarget));
EEPROM.urite(EEminutes +1, lowByte (MinuteTarget));

3

// urite the unused word(s)
i=EEunusedo;
while (i<EEidtring)
{if (EEPROM.read(i)'!= OxFF) EEPROM.uwrite(i, OxFF);
i++;

3

// clear the EEMODE flag
EEmodeFlagClear();

// Serial.printin ("Got Here: Write Calibration_Data, Read");
// note neuflg is reset by Read_Calibration_Data
Read_Calibration_Data();

// Print0KStr(); is sent by Report_Reset

Report_Reset();

void ClearStorage()
{ // this is used to clear/erase the EEPROM data storage (except for constant areas)
word addr;
byte b;
for (addr=(StorageBegin); addr<StorageBackup; addr++)
{ if (EEPROM.read(addr) != OxFF) EEPROM.urite(addr,@xFF);
3 // note: each byte requires 6-8 machine cycles
PrintOKStr ();
3

void EEmodeF1agSet()
{ // toggle the flag forthe next run to write to EEPROM
// does not affect current run
// Here is the thing. We have setup wearleveling for our EEPROM data storage
// but modeflag gets hit twice for every EEPROM run. So it will wearout
// long before the bulk of the storage. We could just increment the byte and

Page:

212

// Took for odd or even values but that would continuelly toggle the low bit
// uwearing it out before there rest. As it turns out it is writing a zero to
// a bit that wears then out. So we want to minimize the zero bit uwrites.

// We are going to move a zero bit right to left. This extends our life by a
// factor of eight. At that point you need to swap the backup and working

// data locations by changing the EEPROM address locations and reprograming
// the Arduino. That would double the life (2 * 8 = 16).

byte flag;
if (EEmodeF1agTF()==false)
{ // Serial.printin (F("Got here: EEmodeFlagToggle, make not equal"));
// make them not equal
// shift left and add a one to the right
f1ag=EEPROM.read(EEf1ag);
// Serial.printin(flag);
flag=(flag<<1)+1;
// Serial.printin(flag);
// if we have all ones start over again at the right
if (flag==B11111111) flag=B111111180;
// Serial.printin(flag);
// nouw save it
EEPROM.urite(EEflag,flag);

3
PrintoKstr();

void EEmodeF1agClear()
{ byte flag;
if (EEmodeF1agTF())
{ // Serial.printin (F("Got here: EEmodeFlagClear"));
// make them equal
f1ag=EEPROM.read(EEflag);
EEPROM.urite(EEmask,flag);

3
if (EepromMode==false) PrintOKStr();

boolean EEmodeF1agTF ()

{ // returns true if EEmodeFlag is set
byte flag,mask;
f1ag=EEPROM.read(EEf1ag);
mask=EEPROM.read(EEmask);
if(flag==mask) return false;
else return true;

void Check EEPROM()
{ byte b[4],i;
word u;
word addr;

EepromMode=false;
if (EEmodeF1agTF())
{ // Serial.printin ("got here: Check EEPROM");

EepromMode=true;
// clear the flag
EEmodeF1agClear();
// disable serial reporting and debug mode
ReportMode=false;
DeBug=false;
// we need to find the beginning of EEPROM that has not been used
// we need at least four bytes to begin a new section.

Page: 213

// so we need to find the first place where there are four bytes with FFh

// zero our test pattern
for (i=0; i<4; i++) b[i]=0;
addr=StorageBegin;
while ((addr<StorageBackup) && ((b[@8]!=0xFF) || (b[1]!=BXFF)
[l (b[2]!=8xFF) || (b[3]!=6XFF)))
{ b[B]=b[1];

b[1]=b[2];
b[2]=b[3];
b[3]=EEPROM.read(addr++);
3
// did we read until the end ??
if (addr >= StorageEnd) StorageMark=StorageBegin;
// we found 4 bytes that have not been written to
else StorageMark=addr-4;
// in either case we clear the storage
ClearStorage();
// mark the beginning
EEPROM. write(StorageMark,0);
EEPROM. urite(StorageMark+1,8);
// set then beginning and end of the current segment
StorageIndex=StorageMark+2;
StorageEnd=StorageBackup;
/] —======
// while(true); // stop here so we can check a memory dump

3
[/ ===
void Print_IdString()
{ // Serial.print(F("; ")); // pefix
Serial.printin(IdString); // print it
3
[/mmmmmm

void PrintTrueFalse(byte T)
{ // used to report True or False for boolean Globals
if(T == 8) Serial.printin(F("False"));
else Serial.printin(F("True"));

void ReportStatus()
{ // report settings
PrintSeperatorLine();

Serial.print (F("; Report Mode: "));
PrintTrueFalse (ReportMode);
Serial.print (F("; Debugging Active: "));

PrintTrueFalse (DeBug);
Serial.print (F("; Report Raw Reading: "));

PrintTrueFalse (RtnRawRead);

Serial.print (F("; Report Fahrenheit: "));
PrintTrueFalse (RtnFahrenh);
Serial.print (F("; Report Celsius: "));
PrintTrueFalse (RtnCelsius);
Serial.print (F("; Minutes Beuwteen: "));

Serial.printin (MinuteTarget, DEC);

// single sensor, no prefix needed
Serial.print (F("; Sensor ID/Location: "));
Print_IdString ();

Serial.print (F("; Raw Offset: "));
Serial.printin (CovrtOffsetR, DEC);
Serial.print (F("; Celsius Factor: "));

Page: 214

Serial.printin (Covrt2Celsius, 4);
Serial.print (F("; Fahrenheit Factor: "));
Serial.printin (Covrt2Fahrenheit, 4);

if (newflg != 0)

Serial.printin (F("; Current parameters have *NOT* been written to EEPROM."));
if (EEmodeF1agTF())

Serial.printin (F("; *** Next run will write Data to EEPROM ***"));

PrintSeperatorLine();

ittt ittt
void avrRauTemp()

{ /* each sample has 16 ADC reads for a 12 bit virtual ADC */
/* REF: Atmel document number AVR121.pdf */
[oo /1
/* on 16Mhz ATmega328 512 samples requires just under 1 second */
/* 16 samples (16*16=256) gives fairly consistent results */
/* on a steady-state system in under 48K microseconds */
ittt /1
unsigned long RawSum=8; // used to sum samples for averaging
word RawTemp=8; // used to accumalate 18 bit ADC readings
word test=0; // used to count samples
byte k; // counter for 18 bit ADC reads
// turn on internal reference, right-shift ADC buffer,ADC channel = internal temp sensor
ADMUX = @xC8;
delay(5); // wait a bit for the analog ref to stabilize
while (test++ < 64) // oversampling loop (for averaging)

{ for (k=0; k<16; k++) // virtual ADC loop,
// 16 consecutiive readings
{ ADCSRA |= _BV(ADSC); // start the conversion

while (bit_is_set(ADCSRA, ADSC)); // ADSC is cleared when the
// conversion finishes
RauTemp += (ADCL | (ADCH << 8)); // accumalate the reading (low byte first)

RawSum += (RauwTemp >>2); // accumalate virtual 12 bit ADC value
RawTemp=8; // zero ADC accumalator for
// the next sequence
3
// Serial.printin ("Got here: avrRawTemp");
Accumalator += ((RawSum)>>6); // averag by shifting bit position,
// LSBs are lost
CycleCount++; // used by functions to average readings

void Convert(word RauReading)

{ //converts Raw Reading to Celsius and Fahrenheit

// we need to use an interger for the delata to allow for negative values
int Delta;
byte fraction;

// get the difference betuween the current reading and the raw reading offset
Delta=RawReading-CovrtOffsetR;

//Serial.printin (F("; got here: Convert"));
//Serial.printin (RauReading);
//Serial.printin (CovrtOffsetR);
//Serial.printin (Delta);

//Serial.printin (Covrt2Celsius);

Page:

215

//Serial.printin (CovrtOffsetC);

Celsius= ((Delta * Covrt2Celsius) + CovrtOffsetC)+40;
// now find closest 1/4 degree
fraction=108*(Celsius-word(Celsius));

if (fraction > 87) fraction=4;

else if (fraction > 62) fraction=3;

else if (fraction > 37) fraction=2;

else if (fraction > 12) fraction=1;

else fraction=0;

// the extra 48 degrees had to be inserted to fix a problem
// where conversion below zero rolled the value for
// word(Celsius) to positive number
Celsius=(word(Celsius)+(float(fraction)*8.25))-48;

Fahrenheit= (Delta * Covrt2Fahrenheit) + CovrtOffsetF;
// now find closest 1/2 degree
fraction=108*(Fahrenheit-word(Fahrenheit));

if (fraction > 75) fraction=2;
else if (fraction > 25) fraction=1;
else fraction=0;

Fahrenheit=word(Fahrenheit)+(float(fraction)*8.5);

void Report()
{ word AvgSumRead;
AvgSumRead = Accumalator/CycleCount;
if (EepromMode == true) Report2EEPROM(AvgSumRead);
else if (ReportMode == true)
{ Convert (AvgSumRead);
if (RtnRawRead == true)

{ Serial.print (AvgSumRead);
Serial.print (char(9));

3

if (RtnCelsius == true)

{ Serial.print (Celsius,2);
Serial.print (char(9));

3

if (RtnFahrenh == true)

{ Serial.print (Fahrenheit,2);
Serial.print (char(9));

3

if (DeBug == true)

{ Serial.print (CycleTime/CycleCount);
Serial.print (char(9));
Serial.print (CycleCount);
Serial.print (char(9));
Serial.print (millis()-RptStartTime);
RptStartTime=millis();

3

Serial.printin();
3
Accumalator = @;
CycleCount = 8;
CycleTime = 0;
LastRead=AvgSumRead;

void QuickBlink()
{ // on the UNO 1 mullisecond will surfice
// adjusted up to 3 for Nano
digitalWrite(13, HIGH); // turn on LED

Page: 216

delay(3);
digitalWrite(13, LOW); // turn off LED

void Report2EEPROM(word AvgSumRead)
{ // We are implimenting both data compression and wearleveling.
// Our data is only 12 bits. Becuase we should never get a reading
// over 2847 in our high bit will always be zero.
// We are going to use the top four bits to count consecutive equal
// readings. In that manner we may be able to store 16 readings in
// a singal word value.
word makeword;
QuickBlink();

// Serial.printin(F("Get here: Report2EEPROM"));
// send this string for testing: EC EE ST !! !!
// we need to skip the firs pass because we have nothing to work with
if (LastRead !=0)
{ if (LastRead == AvgSumRead) Consecutive++;
if ((Consecutive == 15) || (LastRead != AvgSumRead))
{ // Serial.printin(F("Get here: Report2EEPROM, urite record"));
// uwe are going to try two blinks everytime that there is a urite
makeword = (Consecutive <<12)+LastRead;
EEPROM.urite (StorageIndex++, highByte(makeword));
EEPROM.urite (StorageIndex++, TlouwByte(makeword));
Consecutive=0;
// now we need to check our storage space
if ((StorageEnd-StorageIndex)<2)
{ // folks there is Trouble in river city !
if (StorageMark==StorageBegin)
{prevcmd[1]=prevcmd[@]=cmd[1]=cmd[@]='S"'; ShutDoun();3}
if (StorageEnd ==StorageMark)
{prevcmd[1]=prevcmd[@]=cmd[1]=cmd[@]='S"'; ShutDoun();3}
// 0K, start at the beginning
StorageIndex=StorageBegin;
StorageEnd=StorageMark;

3
delay (50); // force a bit of a delay so both blinks can be seen
QuickBlink();
3
3
LastRead == AvgSumRead;
3
At ittt it ittt bttt it

void DumpStorage()
{ // print data stored in eeprom
byte b1, b2, c;
word reading;
word countreading=0;
word countwords=0;
boolean savemode;
// save the current reporting mode
savemode=ReportMode;
// find the beginning of the data defined to be two zero bytes
bil=1;
b2=1;
while ((StorageIndex<StorageBackup) && ((bl!=8) || (b2!=8)))
{ bl=b2;
b2=EEPROM.read(StorageIndex++);

3
StorageEnd=StorageBackup;
StorageMark=StorageIndex-2;
// 4 high bits are the count, lTow 12 bits are the reading

Page:

217

Serial.printin ("; Begin EEPROM data dump -----------—--——---—-——— ")
Serial.print ("Raw Reading");
Serial.print (char(9));
Serial.print ("Celsius");
Serial.print (char(9));
Serial.print ("Fahrenheit");
Serial.printin ();
while (((StorageEnd-StorageIndex)>=2) && ((bl != @xFF)||(b2 != BXFF)))
{ b1=EEPROM.read(StorageIndex++);
b2=EEPROM.read(StorageIndex++);

[[—==—=—m— - debuggin code
// Serial.print "s Location: ");
// Serial.print (StorageIndex);
// Serial.print ")

// Serial.print (b1, HEX);

// Serial.print 0o e

// Serial.print (b2,HEX);
countuwords++;

// two bytes of FFh will mark the end
if ((bl !'= BXFF) || (bl !'= BXFF))
{ Consecutive=b1>>4;
reading= ((bl & BBBOB1111)<<8)+b2;
Convert(reading);
[[frmmmmmmmmmemenems debuggin code
// Serial.print (", ");
// Serial.print (Consecutive);
// Serial.print SR
// Serial.print (reading);
// Serial.printin();
// while (Serial.available() ==0);
// c=Serial.read();
// the logic here is we need to print every reading at least once ...
// that is when it is zero. When we subtract one from zero we get 255
while (Consecutive<255)
{ countreading++;
Serial.print (reading);
Serial.print (char(9));
Serial.print (Celsius,2);
Serial.print (char(9));
Serial.print (Fahrenheit,2);
Serial.printin ();
Consecutive--;

i debuggin code
// Serial.print (Consecutive);
// Serial.print Yy Y8

// Serial.printin();
// while (Serial.available() ==8);
// c=Serial.read();
3
// now check the addresses
if ((StorageEnd-StorageIndex)<2)
{ if (StorageMark != StorageBegin)
{ StorageEnd = StorageMark;
StorageMark = StorageBegin;
StorageIndex = StorageMark +2;

3
3
3
3

Serial.printin (F("; End EEPROM data dump ----------------------———— "))
Serial.print (F("; readings: "));

Serial.printin (countreading, DEC);

Serial.print (F("; storage words: "));

Serial.printin (countwords, DEC);
PrintSeperatorLine();

Page: 218

// restore the current reporting mode
ReportMode=savemode;

void PrintOKstr ()
{ // command was accepted and processed
// this just serves to reduce command responce memory usage a bit
if (EepromMode == false)
{ // we do not want to get hung up
// trying to urtie to seomthing that is not connected
Serial.print (F("; "));
Serial.print (cmd);
Serial.printin (F(" 0K"));

void PrintNotRecognized()
{ // command was Not Recognized
// this just serves to reduce command responce memory usage a bit
if (EepromMode == false)
{ // we do not want to get hung up
// trying to wrtie to seomthing that is not connected
Serial.print (F("; "));
Serial.print (cmd);
Serial.printin (F(" ??"));

void PrintNotImplemented()
{ // command was Not Recognized
// this just serves to reduce command responce memory usage a bit
if (EepromMode == false)
{ Serial.print (F("; "));
Serial.print (cmd);
Serial.printin (F(" XX"));

void ShutDoun()
{ // Note that no provision is made to wake up.
// This is as close to shutdown as we can get.
// Because of the inefficent voltage regulator this
// mode still draws a lot of power (about 1@mA).
// A standard 9 volt battery may last about 16 hours.

// Serial.printin(prevcmd);
if ((prevcmd[B8]=='S"') && (prevcmd[1]=='S"))
{ Serial.printin (F("; SHUTDOWN"));
// give device time to send string
for (byte i=8; i< 25; i++)
{ QuickBlink();
delay (108);

3
cbi (ADCSRA, ADEN); // bit 7 of ADCSRA, disable ADC
SleepMode = true;
noInterrupts();
set_sleep_mode(SLEEP_MODE_PWR_DOKWN);
sleep_enable();
sleep_mode(); // all execution should stop here
while(8==0); // endless loop (belts and suspenders)

Page: 219

else PrintOKStr(); // first time through only

void softuare_Reset()
{ // Restarts program from beginning but
// does not reset the peripherals and registers
// as we are not doing anything with the the
// timers or peripherals or registers this
// should be adequate (will not support updating)

// Serial.printin(prevcmd);
if ((prevemd[@]=="!"') && (prevcmd[1]=="!"))
{ Serial.printin (F("; RESETTING"));
// give device time to send string
delay (1000);
asm volatile (" jmp 8");
3
else PrintOKStr(); // first time through only

void SetRauReadMode()
{ // check for "T" or "F", true of false

if (cmd[1]=="'T') {RtnRawRead = true; PrintOKStr();
else if (cmd[1]=='F') {RtnRawRead = false; Print0OKStr();

else PrintNotRecognized();

void SetFahrenheitdMode()
{ // check for "T" or "F", true of false

if (cmd[1]=="'T"') {RtnFahrenh = true; PrintOKStr();?}
else if (cmd[1]=='F') {RtnFahrenh = false; Print0OKStr();?}
else PrintNotRecognized();

3
e
void SetCelsiusMode()

{ // check for "T" or "F", true of false

if (cmd[1]=="'T"') {RtnCelsius = true; PrintOKStr();3}
else if (cmd[1]=='F') {RtnCelsius = false; PrintOKStr();?}
else PrintNotRecognized();

3
sttt
void SetReportMode()

{ // check for "T" or "F", true of false

if (cmd[1]=='T') {ReportMode = true; PrintOKStr();3
else if (cmd[1]=='F') {ReportMode = false; Print0OKStr();3}
else PrintNotRecognized();

3
[/
void ToggleDebugMode ()

{ // toggle Debug mode

if (DeBug == true) DeBug = false;
else if (DeBug == false) DeBug = true;
PrintOKStr();

3
e
void NeuReportTime()

{ // set report Minutes

if (cmd[1]=="1") { MinuteTarget = 1; Report Reset();}

Page: 228

else if (cmd[1]=='2"') { MinuteTarget = 2; Report_Reset();3}
else if (cmd[1]=='3"') { MinuteTarget = 3; Report_Reset();3
else if (cmd[1]=='4"') { MinuteTarget = 4; Report_Reset();3
else if (cmd[1]=='5"') { MinuteTarget = 5; Report_Reset();3}
//---- the timings below have not been tested ---------------
else if (cmd[1]=='6"') { MinuteTarget = 19; Report Reset();3}
else if (cmd[1]=='7"') { MinuteTarget = 15; Report_Reset();3}
else if (cmd[1]=='8"') { MinuteTarget = 20; Report Reset();3}
else if (cmd[1]=='9"') { MinuteTarget = 30@; Report_Reset();3}
else if (cmd[1]=='0"') { MinuteTarget = 60; Report Reset();3}
else if (cmd[1]=='A') { MinuteTarget = 120; Report Reset();3}
else if (cmd[1]=='B') { MinuteTarget = 240; Report Reset();3}
else if (cmd[1]=='C') { MinuteTarget = 360; Report Reset();3}
else if (cmd[1]=='D') { MinuteTarget = 480; Report Reset();3}
else if (cmd[1]=="E') { MinuteTarget = 720; Report_Reset();3}
else if (cmd[1]=='F') { MinuteTarget = 1440; Report_Reset();3}
// max=86,400,0808 milliseconds and that is why we use four byte variables

else if (cmd[1]=='T') Serial.printIn(F("; TT XX")); // not implimented
else PrintNotRecognized(); // not recognized

void Report Reset()

{ // this force the current data to be reported
// and reset our clock using the new time
unsigned long SaveMe=SecondsTarget;
PrintOKStr();

Serial.printin (F("; Report Timing reset"));
// calculate seconds between report lines
// SecondsTarget=MinuteTarget*SecondsMinute;

// uwe have to "cast" the two word values or we will get a word value for the result

SecondsTarget=1ong(MinuteTarget)*1ong(SecondsMinute);

if (SecondsTarget != SaveMe) neuwflg = neuflg | B00B100068;

// Serial.print (F("Got Here: report reset, milliseconds to wait= "));
// Serial.printin (SecondsTarget);

Accumalator = 0; // reset report parameters
CycleCount = 0;
RptTrigger = millis() + SecondsTarget;

RptStartTime= millis();
// Serial.print (F("Got Here: report reset, trigger= "));
// Serial.printin (RptTrigger-millis());

void NeuwIdString()
{ // New Location ID String
// Serial.printin("got here: NewIdString");
// set time out to 5 seconds
unsigned long timelimit = millis() + (56000);
boolean timeout=false;
char c= -1;
byte n= 8;

while ((c !=0) && (c != 18) && (c != 9) && (c != 13) && (n<EEidsize) && (timeout==false))

{ delay(10);
¢ = Serial.read();
if (c > 31) IdString[n++]=c;
// check for timeout
if (millis()>timelimit) timeout=true;
3
if (timeout) Serial.printin (F("; L: aborted due to timeout"));
else
{ IdString[EEidsize]=8; // make certain last charater is null
neuflg = newflg | BBOOOGBAIL;

Page:

221

// Serial.printin (IdString);
PrintOKStr();
3

DrainCmdTermiantors();

void NeuwOffsetR()
{ // Neuw Conversion Offset

int tempfloat=6;

delay (2000);

tempfloat=Serial.parseFloat();

if (tempfloat!=0)

{ CovrtOffsetR=tempfloat;

neuflg = newflg | BBOBBOB1O;
PrintOKStr();

else Serial.printin (F("; 0: zero value not accepted"));
DrainCmdTermiantors();

void CelsiusEquals()
{ // sets offset according to current reading and input Celsius
float tempfloat=0;
word deltaR=0;
// Serial.printin (F("Got Here: CelsiusEquals"));
delay (2000);
tempfloat=Serial.parseFloat();
if (tempfloat != 0)
{ // get the current rauw reading
Serial.printin (F("; Calculating new offset"));
deltaR = (tempfloat - CovrtOffsetC) / Covrt2Celsius;
while (CycleCount<250) avrRauTemp();
CovrtOffsetR = (Accumalator/CycleCount)-deltaR;
newflg = newflg | BBOBBOB10;
PrintOKStr();
3
else Serial.printin (F("; C= zero value not accepted"));
DrainCmdTermiantors();

void FahrenheitEquals()
{ // sets offset according to current reading and input Fahrenheit
float tempfloat=0;
float deltaR;
// Serial.printin (F("Got Here: FahrenheitEquals"));
delay (2000);
tempfloat=Serial.parseFloat();
if (tempfloat != 0)
{ // get the current rauw reading
Serial.printin (F("; Calculating new offset"));
deltaR = (tempfloat - CovrtOffsetF) / Covrt2Fahrenheit;
while (CycleCount<250) avrRauTemp();
CovrtOffsetR = (Accumalator/CycleCount)-deltaR;
newflg = neuflg | BOGEOGB1O;
PrintOKStr();
3
else Serial.printin (F("; F: zero value not accepted"));
DrainCmdTermiantors();

void NeuCelsius()

Page:

222

{ // Neuw Celsius Factor
delay (2000);
float tempfloat=0;
// Serial.printin ("Got Here: NewCelsius");
tempfloat=Serial.parseFloat();
if (tempfloat != 0)
{ Covrt2Celsius=tempfloat;
neuflg = neuflg | BOGBOA166;
// Calculate Fahrenheit factor
Covrt2Fahrenheit=Covrt2Celsius * 1.86000;
PrintoKstr();
3
else Serial.printin (F("; C: zero value not accepted"));
DrainCmdTermiantors();

void NeuwFahrenheit()
{ // Neuw Fahrenheit constant
delay (2000);
float tempfloat=0;
// Serial.printin ("Got Here: NewFahrenheit");
tempfloat=Serial.parseFloat();
if (tempfloat != @)
{ Covrt2Fahrenheit=tempfloat;
neuflg = neuflg | BOGBOA166;
// Calculate Celsius factor
Covrt2Celsius = Covrt2Fahrenheit / 1.8600;
PrintOKStr();
3
else Serial.printin (F("; F= zero value not accepted"));
DrainCmdTermiantors();

void RestoreFromBackup()
{ char TempString[EEwdsize];
byte i;
// read the backup copy
for (i=0; i<EEwdsize; i++) TempString[i]=EEPROM.read(StorageBackup + i);
// urite working copy
for (i=0; i<EEwdsize; i++) EEPROM.urite(StorageWorking +i, TempString[i]);
neuwf1g=0;
Read _Calibration_Data();
Report_Reset();

void OveruriteBackup()

{ char TempString[EEwdsize];
byte i;
// read the working copy
for (i=0; i<EEudsize; i++)

TempString[i]=EEPROM.read(StorageWorking + i);

// urite backup copy
for (i=0; i<EEwdsize; i++) EEPROM.urite(StorageBackup +i, TempString[i]);
PrintoKstr();

3

//
void TestDatal()
{ // This is NOT valid calibration data
// These sets were picked for testing
// so that one set look like the another set.
char temp[]="(1)tst data, UNO ";

Page:

223

Y 12345678908123456

byte i;

Serial.printin(F("; Test Data one being written to EEPROM"));
// clear the EEPROM report storage area
ClearStorage();

for (i=0; i< EEidsize; i++) IdString[i]=temp[i];
IdString[EEidsize]=0;

CovrtOffsetR=1500;

Covrt2Celsius =0.25600;
Covrt2Fahrenheit=Covrt2Celsius * 1.80000;
MinuteTarget=1;

newf1g=0XFF;

Write_Calibration_Data();

void TestData2()
{ char temp[]="(2)tst data,Nano ";

J/eeeeiioinn. 1234567890123456
byte i;
Serial.printin(F("; Test Data two being written to EEPROM"));
// clear the EEPROM report storage area
ClearStorage();
for (i=@; i< EEidsize; i++) IdString[i]=temp[i];
IdString[EEidsize]=0;
CovrtOffsetR=1389;
Covrt2Celsius =0.2217;
Covrt2Fahrenheit=Covrt2Celsius * 1.80000;
MinuteTarget=1;
neuwf 1g=0XFF;
Write_Calibration_Data();

void CalibrationMode()

{ // used for calbration, reduces time between report lines to 5 seconds
// there should be about 4@ samples per report which will still give a good average
Serial.printin(F("; Entering 5 second calibration mode ..."));
SecondsMinute=56000;

MinuteTarget=1;
DeBug=false;
EepromMode=false;
ReportMode=true;
RtnRawRead = true;
RtnFahrenh false;
RtnCelsius = false;
Report_Reset();

neuwf1g=0;
3
At it it
void EepromDumpAl1()
{ char buffer[60]; // allocate buffer
word addr=80; // set start address

PrintSeperatorLine();
Serial.printin(F("; Dump all EEPROM in Hex and ASCII")); // inform the user

while (addr < E2END) // run until we reach the end
{ for (byte i=8; i<l6; i++) // process 16 bytes at a time
{ buffer[i]=EEPROM.read(addr++); // read EEPROM
3
Serial.print ("; ");
Serial.printin(formatRamDump(addr-16, buffer)); // print formatted string
3

PrintSeperatorLine();
PrintOKStr();

Page:

224

Page: 225

Appendix: Thermometer One Program Code (Plan “B”)

Thermometer One Main Program File

/* ThermometerOne, Plan “"B" ATMEGA328 Version */
/* Release 1.0.0, October 2013, Public Domain */

// needed for shutdown function
// needed for EEPROM read and urite
// used for EEPROM dump A1l

#include <avr/sleep.h>
#include <EEPROM.h>
#include <HexDecAsc.h>

// EEPROM Address Constants

// EEPROM start for backup copy of constants
// note we have to add 1 to the value
// Becasue addresses begin with zero not one

// EEPROM addresses variables //
word

// Conversion Factors/Calibraton Data

const word EEmask = 0; // 1 byte location of EEPROM storage mode mask
const word EEflag = 1; // 1 byte location of EEPROM storage mode flag
const word EErefvolt= 2; // 2 byte location of RefVoltage

const word EEoffset = 4; // 2 byte location of DegreeOffset

const word EEminutes= 6; // 2 byte location of Report Target Minutes

const word EEunusedé= 8; // 2 byte location -- reserved -- unused

const word EEunusedl= 10; // 2 byte location -- reserved -- unused

const word EEunused?2= 12; // 2 byte location -- reserved -- unused

const word EEunused3= 14; // 2 byte location -- reserved -- unused

const word EEidtring= 16; // ID string w/o termiantion size (16)

const word EEidsize = 16; // 24 byte location of IdString

const word EEwdsize = EEidtring+EEidsize; // Working data storage size (32)
[[—m—mmmmmmmm s e oo // -- This area reserved for Table based system --
const word EEtable 32; // 48 word location of converion table

const word EEtbsize = 80; // Working data storage size (88)

[[—m—mmmmmmm e e o // -- This area reserved for Table based system --
const word StorageWorking=EEmask; // EEPROM start for working calibration data

const word StorageBackup =((E2END-(EEwdsize))+1);

begin storage for report data

StorageBegin =StorageWorking+EEwdsize+EEtbsize;

word StorageMark =StorageBegin; // marks start of current segment
word StorageEnd =StorageBackup; // marks end of current segment
word StorageIndex =StorageBegin; // index for next EEPROM write

float RefVoltage; // Analog Sensor Reference Voltage

const float CovrtFactorV= 8192;

float DegreeOffset; // Fudge factor to adjust output

const float CovrtFactorO= 1024;

char IdString[EEidsize+1]; // ID/Location string for this device

word MinuteTarget =1; // Number of minutes betuween report lines

byte newflg=0; // used to indicate new factors in memory

float Celsius; // Last conversion to Celsius Temperature

float Fahrenheit; // Last conversion to Fahrenheit Temperature
float AvrCelsius; // Last AVR conversion to Celsius Temperature
float AVRFahrenheit; // Last AVR conversion to Fahrenheit Temperature
// Global operational mode Variables // set default operation modes

boolean ReportMode = true; // True = reporting, False = Command Mode
boolean RtnRawRead = true; // True = include Rauw

boolean RtnCelsius = true; // True = include Celsius

boolean RtnFahrenh = true; // True = include Fahrenheit

boolean DeBug = false; // True = extended reporting for debugging
boolean RtnAvrRead = false; // True = include Avr internal Temperature line
boolean EepromMode = false; // True = wurite data to EEPROM on next run
boolean RoundMode = true; // True = round output to nearest 1/4 or 1/2

Page:

226

// Global uwork Variables // There are 10868 milliseconds in a second
// word SecondsMinute = 10000; // --- to speed things up a bit for debugging
word SecondsMinute = 606000; // added so calibraton timining can be reduced
unsigned long SecondsTarget = 0; // Number of seconds between report lines
unsigned long RptStartTime = 0; // Time between report lines
byte gap = 0; // used to increase gap between reads
unsigned long RptTrigger = 0; // Target Time for report
unsigned long CycleStart = 0; // Target Time for report
unsigned long CycleTime = 0; // Target Time for report
unsigned long Accumalator = 0; // Accumalate temperature reads
unsigned long CycleCount = 0; // Cycles per Report line
char cmd[] = {0,0,03; // used to store two character command
char prevemd|] = {0,0,0%}; // used to store previous two character command
word LastRead 8; // Stores previous RawRead Average
byte Consecutive = 0@; // used to count consective equal readings
//
void setup()
{ char c;

Serial.begin (9668);

pinMode(13, OUTPUT);

EnableADC();

delay (1060);

while (Serial.available()>8)
c=Serial.read();

Read_Calibration_Data();

Check _EEPROM();

// calculate seconds between report lines

// we have to '"cast" the two word values or

SecondsTarget=long(MinuteTarget)*1ong(Secon

//delay (5000); //
if (EepromMode==false) ReportStatus(); //
Accumalator = 0; //
CycleCount = 0;
RptTrigger = millis() + SecondsTarget;
RptStartTime= millis();
//-===== debugging stuff------------------——-
// Serial.printin ("Got here");
// while (true);
3
[]=mmmm e
void loop()
{ char ci1, c2;
word wtemp;
// ---- This is where we check for command
if ((Serial.available()>2) & & (EepromMode==
{ if(ReadTwoCharacters()) CmdProcessor();
// ---- This is uhere we collect our temper

// gap is used to increase the amount of ti
// This Insures that we will not miss any d
if (gap++ == 9)
{ gap=6;
// cycle times are only used if debuggi
if (DeBug == true) CycleStart= millis()
ReadRawTempAl();
if (DeBug == true) CycleTime = CycleTim
3

// ---- This is uhere we output the teperat
// The time required to read 64 samples is

so we can blink it later during urites
enables the ADC and set ADC clock factor
let serial library complete setup

drain any data from the serial buffer

read and set conversion factors from EEPROM
see if we are writing to EEPROM vs Serial

we will get a word value for the result
dsMinute);

allow PC 5 seconds to get setup

report default parameters

set startup parameters

input
false))
3

ature data
me between reading sampling the ADC.
ata transmitted on the serial port.

ng is turned on

e+(millis()-CycleStart);

ure data

about 119-128 milliseconds. If we get

Page:

227

3

// within 158 milliseconds of the Report Trigger Time then we wait for it.
// With the these timing numbers there are 568 reads of
// 64 virtual 12 bit samples per minute.
// Added condition for millis exceeding report trigger (possible with long commands)
if (((RptTrigger-millis())< 158) || (millis()>RptTrigger))
{ // Serial.printin ("Got here: RptTrigger ");
while (millis() < RptTrigger);
// We want the new trigger time set as close as possible to when the previous trigger
// went off --- so we put ti first.
RptTrigger= (millis() + (SecondsTarget));
// Serial.print (F("Got Here: RptTrigger, milliseconds to wait= "));
// Serial.printin (SecondsTarget);
Report();

//

void CmdProcessor()

{

// this function is the main command handler
// not many comments because I think the code is obviuos
if (DeBug == true)
{ Serial.print (F("; Command Processor "));
DebugPrintCharacters (cmd[@],cmd[1]);

3
if ((cmd[B]=='C"') && (cmd[1]=='=")) CelsiusEquals();
else if ((cmd[@]=='D') & (cmd[1]=='B')) ToggleDebugMode();
else if ((cmd[8]=='D"') && (cmd[1]=='0")) NewDegreeOffset();
else if ((cmd[@]=='D"') && (cmd[1]=='8"')) NewDegreeOffset(); // for typoes
else if ((cmd[@]=='E') && (cmd[1]=='+")) EEmodeFlagSet();
else if ((cmd[@]=='E') & (cmd[1]=='C"')) ClearStorage();
else if ((cmd[@]=='E') & (cmd[1]=='D"')) DumpStorage();
else if ((cmd[@]=='E') && (cmd[1]=='-"')) EEmodeFlagClear();
else if ((cmd[8]=='F') && (cmd[1]=='=")) FahrenheitEquals();
else if ((cmd[@]=='I"') && (cmd[1]=='D"')) {Serial.print(F("; ")); Print_IdString();3}
else if ((cmd[@]=='L') & (cmd[1]=='L"')) HelpMe();
else if ((cmd[B]=='L') && (cmd[1]==":")) NewIdString();
else if ((cmd[B]=='R') && (cmd[1]=='V')) NewRefVolt();
else if ((cmd[B]=='S') && (cmd[1]=='S"')) ShutDouwn();
else if ((cmd[B]=='S"') && (cmd[1]=='T"')) ReportStatus();
else if ((cmd[@]=='W') && (cmd[1]=='H')) Write_Calibration_Data();
else if ((cmd[@]=='W') && (cmd[1]=='+")) OveruriteBackup();
else if ((cmd[B]=="W') && (cmd[1]=='-"')) RestoreFromBackup();
else if ((cmd[@]=='?"') && (cmd[1]=="'?")) HelpMe();
else if ((cmd[@]=="!"') && (cmd[1]=='!"')) softuware_Reset();
else if ((cmd[8]=='8") && (cmd[1]=='8")) ToggleRoundMode();
else if (cmd[B]=='C") SetCelsiusMode();
else if (cmd[B]=='F") SetFahrenheitdMode();
else if (cmd[B]=='1") SetAvrInternalMode();
else if (cmd[B]=='P") SetReportMode();
else if (cmd[B]=='R") SetRawReadMode();
else if (cmd[B]=='T") NewReportTime();
// example of commands not implemented
else if ((cmd[@]=='A"') && (cmd[1]==':"')) PrintNotImplemented();
else if ((cmd[@]=='S') && (cmd[1]==':')) PrintNotImplemented();

// example of application specific command implimneted

// these two commands write test data to the EEPROM working storage
else if ((cmd[B]=='Z"') && (cmd[1]=='1"')) TestDatal();

else if ((cmd[B]=='Z") && (cmd[1]=='2"')) TestData2();

// this command used for calibration, changes reporting to 5 seconds
else if ((cmd[B]=='Z"') && (cmd[1]=='Z')) CalibrationMode();

// this command used to dump entire EEPROM to Serail Port

else if ((cmd[@]=='Z"') && (cmd[1]=='D"')) EepromDumpA11();

Page:

228

else PrintNotRecognized(); // not recognized
[/ mmmmm e

// previously define commands not valid in this implimentation
// else if ((cmd[B]=='0") && (cmd[1]==':"')) NeuwOffsetR();

// else if ((cmd[@]=='F') && (cmd[1]==':')) NewFahrenheit();
// else if ((cmd[B]=='C') && (cmd[1]==':")) NeuwCelsius();

// else if ((cmd[B]=='C') && (cmd[1]=='=')) CelsiusEquals();
// else if ((cmd[0]=='T') && (cmd[1]=='T"')) TestTest();

//void TestTest()

// { for (byte i=8; i< 20; i++)
// { QuickBlink();

// delay (208);

//

/3

void HelpMe()

//Serial.printin(F("This string will be stored in flash memory"));

{ PrintSeperatorLine();
Serial.printin(F(";\t\tArduino AtMega328 Temperature Sensor 1.8.8"));
Serial.printin(F(";\tID\tOutput ID string"))
Serial.printin(F(";\tST\tOutput Status"));
Serial.printin(F(";\tRT\tRaw=True"));
Serial.printin(F(";\tRF\tRau=False"));
Serial.printin(F(";\tFT\tFahrenheit=True"));
Serial.printin(F(";\tFF\tFahrenheit=False"))
Serial.printin(F(";\tF=\tEnter Current Fahrenheit"));
Serial.printin(F(";\tCT\tCelsius=True"));
Serial.printin(F(";\tCF\tCelsius=False"));
Serial.printin(F(";\tIT\tAVR Internal Temperature=True"));
Serial.printIn(F(";\tIF\tAVR Internal Temperature=False"));
Serial.printin(F(";\tC=\tEnter Current Celsius")); // to be done
Serial.printin(F(";\tDO\tNew Degree Offset (Fahrenheit)"));
Serial.printin(F(";\tDF\tSame as D0"));
Serial.printin(F(";\tRV\tNew Reference Voltage"));

Serial.printin(F(";\tT1\tReport time = 81 minutes"));
Serial.printin(F(";\tT2\tReport time = 82 minutes"));
Serial.printin(F(";\tT3\tReport time = 83 minutes"));
Serial.printin(F(";\tT4\tReport time = 84 minutes"));
Serial.printin(F(";\tT5\tReport time = 85 minutes"));
Serial.printin(F(";\tTé\tReport time = 18 minutes"));
Serial.printin(F(";\tT7\tReport time = 15 minutes"));
Serial.printin(F(";\tT8\tReport time = 28 mlnutes“)),
Serial.printin(F(";\tT9\tReport time = 38 minutes"));
Serial.printin(F(";\tTO\tReport time = 68 minutes"));
Serial.printin(F(";\tTA\tReport time = 82 hours"));
Serial.printin(F(";\tTB\tReport time = 84 hours"));
Serial.printin(F(";\tTC\tReport time = 86 hours"));
Serial.printin(F(";\tTD\tReport time = 88 hours"));
Serial.printin(F(";\tTE\tReport time = 12 hours"));
Serial.printin(F(";\tTF\tReport time = 24 hours"));

Serial.printin(F(";\tPF\tPrint mode = False"));
Serial.printin(F(";\tPT\tPrint mode = True"))
Serial.printin(F(";\tDB\tDebug mode toggle"))
Serial.printin(F(";\t@8\tRounding mode toggle"));
Serial.printin(F(";\tL:\tNew Location"));
Serial.printin(F(";\tWW\tWrite Calibration data to EEPROM"));
Serial.printin(F(";\tW+\tOverurite Backup Calibration data"));
Serial.printin(F(";\tW-\tRestore from Backup Calibration data"));
Serial.printin(F(";\tE+\tSet Flag to send next run to EEPROM"));
Serial.printin(F(";\tE-\tClear Flag to send next run to EEPROM"));

Page:

229

Serial.printin(F(";\tEC\tClear EEPROM Storage"));
Serial.printin(F(";\tED\tDump data stored in EEPROM"));
Serial.printin(F(";\tLL\tList implemented commands"));
Serial.printin(F(";\t??\tList implemented commands"));
Serial.printin(F(";\tSS\tShutdown (send twice)"));
Serial.printin(F(";\t!!\tReset (send tuwice)"));
PrintSeperatorLine();

// example of application specific command implimneted

// these two commands uwrite test data to the EEPROM working storage
Serial.printin(F(";\tZ1\tWrite test data 1"));
Serial.printin(F(";\tZ2\tWrite test data 2"));

// special calibration mode
Serial.printin(F(";\tZZ\tToggle 5 Second reporting"));

// Dump all EEPROM memory to Serial in Hex and ASCII
Serial.printin(F(";\tZD\tDump ALLL EEPROM to serial"));
PrintSeperatorLine();

Serial.printin(F(";\t\tResponse 'XX' not implemented"));
Serial.printin(F(";\t\tResponse '??' = not recognized"));
PrintSeperatorLine();

void PrintSeperatorLine()
{ Serial.print("; ");
for (byte i=8; i<36; i++) Serial.print('-");
Serial.printin();

3

//
boolean ReadTwoCharacters()
{ char cl1=8,c2=0,c3=-1;
byte m=0;
boolean EOC=true; // End of Command Terminator
boolean OurReturn=false;

// It is not to be believed how much effort went into creating this simple function to read
// two characters. I noted a bit of problem reading characters from the serail port when

// the loop was too fast therefore I have added a bit of a delay to insure the serial port

// library can keep up. Worst case senario this function can take more than 258 milliseconds.
// Normally when this functionis called we expect the htree bytes we need to be in the buffer
// but if there is noise on the line or a parrot randomly pecking at the keyboard it could

// take a bit longer.

// by defintion we are looking for two characters followed by a terminator

// we define a command terminatore to be a carriage return, new line or null character

// --- for good measure we are including the tab character and space as uell

// space uwas added because it is impossible to send a tab character from the Ardunion IDE

// we wWill accept any combination of those characters as a single terminator

// we wWill accept the Tast two printable ASCII characters before a terminator for our command
// uwe keep reading until we get a terminator, but we will only read for a short period

// but before we do anything else we are going to save the rpevious command for posterity
prevcmd[@8]=cmd[0]; // actually we are saving it so that shutdouwn
prevemd[1]=cmd[1]; // and reset can check it before they execute

while ((c3 !'= 13) && (c3 != 18) && (c3 != 9) && (c3 != 8) && (c3 != 32) && (m<25))
{ // if we have a valid ASCII character for c3 then roll the charaters doun
if (Serial.available()>0)
{ c3=Serial.read();
if (c3>32) {cl=c2; c2=c3;}

// we need a bit of a delay to let the serial interface catch up
// after 25 empty reads we give up
else { delay (10); m++;3

Page: 238

// DebugPrintCharacters (cl,c2,c3,m);

// we are very liberal about what we will accept for a command terminator

// but we insist on having one.

if ((c3 !=13) && (c3 != 10) && (c3 != 9) && (c3 != 8) & (c3 != 32)) EOC= false;

// we need to drain any remaining command terminator characters from the serail buffer
else DrainCmdTermiantors();

// now check for valid ASCII charaters and End of Line
if ((c1>32) && (c2>32) && EOC)
{ // OK... we have something to work with
// Convert lower case to UPPER case excpet "u"
// DebugPrintCharacters (cl,c2,c3);
if ((cl != 'w') && (cl >96) && (cl <123)) cl
if ((c2 != 'u') & (c2 >96) && (c2 <123)) c2
// DebugPrintCharacters (cl,c2);
cmd[@]=cl;
cmd[1]=c2;
OQurReturn=true;
3
// whatever it was that was sent did not meet our criteria
// inform the parrot that he or she must do better
else Serial.printin(F("; ?? ??"));
return OurReturn;

(c1 -32);
(c2 -32);

void DrainCmdTermiantors()
{ char c3=8;
// removed leading command terminators from serial buffer
delay (18); c3=Serial.peek();
while ((c3==13) || (c3==10) || (c3==9) || (c3==0) || (c3 == 32))
{ c3=Serial.read();
delay (18);
c3=Serial.peek();
3
// c3 should at this point should be -1 unless there are more commands/charaters in the
buffer

3

/1
// overloaded debugging function for debugging the above input routine
void DebugPrintCharacters (char cl, char c2, char c3, byte m)

{
if (DeBug == true)
{ Serial.print ("Received: ");
Serial.print (cl);
// Serial.print " ")
Serial.print (c2);
Serial.print (" ");
if (c3 = 0)
{ Serial.print (c3, DEC);
Serial.print (" ");
3
if (m != @) Serial.print (m, DEC);
Serial.printin ();
3
3
void DebugPrintCharacters (char cl, char c2, char c3)
{ byte m=8;

DebugPrintCharacters (cl,c2,c3,m);

void DebugPrintCharacters (char cl, char c2)
{ byte m=8;
char c¢3=0;

Page: 231

DebugPrintCharacters (cl,c2,c3,m);

Thermometer One Functions Module

// cbi and sbi are standard (AVR) methods for setting,
// or clearing, bits in PORT (and other) variables.
#ifndef cbi

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~ BV(bit))
#endif

#ifndef sbi

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

void EnableADC()
{ // This is probably not needed but
// set system clock devisor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 56-208 KHz range.

void Read Calibration_Data()
{ // This is more or less taken straight from the
// EEPROM_TempSensor_Calibration_Constants program
byte i=0, j=0;
word TempWord;
char c;
char sign;

// detect a virgin device --- well at least try

if ((EEPROM.read(EEminutes)==0xFF) &&
(EEPROM.read(EEminutes+1)==8xFF))
TestDatal();

// Get Degree Offset

TempWord= EEPROM.read(EEoffset)<<8;

TempWord= (TempWord + EEPROM.read(EEoffset +1));

// Serial.print (F("Got Here: Degree Offset EEPROM word: "));

// Serial.printin (TempWord, HEX);
// get the sign bit
sign= 1;

// Serial.print (F("High Nibble: "));

// Serial.printin (TempWord>>12,BIN);

if ((TempWord>>12) == B186@) sign= -1;

// Serial.print (F("Sign: "));

// Serial.printin (sign,DEC);

// strip the sign bit

TempWord=(TempWord<<1)>>1;

// Serial.print (F("Degree Offset EEPROM word stripped: "));
// Serial.printin (TempWord, HEX);

// now we need to convert it to a fraction
DegreeOffset=(float(TempWord)/float(CovrtFactor0)) * sign;

// Get the RefVoltage factor;

TempWord= EEPROM.read(EErefvolt)<<8;

TempWord= TempWord + EEPROM.read(EErefvolt +1);
// now we need to convert it to a fraction

sbi(ADCSRA, ADPS2); // bit 2 of ADCSRA, system clock devisor
sbi(ADCSRA, ADPS1); // bit 1 of ADCSRA, system clock devisor
sbi(ADCSRA, ADPSO); // bit @ of ADCSRA, system clock devisor
cbi(ADCSRA, ADATE); // bit 5 of ADCSRA, disable auto trigger mode
sbi (ADCSRA, ADEN); // bit 7 of ADCSRA, enable ADC
3
s

Page:

232

RefVoltage = float(TempWord)/CovrtFactorV ;

// ID String —----—-=------------——-— oo

i=0; c=1;

while (c!=8,i< EEidsize)

{c=EEPROM.read(EEidtring + i); // read the ID string
IdString [i++]=c;

3

IdString [EEidsize]=80; // just in case

// Set MinuteTarget from default minutes
MinuteTarget=(EEPROM.read(EEminutes)<<8) + EEPROM.read(EEminutes +1);
if (MinuteTarget<l)MinuteTarget=1;

// this is a bit flag to indicate when the current constants
// in memory are different from those stored in working storage
neuwf1g=0;

void Write_Calibration_Data()
{ word i=0;
// float saveflt;
word TemplWord;
char c=-1;
byte sign;

// New location
if ((newflg & BOGOBGOB1) == BBOOBOBBL)
{// Serial.printin ("Got Here: Write_Calibration_Data, Location");
for (i=0;i<EEidsize; i++) {EEPROM.uwrite((EEidtring +i), IdString[i]);3}
3

// Neuw Degree Offset
if ((newflg & BOGOBGO10) == BBOOBOB10)
{ // Serial.printin (F("Got Here: Write_Calibration_Data, Offset"));

// Serial.print (F("Degree Offset: "));
// Serial.printin (Degree0ffset);
sign = 0;
if (DegreeOffset <@) sign = B10066000;
TempWord=word(abs(Degree0ffset) * CovrtFactor0);
// Serial.print (F("Degree Offset as word: "));
// Serial.printin (TempWord);
// Serial.print (F("Sign: "));
// Serial.printin (sign);
EEPROM.urite(EEoffset , highByte(TempWord)|sign);
EEPROM.urite(EEoffset +1, TowByte (TempWord));

// Neuw Reference Voltage
if ((newflg & BOGOBO16O) == BBOOBO160)
{ //Serial.printin ("Got Here: Write_Calibration_Data, Reference Voltage");
TempWord = word(RefVoltage * CovrtFactorV);

EEPROM.urite(EErefvolt , highByte(TempWord));
EEPROM.urite(EErefvolt +1, TowByte (TempWord));
// Note:

// When the EEPROM data is read
// Covrt2Fahrenheit is calculated from RefVoltage

3

// Neuw MinuteTarget
if ((newflg & BOPO16GEB) == BOBB10060)
{// Serial.printin ("Got Here: Write_Calibration_Data, MinuteTarget");
EEPROM.urite(EEminutes , highByte(MinuteTarget));
EEPROM.urite(EEminutes +1, lowByte (MinuteTarget));

Page:

233

3

// urite the unused word(s)
i=EEunusedo;
while (i<EEidtring)
{if (EEPROM.read(i)!= OxFF) EEPROM.uwrite(i, OxFF);
i++;

3

// clear the EEMODE flag
EEmodeFlagClear();

// Serial.printin ("Got Here: Write_Calibration_Data, Read");
// note newflg is reset by Read_Calibration_Data
Read_Calibration_Data();

// Print0OKStr(); is sent by Report_Reset

Report_Reset();

void ClearStorage()
{ // this is used to clear/erase the EEPROM data storage (except for constant areas)
word addr;
byte b;
for (addr=(StorageBegin); addr<StorageBackup; addr++)
{ if (EEPROM.read(addr) '= BxFF) EEPROM.uwrite(addr,@xFF);
3 // note: each byte requires 6-8 machine cycles
PrintOKStr ();

void EEmodeF1agSet()
{ // toggle the flag forthe next run to write to EEPROM

// does not affect current run
// Here is the thing. We have setup wearleveling for our EEPROM data storage
// but modeflag gets hit twice for every EEPROM run. So it will wearout
// long before the bulk of the storage. We could just increment the byte and
// Took for odd or even values but that would continuelly toggle the low bit
// wearing it out before there rest. As it turns out it is writing a zero to
// a bit that wears then out. So we want to minimize the zero bit uwrites.
// We are going to move a zero bit right to left. This extends our life by a
// factor of eight. At that point you need to swap the backup and working
// data locations by changing the EEPROM address locations and reprograming
// the Arduino. That would double the life (2 * 8 = 16).

byte flag;
if (EEmodeF1agTF()==false)
{ // Serial.printin (F("Got here: EEmodeFlagToggle, make not equal"));
// make them not equal
// shift left and add a one to the right
f1ag=EEPROM.read(EEflag);
// Serial.printin(flag);
flag=(flag<<l)+1;
// Serial.printin(flag);
// if we have all ones start over again at the right
if (flag==B11111111) flag=Bi11111118@;
// Serial.printin(flag);
// now save it
EEPROM.urite(EEflag,flag);
3
PrintOKStr();

void EEmodeF1agClear ()

Page:

234

{ byte flag;
if (EEmodeF1agTF())
{ // Serial.printin (F("Got here: EEmodeFlagClear"));
// make them equal
f1ag=EEPROM.read(EEf1ag);
EEPROM.write(EEmask,flag);

3
if (EepromMode==false) PrintOKStr();

boolean EEmodeF1agTF()

{ // returns true if EEmodeFlag is set
byte flag,mask;
f1ag=EEPROM.read(EEflag);
mask=EEPROM.read(EEmask);
if(flag==mask) return false;
else return true;

void Check _EEPROM()
{ byte b[4],i;
word u;
word addr;

EepromMode=false;
if (EEmodeF1agTF())
{ // Serial.printin ("got here: Check EEPROM");
EepromMode=true;
// clear the flag
EEmodeF1agClear();
// disable serial reporting and debug mode
ReportMode=false;
DeBug=false;
// we need to find the beginning of EEPROM that has not been used
// we need at least four bytes to begin a new section.
// so wWe need to find the first place where there are four bytes with FFh
// zero our test pattern
for (i=0; i<4; i++) b[i]=8;
addr=StorageBegin;
while ((addr<StorageBackup) && ((b[8]!=6xFF) || (b[1]!=8xFF)
[I (b[2]!=6xFF) []| (b[3]!=8XFF)))
{ b[@]=b[1];

b[1]=b[2];

b[2]=b[3];

b[3]=EEPROM.read(addr++);

3

// did we read until the end ??
if (addr >= StorageEnd) StorageMark=StorageBegin;
// we found 4 bytes that have not been written to
else StorageMark=addr-4;
// in either case we clear the storage
ClearStorage();
// mark the beginning
EEPROM.urite(StorageMark,0);
EEPROM.urite(StorageMark+1,8);
// set then beginning and end of the current segment
StorageIndex=StorageMark+2;
StorageEnd=StorageBackup;
// definitive notice of mode
for (i=8; i < 3@; i++) {QuickBlink(); delay (258);3}
/] =======
// while(true); // stop here so we can check a memory dump

Page: 235

void Print_IdString()

{ // Serial.print(F("; ")); // pefix
Serial.printin(IdString); // print it
3
L ettt

void PrintTrueFalse(byte T)
{ // used to report True or False for boolean Globals

if(T ==
else

void ReportStatus()
{ // report settings
PrintSeperatorLine();

) Serial.printin(F("False"));
Serial.printin(F("True"));

Serial.print (F("; Report:\t"));
PrintTrueFalse (ReportMode);
Serial.print (F("; Debug:\t"));
PrintTrueFalse (DeBug);

Serial.print (F("; Raw:\t"));
PrintTrueFalse (RtnRawRead);

Serial.print
PrintTrueFalse
Serial.print
PrintTrueFalse
Serial.print
PrintTrueFalse
Serial.print
PrintTrueFalse

(F(";Fahrenheit:

(RtnFahrenh);
(F(";
(RtnCelsius);
(F(";
(RtnAvrRead);

(F("; Round
(RoundMode);

Celsius:

Avr:

\t"));
\t"));
\t"));

:\t"));

(F("; Minutes:\t"));
(MinuteTarget, DEC);
(F("; Voltage:\t"));
(RefVoltage, 4);

Serial.print
Serial.printin
Serial.print
Serial.printin

// single sensor, no prefix needed
Serial.print (F("; Sensor ID:\t"));
Print_IdString ();

Serial.print (F("; Offset:\t"));
Serial.printin (DegreeOffset, 4);

if (newflg != 9)

Serial.printin (F(";Parameters not saved"));
if (EEmodeF1agTF())

Serial.printin (F(";EEPROM Mode Flag Set"));

PrintSeperatorLine();

void AvrTemperature()

{ // Read AVR internal Temperature Sensor and Convert to Celsius
/!
unsigned long RawSum=8;
word RawTemp=0;
word test=0;
word RawReading;
float RawVoltage;
float DegreesKelvin;

// used to sum

and Degrees

samples for averaging

// used to accumalate 18 bit ADC readings
// used to count samples
// averaged reading

Page:

236

// turn on internal reference, right-shift ADC buffer,ADC channel = Avr temperature

// B116060BO: AMUX Voltage reference = Internal 1.1 volt (bits 7,6)
// B0oBOBOBAB: AMUX Right Shift ADC Buffer (bit 5)
// B0BBO18@B: AMUX Input Source= internal temperature sensor (bits 3,2,1,0)
ADMUX = B1100160600;
delay(10); // wait for the things to stabilize
while (test++ < 1024) // oversampling loop (for averaging)
{ ADCSRA |= _BV(ADSC); // start the conversion
while (bit_is_set(ADCSRA, ADSC)); // RADSC cleared when complete
RauTemp = (ADCL | (ADCH << 8)); // collect the reading
RawSum += RauwTemp; // add it to out total
3
RawReading = (RawSum)>>10; // averag the 1024 readings
//---- Convert It------

// Convert to Rauw Voltage

RawVoltage = (float(RawReading)/1824)* RefVoltage;
// Convert to Temperature in degrees Kelvin
DegreesKelvin= RawVoltage * 1000;

// Convert to Celsius

AvrCelsius= DegreesKelvin - 273;

// Convert to Fahrenheit
AVRFahrenheit=(AvrCelsius*1.8)+32;

J==== PRINE Ig=——===

Serial.print ")
Serial.print (RawReading);
Serial.print (char(9));

// Serial.print (RawVoltage);
// Serial.print (char(9));

// Serial.print (DegreesKelvin);
// Serial.print (char(9));
Serial.print (AvrCelsius);
Serial.print (char(9));
Serial.print (AVRFahrenheit);
Serial.print (char(9));
Serial.printin (F("ARV"));

3
At
// ---- Below is the function the read the External LM34DZ Temperature Sensor ----
Attt ettt

void ReadRauTempAl()
{ // Read ADC for Pin Al (connected to LM34DZ Temperature Sensor)
// Cycle time is aproximately 124 miliseconds

unsigned long RawSum=8; // used to sum samples for averaging
word RawTemp=8; // used to accumalate 18 bit ADC readings
word test=0; // used to count samples

// Just in case ...
// The INPUT mode explicitly disables the internal pullup resistors.
pinMode(Al,INPUT);

// turn on internal reference, right-shift ADC buffer,ADC channel = ADC1 (pin A1)

// B1180688@8: AMUX Voltage reference = Internal 1.1 volt (bits 7,6)

// B0BBOBRBB: AMUX Right Shift ADC Buffer (bit 5)

// B00BOBOOL1: AMUX Input Source= pin Al (bits 3,2,1,0)

ADMUX = Bl1666601;

delay(1e); // wait for the things to stabilize

while (test++ < 1824) // oversampling loop (for averaging)

{ ADCSRA |= BV(ADSC); // start the conversion

while (bit_is_set(ADCSRA, ADSC)); // RADSC cleared when complete
RawTemp = (ADCL | (ADCH << 8)); // collect the reading

Page:

237

RawSum += RauwTemp;
Accumalator += ((RawSum)>>10);

CycleCount++;

3
ittt
void Convert(word RauReading)

{ // converts Raw Reading to Celsius and Fahrenhei

// Neuw plan: offset will only be used for minor

We need the correct voltage !!!
Covrt2Fahrenheit=1.067;

Fahrenheit = (float(RawReading)/1824)* RefVoltage *108;

Fahrenheit = Fahrenheit + DegreeOffset;

if (RoundMode) Fahrenheit= nearesthalf(Fahrenhei
Consistancy is next to godliness.

We are working in Fahrenheit.

That inludes rounding.
Celsius = (Fahrenheit-32)/1.8;
if (RoundMode) Celsius=nearestquater(Celsius);

float nearestquater (float ValueIn)
{ // Return value rounded to nearest quater (8.25)
byte sign=1;
float fraction;
if (ValueIn , @)

{

sign = -1;
ValueIn=abs(Valueln);
3

fraction =ValueIn-long(ValueIn);

if fraction >= 0.875) fraction=1.00;
else fraction >= 0.625) fraction=0.75;
else fraction >= 0.375) fraction=0.50;
else fraction >= 0.125) fraction=0.25;
else fraction=0;

// Serial.printin (ValueIn);

// Serial.printin (ValueIn-long(ValueIn));
// Serial.printin (fraction);

// Serial.printin (sign);

return (long(ValueIn)+fraction) * sign;

~ o~~~

if
if
if

float nearesthalf (float ValueIn)
{ // Return value rounded to nearest half (8.50)
byte sign=1;
float fraction;
if (ValueIn , 8)

{

sign = -1;
ValueIn=abs(Valueln);
3

fraction =ValueIn-long(ValueIn);

if (fraction >= 0.7508) fraction=1.00;
else if (fraction >= 8.258) fraction=0.50;
else fraction=0;
return (long(ValueIn)+fraction) * sign;

SCALE is actual voltage that is supposed to be 1.1 but reads 1.067
This temperature sensor reports in Fahrenheit 1 milivolt per

In our case Celsius is a function of Fahrenheit.
Thus we always complete our Fahrenheit cals first.

// add it to out total

// averag and add to Accumalator
// LSBs are lost
// used by functions to average readings

t
correction

degree

t);

Page: 238

void Report()

{

word AvgSumRead;
AvgSumRead = Accumalator/CycleCount;
if (EepromMode) Report2EEPROM(AvgSumRead);
else if (ReportMode)
{ Convert (AvgSumRead);
Serial.print ('e');
if (RtnRawRead)
{ Serial.print (AvgSumRead);
Serial.print (char(9));

if (RtnCelsius)
{ Serial.print (Celsius,2);
Serial.print (char(9));
3
if (RtnFahrenh)
{ Serial.print (Fahrenheit,?2);
Serial.print (char(9));
3
if (DeBug)
{ Serial.print (CycleTime/CycleCount);
Serial.print (char(9));
Serial.print (CycleCount);
Serial.print (char(9));
Serial.print (millis()-RptStartTime);
RptStartTime=millis();
3
Serial.printin();
// addin for AVR internal temperature line
if (RtnAvrRead) AvrTemperature();

Accumalator = 0;
CycleCount = 0;
CycleTime = 8;

LastRead=AvgSumRead;

void QuickBlink()

{

// on the UNO 1 mullisecond will surfice
// adjusted up to 3 for Nano
digitalWrite(13, HIGH); // turn on LED
delay(3);

digitalWrite(13, LOW); // turn off LED

void Report2EEPROM(word AvgSumRead)

L7/

// a singal word value.
word makeword;
QuickBlink();

// Serial.printin(F("Get here: Report2EEPROM"));

// send this string for testing: EC EE ST !! !!

// uwe need to skip the firs pass because we have nothing to work with

if (LastRead !=0)
{ if (LastRead == AvgSumRead) Consecutive++;

We are implimenting both data compression and wearleveling.

// Our data is only 12 bits. Becuase we should never get a reading
// over 20647 in our high bit will always be zero.

// We are going to use the top four bits to count consecutive equal
// readings. In that manner we may be able to store 16 readings in

Page: 239

if ((Consecutive == 15) || (LastRead != AvgSumRead))
{ // Serial.printin(F("Get here: Report2EEPROM, urite record"));
// we are going to try two blinks everytime that there is a urite
makeword = (Consecutive <<12)+LastRead;
EEPROM.urite (StorageIndex++, highByte(makeword));
EEPROM.urite (StorageIndex++, lowByte(makeword));
Consecutive=0;
// nouw we need to check our storage space
if ((StorageEnd-StorageIndex)<2)
{ // folks there is Trouble in river city !
if (StorageMark==StorageBegin)
{prevemd[1]=prevcmd[@]=cmd[1]=cmd[@]="'S"; ShutDouwn();3}
if (StorageEnd ==StorageMark)
{prevcmd[1]=prevcmd[@]=cmd[1]=cmd[@]='S"; ShutDoun();3}
// 0K, start at the beginning
StorageIndex=StorageBegin;
StorageEnd=StorageMark;

3
delay (58); // force a bit of a delay so both blinks can be seen
QuickBlink();
3
3
LastRead == AvgSumRead;
3
i i

void DumpStorage()
{ // print data stored in eepronm
byte b1, b2, c;
word reading;
word countreading=0;
word countwords=0;
boolean savemode;
// save the current reporting mode
savemode=ReportMode;
// find the beginning of the data defined to be two zero bytes
bl=1;
b2=1;
while ((StorageIndex<StorageBackup) && ((b1!=8) || (b2!=8)))
{ bl=b2;
b2=EEPROM.read(StorageIndex++);
3

StorageEnd=StorageBackup;
StorageMark=StorageIndex-2;
// 4 high bits are the count, lTow 12 bits are the reading
PrintSeperatorLine();
Serial.printin (F("; Begin EEPROM data dump"));
Serial.printin (F("; Raw Reading\tCelsius\tFahrenheit"));
while (((StorageEnd-StorageIndex)>=2) && ((bl != OxFF)||(b2 != BxFF)))
{ b1=EEPROM.read(StorageIndex++);
b2=EEPROM.read(StorageIndex++);
[/ debuggin code
// Serial.print "; Location: ");
// Serial.print (StorageIndex);

// Serial.print Mg
// Serial.print (bl,HEX);
// Serial.print mo™Ys
// Serial.print (b2,HEX);
countuwords++;

// two bytes of FFh will mark the end
if ((bl !'= @xFF) || (bl != BXFF))
{ Consecutive=bl1>>4;
reading= ((bl & BBBOB1111)<<8)+b2;
Convert(reading);
[/ debuggin code

Page:

240

// Serial.print ")
// Serial.print (Consecutive);
// Serial.print ")
// Serial.print (reading);
// Serial.printin();
// while (Serial.available() ==0);
// c=Serial.read();
// the logic here is we need to print every reading at least once ...
// that is when it is zero. When we subtract one from zero we get 255
while (Consecutive<255)
{ countreading++;
Serial.print (reading);
Serial.print (char(9));
Serial.print (Celsius,?2);
Serial.print (char(9));
Serial.print (Fahrenheit,?2);
Serial.printin ();
Consecutive--;

i debuggin code
// Serial.print (Consecutive);
// Serial.print ERSE

// Serial.printin();
// while (Serial.available() ==8);
// c=Serial.read();
3
// nouw check the addresses
if ((StorageEnd-StorageIndex)<2)
{ if (StorageMark != StorageBegin)
{ StorageEnd = StorageMark;
StorageMark = StorageBegin;
StorageIndex = StorageMark +2;

3
3
3
3

PrintSeperatorLine();

Serial.printin (F("; End EEPROM data dump"));

Serial.print (F("; Readings:\t"));

Serial.printin (countreading, DEC);

Serial.print (F(";Storage Words:\t"));

Serial.printin (countwords, DEC);

PrintSeperatorLine();
// restore the current reporting mode
ReportMode=savemode;

void Responce (char str[])
{if (EepromMode == false)
{ // we do not want to get hung up

// this just serves to reduce command responce memory usage a bit
// trying to urtie to seomthing that is not connected
Serial.print (F("; "));
Serial.print (cmd);
Serial.print (F(" "));
Serial.printin (str);

void PrintOKStr ()
{ // command was accepted and processed
// this just serves to reduce command responce memory usage a bit
Responce ("O0K");

Page: 241

void PrintNotRecognized()
{ // command was Not Recognized
// this just serves to reduce command responce memory usage a bit
Responce ("??");

void PrintNotImplemented()
{ // command was Not Recognized
Responce ("XX");

void ShutDoun()
{ // Note that no provision is made to wake up.
// This is as close to shutdouwn as we can get.
// Because of the inefficent voltage regulator this
// mode still draws a lot of power (about 1@mA).
// A standard 9 volt battery may last about 16 hours.

// Serial.printin(prevcmd);
if ((prevcmd[B8]=='S"') && (prevcmd[1]=='S"))
{ Serial.printin (F("; SHUTDOWN"));
// give device time to send string
for (byte i=8; i< 25; i++)
{ QuickBlink();
delay (108);

cbi(ADCSRA, ADEN); // bit 7 of ADCSRA, disable ADC
noInterrupts();

set_sleep_mode(SLEEP_MODE_PWR_DOWN);

sleep_enable();

sleep_mode(); // all execution should stop here
while(8==0); // endless loop (belts and suspenders)
3
else PrintOKStr(); // first time through only
3
e S

void softuare_Reset()
{ // Restarts program from beginning but
// does not reset the peripherals and registers
// as we are not doing anything with the the
// timers or peripherals or registers this
// should be adequate (will not support updating)

// Serial.printin(prevcmd);
if ((prevemd[@]=="!"') && (prevcmd[1]=='!"))
{ Serial.printin (F("; RESETTING"));
// give device time to send string
delay (1060);
asm volatile (" jmp 0");

3
else PrintOKStr(); // first time through only

void SetRawReadMode()
{ // check for "T" or "F", true of false
if (cmd[1]=="'T') {RtnRawRead = true; Print0OKStr();
else if (cmd[1]=='F') {RtnRawRead = false; PrintOKStr();
else PrintNotRecognized();

L

Page: 242

void SetCelsiusMode()
{ // check for "T" or "F", true of false

if (cmd[1]=="T') {RtnCelsius = true; PrintOKStr();3}
else if (cmd[1]=='F') {RtnCelsius = false; PrintOKStr();}
else PrintNotRecognized();

3
e
void SetFahrenheitdMode()

{ // check for "T" or "F", true of false

if (cmd[1]=='T') {RtnFahrenh = true; PrintOKStr();3}
else if (cmd[1]=='F') {RtnFahrenh = false; Print0KStr();3}
else PrintNotRecognized();

3
e
void SetReportMode()

{ // check for "T" or "F", true of false

if (cmd[1]=="T"') {ReportMode = true; Print0KStr();3}
else if (cmd[1]=='F') {ReportMode = false; Print0OKStr();3}
else PrintNotRecognized();

3
A
void ToggleDebugMode()

{ // toggle Debug mode

if (DeBug == true) DeBug = false;
else if (DeBug == false) DeBug = true;
PrintOKStr();

3
ettt
void SetAvrInternalMode()

{ // check for "T" or "F", true of false

if (cmd[1]=='T') {RtnAvrRead = true; PrintOKStr();3}
else if (cmd[1]=='F') {RtnAvrRead = false; PrintOKStr();3}

else PrintNotRecognized();

void ToggleRoundMode ()
{ // check for "T" or "F", true of false
if (RoundMode) {RoundMode = false; PrintOKStr();3}
else {RoundMode = true; PrintOKStr();?}

void NeuReportTime()
{ // set report Minutes
if (cmd[1]=="1") { MinuteTarget
else if (cmd[1]=='2"') { MinuteTarget
else if (cmd[1]=='3") { MinuteTarget
else if (cmd[1]=='4") { MinuteTarget ; Report_Reset
else if (cmd[1]=='5"') { MinuteTarget = Report_Reset
//---- the timings below have not been tested ---------------

; Report_Reset
; Report_Reset
; Report_Reset

AAAAA
-
o e s o

|
Ul

else if (cmd[1]=='6"') { MinuteTarget = 10; Report_Reset();3}
else if (cmd[1]=='7') { MinuteTarget = 15; Report_ Reset();3}
else if (cmd[1]=='8"') { MinuteTarget = 20; Report Reset();3
else if (cmd[1]=='9') { MinuteTarget = 30; Report_ Reset();3}
else if (cmd[1]=='0"') { MinuteTarget = 60; Report Reset();3}
else if (cmd[1]=='A') { MinuteTarget = 1208; Report_Reset();3}
else if (cmd[1]=='B') { MinuteTarget = 240; Report_Reset();3}
else if (cmd[1]=='C') { MinuteTarget = 360; Report Reset();3}

Page:

243

else if (cmd[1]=='D') { MinuteTarget

else if (cmd[1]=='E') { MinuteTarget 720; Report Reset();3

else if (cmd[1]=='F') { MinuteTarget 1448; Report_ Reset();3}

// max=86,400,0808 milliseconds and that is why we use four byte variables

480; Report Reset();3

else if (cmd[1]=='T") Serial.printin(F("; TT XX")); // not implimented
else PrintNotRecognized(); // not recognized

void Report_Reset()
{ // this force the current data to be reported
// and reset our clock using the new time
unsigned long SaveMe=SecondsTarget;
PrintoKstr();
Serial.printin (F("; Report Timing reset"));
// calculate seconds between report lines
// SecondsTarget=MinuteTarget*SecondsMinute;
// we have to "cast" the two word values or we will get a word value for the result
SecondsTarget=(long(MinuteTarget)*long(SecondsMinute));

if (SecondsTarget != SaveMe) neuwflg = neuflg | B0008100086;
// Serial.print (F("Got Here: report reset, milliseconds to wait= "));
// Serial.printin (SecondsTarget);

Accumalator = 0; // reset report parameters
CycleCount = 9;
RptTrigger = millis() + SecondsTarget;

RptStartTime= millis();
// Serial.print (F("Got Here: report reset, trigger= "));
// Serial.printin (RptTrigger-millis());

void NeuwIdString()
{ // New Location ID String
// Serial.printin("got here: NewIdString");
// set time out to 5 seconds
unsigned long timelimit = millis() + (5008);
boolean timeout=false;
char c= -1;
byte n= 8;
while ((c !'=8) & (c !=10) & (c != 9) && (c != 13) && (n<EEidsize) && (timeout==false))
{ delay(10);
¢ = Serial.read();
if (c > 31) IdString[n++]=c;
// check for timeout
if (millis()>timelimit) timeout=true;

3
while (n<EEidsize) IdString[n++]=8;
if (timeout) Serial.printin (F("; L: aborted due to timeout"));
else
{ IdString[EEidsize]=8; // make certain last charater is null
newflg = neuflg | BOBBOBGAI;
// Serial.printin (IdString);
PrintOKStr();
3

DrainCmdTermiantors();

void PrintDegree0ffsetEffect(float NewOffset)
{ // new offset must be in Degrees Fahrenheit
boolean SaveRoundMode;
SaveRoundMode=RoundMode;

Page:

244

while (CycleCount<50) ReadRawTempAl();
DegreeOffset=0;

RoundMode=false;
Convert(Accumalator/CycleCount);
DegreeOffset=NewOffset;

Serial.print (F("; Offset(F):\t"));
Serial.printin (DegreeOffset);
Serial.print (F(";Fahrenheit:\t"));
Serial.printin (Fahrenheit);
Serial.print (F("; Adjusted:\t"));
Fahrenheit=Fahrenheit+NewOffset;

if (SaveRoundMode) Fahrenheit=nearesthalf(Fahrenheit);
Serial.printin (Fahrenheit);

Serial.print (F("; Celsius:\t"));

Serial.printin (Celsius);

Serial.print (F("; Adjusted:\t"));
Celsius=Celsius+(Degree0ffset/1.80600);

if (SaveRoundMode) Celsius=nearestquater(Celsius);
Serial.printin (Celsius);

neuflg = newflg | BO@BOBGA10;
RoundMode=SaveRoundMode;

PrintoKstr();

void ValueNotAccepted()
{ Serial.print("; ");
Serial.print(cmd);
Serial.print(" invalid/no input");

void NeuDegreeOffset()
{ // New Degree Offset
float tempfloat=0;
delay (2000);
tempfloat=Serial.parseFloat();
if (tempfloat!=0)

{ if (abs(tempfloat)<0.010) tempfloat = ©;
PrintDegreeOffsetEffect(tempfloat);
neuflg = neuflg | B0OBBLEB1O;

3

else ValueNotAccepted();
DrainCmdTermiantors();

void CalculateDegreeOffset(float tempfloat)
{ // calculate a new degree offset, TempF is Temperature in degrees Fahrenheit
// get the current raw reading
boolean SaveRoundMode;

Serial.printin (F("; Calculating new Degree offset"));
while (CycleCount<50) ReadRauTempAl();

// set the current offset to zero so that it

// does not affect the Conversion

DegreeOffset=0;

SaveRoundMode=RoundMode;

RoundMode=false;

Convert(Accumalator/CycleCount);

RoundMode=SaveRoundMode;
PrintDegreeOffsetEffect(tempfloat-Fahrenheit);

Page: 245

void FahrenheitEquals()
{ // sets offset according to current reading and input Fahrenheit

float tempfloat=0;
float deltaR;
word RawReading;
// Serial.printin (F("Got Here: FahrenheitEquals"));
delay (26000);
tempfloat=Serial.parseFloat();
if (tempfloat != @) CalculateDegreeOffset(tempfloat);
else ValueNotAccepted();
DrainCmdTermiantors();

void CelsiusEquals()
{ // sets offset according to current reading and input Fahrenheit

float tempfloat=0;
float deltaR;
word RawReading;
// Serial.printin (F("Got Here: CelsiusEquals"));
delay (2000);
tempfloat=Serial.parseFloat();
if (tempfloat != @) CalculateDegreeOffset((tempfloat*1.8)+32);
else ValueNotAccepted();
DrainCmdTermiantors();

void NeuRefVolt()
{ // Neu Degree Offset
float tempfloat=0;
delay (2000);
tempfloat=Serial.parseFloat();
if (tempfloat!=e)
{ // Serial.printin(tempfloat,4);
// Serial.printin(RefVoltage,4);
RefVoltage=tempfloat;
// Serial.printin(RefVoltage,4);
neuflg = neuflg | B0OGBLB166;
PrintoKstr();
3
else ValueNotAccepted();
DrainCmdTermiantors();

void RestoreFromBackup()
{ char TempString[EEwdsize];
byte i;
// read the backup copy
for (i=0; i<EEwdsize; i++) TempString[i]=EEPROM.read(StorageBackup + i);
// uwrite working copy
for (i=0; i<EEwdsize; i++) EEPROM.urite(StorageWorking +i, TempString[i]);
neuwf1g=0;
Read_Calibration_Data();
Report_Reset();

void OveruriteBackup()
{ char TempString[EEuwdsize];
byte i;
// read the working copy

Page: 246

for (i=0; i<EEwdsize; i++)
TempString[i]=EEPROM.read(StorageWorking + i);
// urite backup copy
for (i=0; i<EEwdsize; i++) EEPROM.urite(StorageBackup +i, TempString[i]);
PrintOKStr();

//
void TestDatal()
{ // These sets uere picked for testing
// so that one set look like the another set.
char temp[]="(1)tst data,Nano ";
J/eeeeieann. 1234567890123456
byte i;
Serial.printin(F("; Test Data one being written to EEPROM"));
// clear the EEPROM report storage area
ClearStorage();
for (i=0; i< EEidsize; i++) IdString[i]=temp[il];
// Insert null terminator at end
IdString[EEidsize]=0;
DegreeOffset=0;
RefVoltage =1.075;
MinuteTarget=1;
neuwf 1g=0XFF;
Write_Calibration_Data();

void TestData2()
{ char temp[]="(2)tst data, UNO ";

[/eeeiiian. 1234567890123456
byte i;
Serial.printin(F("; Test Data two being written to EEPROM"));
// clear the EEPROM report storage area
ClearStorage();
for (i=0; i< EEidsize; i++) IdString[i]=temp[il];
// Insert null terminator at end
IdString[EEidsize]=0;
DegreeOffset=0;
RefVoltage =1.1000;
MinuteTarget=1;
neuwf 1g=0XFF;
Write_Calibration_Data();

void CalibrationMode()
{ // used for calbration, reduces time between report lines to 5 seconds
// there should be about 48 samples per report which will still give a good average

if (SecondsMinute==5600)
{
Serial.printin(F("; Exiting 5 second calibration mode <<<"));
SecondsMinute=60000;
3
else
{
Serial.printin(F("; Entering 5 second calibration mode >>>"));
SecondsMinute=5000;
3
MinuteTarget=1;
DeBug=false;
EepromMode=false;
ReportMode=true;
RtnRawRead = true;

Page:

247

Vo

//

RtnCelsius = true;
RtnFahrenh = true;
Report_Reset();

id EepromDumpAl1()

{ char buffer[60];
word addr=0;
PrintSeperatorLine();

//
//

Serial.printin(F("; Dump all EEPROM in Hex and ASCII"));

while (addr < E2END)
{ for (byte i=8; i<16; i++)
{ buffer[i]=EEPROM.read(addr++);
3
Serial.print ("; ");
Serial.printin(formatRamDump(addr-16, buffer));
3
PrintSeperatorLine();
PrintOKStr();

end of thermometer functions code

//
//
//

//

allocate buffer
set start address

// inform the user

run until we reach the end
process 16 bytes at a time
read EEPROM

print formatted string

//

Page: 248

Appendix: Thermometer ATMega168

Main Program File (ATMega168)

/* ThermometerOne, ATMEGA168 Version */
/* Release 1.0.0, October 2013, Public Domain */

#include <avr/sleep.h> // needed for shutdown function
#include <EEPROM.h> // needed for EEPROM read and urite

// EEPROM Address Constants

const word EEmask = 0; // 1 byte location of EEPROM storage mode mask
const word EEflag = 1; // 1 byte location of EEPROM storage mode flag
const word EErefvolt= 2; // 2 byte location of RefVoltage

const word EEoffset = 4; // 2 byte location of DegreeOffset

const word EEminutes= 6; // 2 byte location of Report Target Minutes

const word EEunusedd= 8; // 2 byte location -- reserved -- unused

const word EEunusedl= 10; // 2 byte location -- reserved -- unused

const word EEunused2= 12; // 2 byte location -- reserved -- unused

const word EEunused3= 14; // 2 byte location -- reserved -- unused

const word EEidtring= 16; // ID string w/o termiantion size (16)

const word EEidsize = 16; // 24 byte location of IdString

const word EEwdsize = EEidtring+EEidsize; // Working data storage size (32)

) At ittt it // -- This area reserved for Table based system --
const word EEtable = 32; // 48 word location of converion table

const word EEtbsize = 80; // Working data storage size (80)

) At ittt it // -- This area reserved for Table based system --
const word StorageWorking=EEmask; // EEPROM start for working calibration data

// EEPROM start for backup copy of constants

// note we have to add 1 to the value

// Becasue addresses begin with zero not one
const word StorageBackup =((E2END-(EEwdsize))+1);

// EEPROM addresses variables // begin storage for report data

word StorageBegin =StorageWorking+EEwdsize+EEtbsize;

word StorageMark =StorageBegin; // marks start of current segment

word StorageEnd =StorageBackup; // marks end of current segment

word StorageIndex =StorageBegin; // index for next EEPROM urite

// Conversion Factors/Calibraton Data

float RefVoltage; // Analog Sensor Reference Voltage

const float CovrtFactorV= 8192;

float DegreeOffset; // Fudge factor to adjust output

const float CovrtFactorO= 1024;

char IdString[EEidsize+1]; // ID/Location string for this device

word MinuteTarget =1; // Number of minutes between report lines
byte newflg=0; // used to indicate new factors in memory
float Celsius; // Last conversion to Celsius Temperature
float Fahrenheit; // Last conversion to Fahrenheit Temperature
// Global operational mode Variables // set default operation modes

boolean ReportMode = true; // True = reporting, False = Command Mode
boolean RtnRawRead = true; // True = include Raw

boolean RtnCelsius = true; // True = include Celsius

boolean RtnFahrenh = true; // True = include Fahrenheit

boolean DeBug = false; // True = extended reporting for debugging
boolean EepromMode = false; // True = wurite data to EEPROM on next run
boolean RoundMode = true; // True = round output to nearest 1/4 or 1/2
// Global uwork Variables // There are 10868 milliseconds in a second

// word SecondsMinute = 10000; // --- to speed things up a bit for debugging
word SecondsMinute = 606000; // added so calibraton timining can be reduced
unsigned long SecondsTarget = 0; // Number of seconds betuween report lines

Page: 249

unsigned long RptStartTime 8; // Time between report lines
byte gap = 0; // used to increase gap between reads
unsigned long RptTrigger = 0; // Target Time for report
unsigned long CycleStart = 0; // Target Time for report
unsigned long CycleTime = 0; // Target Time for report
unsigned long Accumalator = 0; // Accumalate temperature reads
unsigned long CycleCount = 0; // Cycles per Report line
char cmd[] = {0,0,03; // used to store two character command
char prevemd|] = {0,0,03; // used to store previous two character command
word LastRead = 0; // Stores previous RawRead Average
byte Consecutive = 0; // used to count consective equal readings
//
void setup()

{ char c;

Serial.begin (9600);

pinMode(13, OUTPUT); //

EnableADC(); //
delay (1060); //
while (Serial.available()>8) //
c=Serial.read();
Read_Calibration_Data(); //
Check EEPROM(); /1l

// calculate seconds between report lines
// we have to 'cast" the two word values or
SecondsTarget=long(MinuteTarget)*1ong(Secon
//delay (5000); //
if (EepromMode==false) ReportStatus(); //
Accumalator = 0; //
CycleCount = 0;

RptTrigger = millis() + SecondsTarget;
RptStartTime= millis();

void loop()
{ char cl, c2;
word wtemp;

// ---- This is where we check for command
if ((Serial.available()>2) & & (EepromMode==
{ if(ReadTwoCharacters()) CmdProcessor();

// ---- This is uhere we collect our temper
// gap is used to increase the amount of ti
// This Insures that we will not miss any d
if (gap++ == 9)
1 gap=6;
// cycle times are only used if debuggi
if (DeBug == true) CycleStart= millis()
ReadRawTempAl();

if (DeBug == true) CycleTime = CycleTim

---- This is uwhere we output the teperat
The time required to read 64 samples is
within 158 milliseconds of the Report Tr
With the these timing numbers there are
64 virtual 12 bit samples per minute.
Added condition for millis exceeding rep
(((RptTrigger-millis())< 158) || (millis
{ // Serial.printin ("Got here: RptTrigge

so we can blink it later during writes

enables the ADC and set ADC clock factor
let serial library complete setup
drain any data from the serial buffer

read and set conversion factors from EEPROM
see if we are writing to EEPROM vs Serial

we will get a word value for the result
dsMinute);

allow PC 5 seconds to get setup

report default parameters

set startup parameters

input
false))
3

ature data
me between reading sampling the ADC.
ata transmitted on the serial port.

ng is turned on

3

e+(millis()-CycleStart);

ure data

about 119-128 milliseconds. If we get
igger Time then we wait for it.

500 reads of

ort trigger (possible with long commands)
()>RptTrigger))
r');

Page:

250

while (millis() < RptTrigger);

// We want the new trigger time set as close as possible to when the previous trigger
// went off --- so we put ti first.

RptTrigger= (millis() + (SecondsTarget));

Report();

3

//
void CmdProcessor()
{// this function is the main command handler
// not many comments because I think the code is obviuos
if (DeBug == true)
{ Serial.print (F("; Command Processor "));
DebugPrintCharacters (cmd[@],cmd[1]);

3
if ((cmd[B]=='C"') && (cmd[1]=='=")) CelsiusEquals();
else if ((cmd[8]=='D") && (cmd[1]=='B')) ToggleDebugMode();
else if ((cmd[@]=='D') && (cmd[1]=='0"')) NeuwDegreeOffset();
else if ((cmd[@]=='E') && (cmd[1]=='+")) EEmodeFlagSet();
else if ((cmd[B]=="E') && (cmd[1]=='C')) ClearStorage();
else if ((cmd[@]=='E') & (cmd[1]=='D"')) DumpStorage();
else if ((cmd[@]=='E') && (cmd[1]=='-"')) EEmodeFlagClear();
else if ((cmd[B]=='F') && (cmd[1]=='=")) FahrenheitEquals();
else if ((cmd[@]=='I"') && (cmd[1]=='D"')) {Serial.print(F("; ")); Print_IdString();3}
else if ((cmd[@]=='L') && (cmd[1]=='L"')) HelpMe();
else if ((cmd[B]=='L') && (cmd[1]==':")) NewIdString()
else if ((cmd[B]=='R') && (cmd[1]=='V')) NewRefVolt();
else if ((cmd[B]=='S') && (cmd[1]=='S"')) ShutDouwn();
else if ((cmd[@]=='S') && (cmd[1]=='T"')) ReportStatus();
else if ((cmd[@]=='W') && (cmd[1]=='H')) Write_Calibration_Data();
else if ((cmd[@]=='W') && (cmd[1]=='+")) OveruriteBackup();
else if ((cmd[B]=="W') && (cmd[1]=='-"')) RestoreFromBackup();
else if ((cmd[@]=='?"') && (cmd[1]=='?"')) HelpMe();
else if ((cmd[@]=="!"') && (cmd[1]=='!"')) software_Reset();
else if ((cmd[8]=='06"') && (cmd[1]=='8")) ToggleRoundMode();
else if (cmd[B]=='C") SetCelsiusMode();
else if (cmd[B]=='F") SetFahrenheitdMode();
else if (cmd[B]=='P") SetReportMode();
else if (cmd[B]=='R") SetRawReadMode();
else if (cmd[B]=='T") NewReportTime();

// ATMEGA186 does not have internal temperature senor
else if ((cmd[B]=="I") && (cmd[1]=='T"')) PrintNotImplemented();
else if ((cmd[@]=='I"') && (cmd[1]=='F')) PrintNotImplemented();

// example of application specific command implimneted
// this command writes default data to the EEPROM working storage
else if ((cmd[B]=='Z") && (cmd[1]=='1"')) TestDatal();

void HelpMe()
{ // We need to seriously reduce the size of this function
// Reduced by: 1,922 bytes
Serial.printin(F(
"; AtMegalé8 Temperature Sensor 1.8\n"
"; ID ST RT RF FT FF F= CT CF DO RV\n"
"; T# PF PT DB 088 L: WW W+ W- E+ E-\n"
"; EC ED LL SS !! Z1"));
PrintSeperatorLine();

Page: 251

void PrintSeperatorLine()
{ Serial.print("; ");
for (byte i=8; i<36; i++) Serial.print('-");
Serial.printin();

3

//
boolean ReadTwoCharacters()
{ char cl1=8,c2=0,c3=-1;
byte m=0;
boolean EOC=true; // End of Command Terminator
boolean OurReturn=false;

// It is not to be believed how much effort went into creating this simple function to read
// two characters. I noted a bit of problem reading characters from the serail port when

// the loop was too fast therefore I have added a bit of a delay to insure the serial port

// library can keep up. Worst case senario this function can take more than 258 milliseconds.
// Normally when this functionis called we expect the htree bytes we need to be in the buffer
// but if there is noise on the line or a parrot randomly pecking at the keyboard it could

// take a bit longer.

// by defintion we are looking for two characters followed by a terminator

// we define a command terminatore to be a carriage return, new line or null character

// --- for good measure we are including the tab character and space as uell

// space uwas added because it is impossible to send a tab character from the Ardunion IDE

// we wWill accept any combination of those characters as a single terminator

// we wWill accept the Tast two printable ASCII characters before a terminator for our command
// uwe keep reading until we get a terminator, but we will only read for a short period

// but before we do anything else we are going to save the rpevious command for posterity
prevcmd[@8]=cmd[0]; // actually we are saving it so that shutdoun
prevemd[1]=cmd[1]; // and reset can check it before they execute

while ((c3 !'= 13) && (c3 != 18) && (c3 != 9) && (c3 !'= 8) && (c3 != 32) && (m<25))
{ // if we have a valid ASCII character for c3 then roll the charaters douwn
if (Serial.available()>0)
{ c3=Serial.read();
if (c3>32) {cl=c2; c2=c3;}

// we need a bit of a delay to let the serial interface catch up
// after 25 empty reads we give up
else { delay (10); m++;3
3
// DebugPrintCharacters (cl,c2,c3,m);

// we are very liberal about what we will accept for a command terminator

// but we insist on having one.

if ((c3 != 13) && (c3 != 10) && (c3 != 9) && (c3 != 8) && (c3 != 32)) EOC= false;

// uwe need to drain any remaining command terminator characters from the serail buffer
else DrainCmdTermiantors();

// now check for valid ASCII charaters and End of Line
if ((c1>32) && (c2>32) && EOC)
{ // OK... uwe have something to work with
// Convert lower case to UPPER case excpet "u"
// DebugPrintCharacters (cl,c2,c3);
if ((cl != 'u') && (cl1 >96) && (cl1 <123)) cli
if ((c2 != 'u') && (c2 >96) && (c2 <123)) c2
// DebugPrintCharacters (ci,c2);
cmd[@]=cl;
cmd[1]=c2;
OQurReturn=true;

(c1 -32);
(c2 -32);

// whatever it was that was sent did not meet our criteria

Page: 252

// inform the parrot that he or she must do better
else Serial.printin(F("; ?? ??"));
return OurReturn;

void DrainCmdTermiantors()
{ char c3=8;
// removed leading command terminators from serial buffer
delay (18); c3=Serial.peek();
while ((c3==13) || (c3==10) || (c3==9) || (c3==8) || (c3 == 32))
{ c3=Serial.read();
delay (18);
c3=Serial.peek();
3
// c3 should at this point should be -1 unless there are more commands/charaters in the
buffer

3

//
// overloaded debugging function for debugging the above input routine
void DebugPrintCharacters (char cl, char c2, char c3, byte m)

{
if (DeBug == true)
{ Serial.print ("Received: ");
Serial.print (cl);
// Serial.print " ")
Serial.print (c2);
Serial.print (" ");
if (c3 != 8)
{ Serial.print (c3, DEC);
Serial.print (" ");
3
if (m != @) Serial.print (m, DEC);
Serial.printin ();
3
3
void DebugPrintCharacters (char cl, char c2, char c3)
{ byte m=0;
DebugPrintCharacters (cl,c2,c3,m);
3
void DebugPrintCharacters (char cl, char c2)
{ byte m=8;
char c¢3=0;
DebugPrintCharacters (cl,c2,c3,m);
3
/2 End of Main File-——-------------—-o——

Thermometer Function ATMegal68 File

// cbi and sbi are standard (AVR) methods for setting,
// or clearing, bits in PORT (and other) variables.
#ifndef cbi

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~ BV(bit))
#endif

#ifndef sbi

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

void EnablefADC()
{ // This is probably not needed but
// set system clock devisor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-208 KHz range.

Page: 253

sbi (ADCSRA, ADPS2);
sbi (ADCSRA, ADPS1);
sbi(ADCSRA, ADPSB);
cbi (ADCSRA, ADATE);
sbi (ADCSRA, ADEN);

void Read Calibration_Data()
{ byte i=8, j=0;
word TempWord;
char c;
char sign;

// detect a virgin device --- well at le

if ((EEPROM.read(EEminutes)==0xFF) &&
(EEPROM.read(EEminutes+1)==8xFF))
TestDatal();

// Get Degree Offset

TempWord= EEPROM.read(EEoffset)<<8;
TempWord= (TempWord + EEPROM.read(EEoffs
sign= 1;

if ((TempWord>>12) == B1660) sign= -1;
// strip the sign bit
TempWord=(TempWord<<1)>>1;

// now we need to convert it to a fracti
DegreeOffset=(float(TempWord)/float(Covr

// Get the RefVoltage factor;

TempWord= EEPROM.read(EErefvolt)<<8;
TempWord= TempWord + EEPROM.read(EErefvo
// now we need to convert it to a fracti
RefVoltage = float(TempWord)/CovrtFactor

// ID String -----—------—-------——-----
i=0; c=1;
while (c!=8,i< EEidsize)
{c=EEPROM.read(EEidtring + i);

IdString [i++]=c;

3
IdString [EEidsize]=8;

// Set MinuteTarget from default minutes
MinuteTarget=(EEPROM.read(EEminutes)<<8)
if (MinuteTarget<l)MinuteTarget=1;

// this is a bit flag to indicate when t
// in memory are different from those st
neuwf1g=0;

3
[
void Write_Calibration_Data()

{ word i=0;

// float saveflt;
word TempWord;
char c=-1;

byte sign;

// New location
if ((newflg & BAOOOGBO1) == BOOGBOGGIL)

for (i=0;i<EEidsize; i++) {EEPROM.uw

// bit 2 of ADCSRA, system clock devisor

// bit 1 of ADCSRA, system clock devisor

// bit @ of ADCSRA, system clock devisor

// bit 5 of ADCSRA, disable auto trigger mode
// bit 7 of ADCSRA, enable ADC

ast try

et +1));

on
tFactor0)) * sign;

1t +1);
on
vV

// read the ID string

// just in case

+ EEPROM.read(EEminutes +1);

he current constants
ored in working storage

rite((EEidtring +i), IdString[i]);3

Page:

254

3

// Neuw Degree Offset
if ((newflg & BOPOOGB10O) == BOOBBOB1O)

{ sign = 0;
if (DegreeOffset <@) sign = B1600060060;
TempWord=uword(abs(Degree0ffset) * CovrtFactor0);
EEPROM.urite(EEoffset , highByte(TempWord)|sign);
EEPROM.urite(EEoffset +1, TowByte (TempWord));

3

// Neuw Reference Voltage
if ((newflg & BOGOBO16O) == BBOOBO160)

{ TempWord = word(RefVoltage * CovrtFactorV);
EEPROM.urite(EErefvolt , highByte(TempWord));
EEPROM.urite(EErefvolt +1, lowByte (TempWord));

3

// New MinuteTarget
if ((newflg & BOPO16GE0) == BOBB1006A)
{

EEPROM.urite(EEminutes , highByte(MinuteTarget));
EEPROM.urite(EEminutes +1, lowByte (MinuteTarget));
3
// urite the unused word(s)
i=EEunusedo;

while (i<EEidtring)
{if (EEPROM.read(i)!= OxFF) EEPROM.uwrite(i, OxFF);
1++;

3

// clear the EEMODE flag
EEmodeFlagClear();

// note newflg is reset by Read_Calibration_Data
Read_Calibration_Data();

// Print0OKStr(); is sent by Report_Reset
Report_Reset();

void ClearStorage()
{ // this is used to clear/erase the EEPROM data storage (except for constant areas)
word addr;
byte b;
for (addr=(StorageBegin); addr<StorageBackup; addr++)
{ if (EEPROM.read(addr) != @xFF) EEPROM.uwrite(addr,®xFF);
3 // note: each byte requires 6-8 machine cycles
PrintOKStr ();

void EEmodeF1agSet()
{ // toggle the flag forthe next run to write to EEPROM

// does not affect current run
// Here is the thing. We have setup wearleveling for our EEPROM data storage
// but modeflag gets hit twice for every EEPROM run. So it will wearout
// long before the bulk of the storage. We could just increment the byte and
// 1ook for odd or even values but that would continuelly toggle the low bit
// wearing it out before there rest. As it turns out it is writing a zero to
// a bit that wears then out. So we want to minimize the zero bit urites.
// We are going to move a zero bit right to left. This extends our life by a
// factor of eight. At that point you need to swap the backup and working
// data locations by changing the EEPROM address locations and reprograming
// the Arduino. That would double the life (2 * 8 = 16).

Page: 255

//

byte flag;

if (EEmodeF1agTF()==false)

{

// make them not equal
// shift left and add a one to the right
f1ag=EEPROM.read(EEf1ag);
// Serial.printin(flag);
flag=(flag<<l)+1;
// Serial.printin(flag);
// if we have all ones start over again at the right
if (flag==B11111111) flag=Bl111111@;
// Serial.printin(flag);
// now save it
EEPROM.urite(EEflag,flag);

3
PrintOKStr();

void EEmodeFlagClear()
{ byte flag;
if (EEmodeF1agTF())
{ // make them equal
f1ag=EEPROM.read(EEf1ag);
EEPROM. urite(EEmask,flag);
3
if (EepromMode==false) PrintOKStr();

boolean EEmodeF1agTF ()

{ // returns true if EEmodeFlag is set
byte flag,mask;
f1ag=EEPROM.read(EEf1ag);
mask=EEPROM.read (EEmask);
if(flag==mask) return false;
else return true;

void Check_EEPROM()
{ byte b[4],i;
word u;
word addr;

EepromMode=false;
if (EEmodeF1agTF())

EepromMode=true;
// clear the flag
EEmodeF1agClear();
// disable serial reporting and debug mode
ReportMode=false;
DeBug=false;
// we need to find the beginning of EEPROM that has not been used
// uwe need at least four bytes to begin a new section.
// so ue need to find the first place where there are four bytes with FFh
// zero our test pattern
for (i=8; i<4; i++) b[i]=0;
addr=StorageBegin;
while ((addr<StorageBackup) && ((b[@8]!=8xFF) || (b[1]!=8xFF)
[l (b[2]!=8xFF) || (b[3]!=6xFF)))

Page: 256

b[2]=b[3];
b[3]=EEPROM.read(addr++);
3

// did we read until the end ??
if (addr >= StorageEnd) StorageMark=StorageBegin;
// we found 4 bytes that have not been written to
else StorageMark=addr-4;
// in either case we clear the storage
ClearStorage();
// mark the beginning
EEPROM. urite(StorageMark,0);
EEPROM.uwrite(StorageMark+1,0);
// set then beginning and end of the current segment
StorageIndex=StorageMark+2;
StorageEnd=StorageBackup;
// definitive notice of mode
for (i=8; i < 3@; i++) {QuickBlink(); delay (258);3}

3
4 ittt ittt
void Print_IdString()
{ // Serial.print(F("; ")); // pefix
Serial.printin(IdString); // print it
3
ittt ittt

void PrintTrueFalse(byte T)
{ // used to report True or False for boolean Globals
if(T == 8) Serial.printIn(F("False"));
else Serial.printin(F("True"));

void ReportStatus()
{ // report settings
PrintSeperatorLine();
Serial.print (F("; Report:\t"));

PrintTrueFalse
Serial.print
PrintTrueFalse
Serial.print
PrintTrueFalse
Serial.print
PrintTrueFalse
Serial.print
PrintTrueFalse
Serial.print
PrintTrueFalse

Serial.print
Serial.printin
Serial.print
Serial.printin

(ReportMode);
(F("; Debug:
(DeBug);

(F("; Raw:
(RtnRawRead);
(F(";Fahrenheit:
(RtnFahrenh);
(F("; Celsius:
(RtnCelsius);
(F("; Round:
(RoundMode);

(F("; Minutes:

\t"))s
\t"));
\t"))s
\t"));
\t"));

\t"));

(MinuteTarget, DEC);

(F("; Voltage:
(RefVoltage, 4);

\t"));

// single sensor, no prefix needed

Serial.print (F("; Sensor ID:\t"));
Print_IdString ();
Serial.print (F("; Offset:\t"));

Serial.printin (DegreeOffset, 4);

if (newflg != 9)
Serial.printin (F(";Parameters not saved"));
if (EEmodeF1agTF())
Serial.printin (F(";EEPROM Mode Flag Set"));

Page: 257

PrintSeperatorLine();

void ReadRauTempA1()
{ // Read ADC for Pin Al (connected to LM34DZ Temperature Sensor)
// Cycle time is aproximately 124 miliseconds

unsigned long RawSum=0; // used to sum samples for averaging
word RawTemp=8; // used to accumalate 18 bit ADC readings
word test=0; // used to count samples

// Just in case ...
// The INPUT mode explicitly disables the internal pullup resistors.
pinMode (A1, INPUT);

// turn on internal reference, right-shift ADC buffer,ADC channel = ADC1 (pin A1)

// B116060BO: AMUX Voltage reference = Internal 1.1 volt (bits 7,6)
// B0BBOBOBAB: AMUX Right Shift ADC Buffer (bit 5)
// B0BBOBBAL1: AMUX Input Source= pin Al (bits 3,2,1,0)
ADMUX = B116666061;
delay(10); // wait for the things to stabilize
while (test++ < 1024) // oversampling loop (for averaging)
{ ADCSRA |= _BV(ADSC); // start the conversion
while (bit_is_set(ADCSRA, ADSC)); // RADSC cleared when complete
RawTemp = (ADCL | (ADCH << 8)); // collect the reading
RawSum += RauwTemp; // add it to out total
Accumalator += ((RawSum)>>10); // averag and add to Accumalator
// LSBs are lost
CycleCount++; // used by functions to average readings
3
e

void Convert(word RauReading)
{ // converts Raw Reading to Celsius and Fahrenheit
// New plan: offset will only be used for minor correction
// SCALE is actual voltage that is supposed to be 1.1 but reads 1.067
// This temperature sensor reports in Fahrenheit 1 milivolt per degree
// We need the correct voltage !!!
// Covrt2Fahrenheit=1.067;
Fahrenheit = (float(RawReading)/1824)* RefVoltage *108;
Fahrenheit = Fahrenheit + DegreeOffset;
if (RoundMode) Fahrenheit= nearesthalf(Fahrenheit);
// Consistancy is next to godliness.
// We are working in Fahrenheit.
// In our case Celsius is a function of Fahrenheit.
// Thus we always complete our Fahrenheit cals first.
// That inludes rounding.
Celsius = (Fahrenheit-32)/1.8;
if (RoundMode) Celsius=nearestquater(Celsius);

float nearestquater (float ValueIn)
{ // Return value rounded to nearest quater (8.25)
byte sign=1;
float fraction;
if (ValueIn , @)
{

sign = -1;

Page: 258

ValueIn=abs(Valueln);

fraction =ValueIn-long(Valueln);

if (fraction >= 0.875) fraction=1.00;
else if (fraction >= B8.625) fraction=8.75;
else if (fraction >= 8.375) fraction=8.50;
else if (fraction >= 8.125) fraction=8.25;
else fraction=0;
return (long(ValueIn)+fraction) * sign;
3
ittt

float nearesthalf (float ValueIn)
{ // Return value rounded to nearest half (8.50)

byte sign=1;

float fraction;

if (ValueIn , 0)
{
sign = -1;
ValueIn=abs(Valueln);

fraction =ValueIn-long(ValueIn);

if (fraction >= 0.758) fraction=1.00;
else if (fraction >= 8.258) fraction=8.50;
else fraction=0;
return (long(ValueIn)+fraction) * sign;
3
e

void Report()
{ word AvgSumRead;
AvgSumRead = Accumalator/CycleCount;
if (EepromMode) Report2EEPROM(AvgSumRead);
else if (ReportMode)
{ Convert (AvgSumRead);
Serial.print ('e');

if (RtnRawRead)

{ Serial.print (AvgSumRead);
Serial.print (char(9));

3

if (RtnCelsius)

{ Serial.print (Celsius,2);
Serial.print (char(9));

3

if (RtnFahrenh)

{ Serial.print (Fahrenheit,?2);
Serial.print (char(9));

3

if (DeBug)

{ Serial.print (CycleTime/CycleCount);
Serial.print (char(9));
Serial.print (CycleCount);
Serial.print (char(9));
Serial.print (millis()-RptStartTime);
RptStartTime=millis();

3

Serial.printin();
3
Accumalator 0;
CycleCount 0;
CycleTime = 8;
LastRead=AvgSumRead;

Page: 259

void QuickBlink()

{ // on the UNO 1 mullisecond will surfice

// adjusted up to 3 for Nano

digitalWrite(13, HIGH); // turn on LED

delay(3);

digitalWrite(13, LOW); // turn off LED
3
ettt ittt

void Report2EEPROM(word AvgSumRead)
{ // We are implimenting both data compression and wearleveling.
// 0Our data is only 12 bits. Becuase we should never get a reading
// over 2047 in our high bit will always be zero.
// We are going to use the top four bits to count consecutive equal
// readings. In that manner we may be able to store 16 readings in
// a singal word value.
word makeword;
QuickBlink();

// Serial.printin(F("Get here: Report2EEPROM"));
// send this string for testing: EC EE ST !! !!
// we need to skip the firs pass because we have nothing to work with
if (LastRead !=0)
{ if (LastRead == AvgSumRead) Consecutive++;
if ((Consecutive == 15) || (LastRead != AvgSumRead))
{ // Serial.printin(F("Get here: Report2EEPROM, urite record"));
// we are going to try two blinks everytime that there is a uwrite
makeword = (Consecutive <<12)+LastRead;
EEPROM.urite (StorageIndex++, highByte(makeword));
EEPROM.urite (StorageIndex++, lowByte(makeword));
Consecutive=0;
// nouw uwe need to check our storage space
if ((StorageEnd-StorageIndex)<2)
{ // folks there is Trouble in river city !
if (StorageMark==StorageBegin)
{prevemd[1]=prevcmd[@]=cmd[1]=cmd[@]="'S"; ShutDouwn();3}
if (StorageEnd ==StorageMark)
{prevcmd[1]=prevcmd[@8]=cmd[1]=cmd[@]='S"'; ShutDown();3}
// 0K, start at the beginning
StorageIndex=StorageBegin;
StorageEnd=StorageMark;

3
delay (58); // force a bit of a delay so both blinks can be seen
QuickBlink();
3
3
LastRead == AvgSumRead;
3
i

void DumpStorage()
{ // print data stored in eepronm
byte b1, b2, c;
word reading;
word countreading=0;
word countwords=0;
boolean savemode;
// save the current reporting mode
savemode=ReportMode;
// find the beginning of the data defined to be two zero bytes
bi=1;
b2=1;
while ((StorageIndex<StorageBackup) && ((b1!=8) || (b2!=8)))
{ bl=b2;
b2=EEPROM.read(StorageIndex++);

Page:

260

3
StorageEnd=StorageBackup;
StorageMark=StorageIndex-2;
// 4 high bits are the count, Tow 12 bits are the reading
PrintSeperatorLine();
Serial.printin (F("; Begin EEPROM data dump"));
Serial.printin (F("; Raw Reading\tCelsius\tFahrenheit"));
while (((StorageEnd-StorageIndex)>=2) && ((bl != @xFF)||(b2 != BXFF)))
{ b1=EEPROM.read(StorageIndex++);
b2=EEPROM.read(StorageIndex++);

[[—==—=—m— - debuggin code
// Serial.print "s Location: ");
// Serial.print (StorageIndex);
// Serial.print ")

// Serial.print (b1, HEX);

// Serial.print 0o e

// Serial.print (b2,HEX);
countuwords++;

// two bytes of FFh will mark the end
if ((bl !'= @xFF) || (bl !'= BxFF))
{ Consecutive=b1>>4;
reading= ((bl & BBBOB1111)<<8)+b2;
Convert(reading);
[[[m=—=——mm—memmes=a debuggin code
// Serial.print (", ");
// Serial.print (Consecutive);
// Serial.print SR
// Serial.print (reading);
// Serial.printin();
// while (Serial.available() ==0);
// c=Serial.read();
// the logic here is we need to print every reading at least once ...
// that is when it is zero. When we subtract one from zero we get 255
while (Consecutive<255)
{ countreading++;
Serial.print (reading);
Serial.print (char(9));
Serial.print (Celsius,2);
Serial.print (char(9));
Serial.print (Fahrenheit,2);
Serial.printin ();
Consecutive--;
3
// now check the addresses
if ((StorageEnd-StorageIndex)<2)
{ if (StorageMark != StorageBegin)
{ StorageEnd = StorageMark;
StorageMark = StorageBegin;
StorageIndex = StorageMark +2;

3
3
3
3
PrintSeperatorLine();
Serial.printin (F("; End EEPROM data dump"));
Serial.print (F("; Readings:\t"));
Serial.printin (countreading, DEC);
Serial.print (F(";Storage Words:\t"));
Serial.printin (countwords, DEC);
PrintSeperatorLine();
// restore the current reporting mode
ReportMode=savemode;
3

Page: 261

void Responce (char str[])
{if (EepromMode == false)
{ // we do not want to get hung up

// this just serves to reduce command responce memory usage a bit
// trying to urtie to seomthing that is not connected
Serial.print (F("; "));
Serial.print (cmd);
Serial.print (F(" "));
Serial.printin (str);

void PrintOKstr ()
{ // command was accepted and processed
Responce ("O0K");

void PrintNotRecognized()
{ // command was Not Recognized
Responce ("??");

void PrintNotImplemented()
{ // command was Not Recognized
Responce ("XX");

void ShutDoun()
{ // Note that no provision is made to wake up.
// This is as close to shutdown as we can get.
// Because of the inefficent voltage regulator this
// mode still draws a lot of power (about 1@mA).
// A standard 9 volt battery may last about 16 hours.

// Serial.printin(prevcmd);
if ((prevemd[@]=='S') && (prevcmd[1]=='S"))
{ Serial.printin (F("; SHUTDOWN"));
// give device time to send string
for (byte i=8; i< 25; i++)
{ QuickBlink();
delay (100);

3
cbi(ADCSRA, ADEN); // bit 7 of ADCSRA, disable ADC
noInterrupts();
set_sleep_mode(SLEEP_MODE_PWR_DOKWN);
sleep_enable();

sleep_mode(); // all execution should stop here
while(8==0); // endless loop (belts and suspenders)
3
else PrintOKStr(); // first time through only
3
i e e e

void softuare_Reset()
{ // Restarts program from beginning but
// does not reset the peripherals and registers
// as we are not doing anything with the the
// timers or peripherals or registers this
// should be adequate (will not support updating)

// Serial.printin(prevcmd);

Page: 262

if ((prevemd[@]=="!"') && (prevcmd[1]=='!"))
{ Serial.printin (F("; RESETTING"));
// give device time to send string
delay (1060);
asm volatile (" jmp 8");
3
else PrintOKStr(); // first time through only

void SetRawReadMode()
{ // check for "T" or "F", true of false
if (cmd[1]=='T') {RtnRawRead = true; PrintOKStr();3}
else if (cmd[1]=='F') {RtnRawRead = false; Print0OKStr();3}
else PrintNotRecognized();

void SetCelsiusMode()
{ // check for "T" or "F", true of false
if (cmd[1]=='T') {RtnCelsius = true; PrintOKStr();3}
else if (cmd[1]=='F') {RtnCelsius = false; Print0OKStr();?}
else PrintNotRecognized();

void SetFahrenheitdMode()
{ // check for "T" or "F", true of false
if (cmd[1]=='T') {RtnFahrenh = true; PrintOKStr();3}
else if (cmd[1]=='F') {RtnFahrenh = false; Print0oKStr();3}
else PrintNotRecognized();

void SetReportMode()
{ // check for "T" or "F", true of false
if (cmd[1]=='T"') {ReportMode = true; PrintOKStr();3
else if (cmd[1]=='F') {ReportMode = false; PrintOKStr();3
else PrintNotRecognized();

void ToggleDebugMode ()
{ // toggle Debug mode
if (DeBug == true) DeBug
else if (DeBug == false) DeBug
PrintOKStr();

void ToggleRoundMode()
{ // check for "T" or "F", true of false
if (RoundMode) {RoundMode = false; PrintOKStr();}
else {RoundMode = true; PrintOKstr();3}

void NeuReportTime()
{ // set report Minutes
if (cmd[1]=="1") { MinuteTarget
else if (cmd[1]=='2"') { MinuteTarget
else if (cmd[1]=='3"') { MinuteTarget
else if (cmd[1]=="4"') { MinuteTarget ; Report_Reset
else if (cmd[1]=='5"') { MinuteTarget 5; Report_Reset
//---- the timings below have not been tested ---------------

1; Report_Reset
2; Report_Reset
3; Report_Reset
4;

A~~~
— —
L e e

Page: 263

else if (cmd[1]=='6"') { MinuteTarget = 10; Report_ Reset();3}
else if (cmd[1]=='7') { MinuteTarget = 15; Report Reset();3}
else if (cmd[1]=='8"') { MinuteTarget = 20; Report_Reset();}
else if (cmd[1]=='9') { MinuteTarget = 30; Report_Reset();3}
else if (cmd[1]=='8"') { MinuteTarget = 60; Report Reset();3}
else if (cmd[1]=='A") PrintNotImplemented(); // not implimented
else if (cmd[1]=='B') PrintNotImplemented(); // not implimented
else if (cmd[1]=='C') PrintNotImplemented(); // not implimented
else if (cmd[1]=='D') PrintNotImplemented(); // not implimented
else if (cmd[1]=="E') PrintNotImplemented(); // not implimented
else if (cmd[1]=='F') PrintNotImplemented(); // not implimented
else if (cmd[1]=='T') PrintNotImplemented(); // not implimented
else PrintNotRecognized(); // not recognized
3
[==

void Report_Reset()
{ // this force the current data to be reported
// and reset our clock using the new time
unsigned long SaveMe=SecondsTarget;
PrintOKStr();
Serial.printin (F("; Report Timing reset"));
// calculate seconds between report lines
// SecondsTarget=MinuteTarget*SecondsMinute;
// we have to "cast" the two word values or we will get a word value for the result
SecondsTarget=(1ong(MinuteTarget)*long(SecondsMinute));

if (SecondsTarget != SaveMe) newflg = neuflg | B008100086;

Accumalator = 0; // reset report parameters

CycleCount = 0;
RptTrigger = millis() + SecondsTarget;
RptStartTime= millis();
3
[/ ==

void NeuwIdString()
{ // New Location ID String
// Serial.printin("got here: NewIdString");
// set time out to 5 seconds
unsigned long timelimit = millis() + (5008);
boolean timeout=false;
char c= -1;
byte n= 8;

while ((c !'= 08) & (c !'= 18) && (c != 9) && (c != 13) && (n<EEidsize) && (timeout==false))

{ delay(10);
c = Serial.read();
if (c > 31) IdString[n++]=c;
// check for timeout
if (millis()>timelimit) timeout=true;
3
while (n<EEidsize) IdString[n++]=8;
if (timeout) Serial.printin (F("; aborted due to timeout"));
else
{ IdString[EEidsize]=8; // make certain last charater is null
neuflg = newflg | BBBOOBEAIL;
// Serial.printin (IdString);
PrintoKstr();
3
DrainCmdTermiantors();

3

Page: 264

void PrintDegree0ffsetEffect(float NewOffset)
{ // neu offset must be in Degrees Fahrenheit
boolean SaveRoundMode;
SaveRoundMode=RoundMode;

while (CycleCount<508) ReadRawTempAl();
DegreeOffset=0;

RoundMode=false;
Convert(Accumalator/CycleCount);
DegreeOffset=NewOffset;

Serial.print (F("; Offset(F):\t"));
Serial.printin (DegreeOffset);
Serial.print (F(";Fahrenheit:\t"));
Serial.printin (Fahrenheit);
Serial.print (F("; Adjusted:\t"));
Fahrenheit=Fahrenheit+NewOffset;

if (SaveRoundMode) Fahrenheit=nearesthalf(Fahrenheit);
Serial.printin (Fahrenheit);

Serial.print (F("; Celsius:\t"));

Serial.printin (Celsius);

Serial.print (F("; Adjusted:\t"));
Celsius=Celsius+(Degree0ffset/1.80600);

if (SaveRoundMode) Celsius=nearestquater(Celsius);
Serial.printin (Celsius);

neuflg = newflg | B0GBOBGA10;
RoundMode=SaveRoundMode;

PrintOKStr();

void ValueNotAccepted()
{ Serial.print("; ");
Serial.print(cmd);
Serial.print(" invalid/no input");

void NeuDegreeOffset()
{ // Neuw Degree Offset
float tempfloat=0;
delay (2009);
tempfloat=Serial.parseFloat();
if (tempfloat!=0)

{ if (abs(tempfloat)<@.818) tempfloat = 0;
PrintDegreeOffsetEffect(tempfloat);
neuflg = neuflg | BOBOOBB1O;

3

else Serial.printin (F("; value not accepted"));
DrainCmdTermiantors();

void CalculateDegreeOffset(float tempfloat)
{ // calculate a new degree offset, TempF is Temperature in degrees Fahrenheit
// get the current rauw reading
boolean SaveRoundMode;

Serial.printin (F("; Calculating new offset ..."));
while (CycleCount<568) ReadRawTempAl();

// set the current offset to zero so that it

// does not affect the Conversion

DegreeOffset=0;

SaveRoundMode=RoundMode;

RoundMode=false;

Page: 265

Convert(Accumalator/CycleCount);
RoundMode=SaveRoundMode;
PrintDegreeOffsetEffect(tempfloat-Fahrenheit);

void FahrenheitEquals()
{ // sets offset according to current reading and input Fahrenheit

float tempfloat=0;
float deltaR;
word RawReading;
delay (2000);
tempfloat=Serial.parseFloat();
if (tempfloat != @) CalculateDegreeOffset(tempfloat);
else ValueNotAccepted();
DrainCmdTermiantors();

void CelsiusEquals()
{ // sets offset according to current reading and input Fahrenheit

float tempfloat=0;
float deltaR;
word RawReading;
// Serial.printin (F("Got Here: CelsiusEquals"));
delay (2000);
tempfloat=Serial.parseFloat();
if (tempfloat != @) CalculateDegreeOffset((tempfloat*1.8)+32);
else ValueNotAccepted();
DrainCmdTermiantors();

void NeuRefVolt()
{ // Neu Degree Offset
float tempfloat=0;
delay (2000);
tempfloat=Serial.parseFloat();
if (tempfloat!=e)
{ // Serial.printin(tempfloat,4);
// Serial.printin(RefVoltage,4);
RefVoltage=tempfloat;
// Serial.printin(RefVoltage,4);
neuflg = neuflg | B0BBOVB100;
PrintoKstr();
3
else ValueNotAccepted();
DrainCmdTermiantors();

void RestoreFromBackup()
{ char TempString[EEwdsize];
byte i;
// read the backup copy

for (i=0; i<EEwdsize; i++) TempString[i]=EEPROM.read(StorageBackup + i);

// urite working copy

for (i=0; i<EEwdsize; i++) EEPROM.urite(StorageWorking +i, TempString[i]);

neuwf1g=0;
Read_Calibration_Data();
Report_Reset();

void OveruriteBackup()

Page: 266

{ char TempString[EEwdsize];
byte i;
// read the working copy
for (i=0; i<EEwdsize; i++)
TempString[i]=EEPROM.read(StorageWorking + i);
// urite backup copy
for (i=0; i<EEwdsize; i++) EEPROM.urite(StorageBackup +i, TempString[i]);
PrintOKStr();

//
void TestDatal()
{ // These sets uere picked for testing

// so that one set look like the another set.
char temp[]="(1)tst data,Nano “;
J/eeeeinennn. 1234567890123456
byte i;
Serial.printin(F("; Load Default Parameters"));
// clear the EEPROM report storage area
ClearStorage();
for (i=@; i< EEidsize; i++) IdString[i]=temp[il];
// Insert null terminator at end
IdString[EEidsize]=0;
DegreeOffset=0;
RefVoltage =1.075;
MinuteTarget=1;
newf 1g=0XFF;
Write_Calibration_Data();

Page: 267

Appendix: ASCII Table

ASCII characters are equivalent to the first 126 characters of UTF-8. (Some notable ASCIl omissions are the
British pound sterling character "£", the copyright symbol "©" and registered trademark symbol). ASCIl does not
define characters codes above 127. Those characters above 127 in the table below are from the true type font
"MS Linedraw" that came with early MS Windows operating systems (replicates the MS DOS extended character
set). As current versions of Microsoft Word have this font disabled these pages have been inserted as “pictures”.

Binary | Hex becimal|25c | Char |De5criptiun
BEBE 0088 4 B Y8 | NUL Null character
Beee 68881 1 1 SOH Start of Header
BE6e Ba18 2 z STX Start of Text
8068 686811 3 3 ETX End of Text
BEoe 0188 4 4 EOT End of Transmission
peee 8181 5 5 END Enquiry
gBese a11o & 6 ACK Acknowledgment
BeBe B111 7 7 “a | BEL Bell
BEee 10688 8 8 W BS Backspace
Beee 1881 g 9 "t HT Horizontal Tab
Beeeg 1818 A 18 W LF Line Feed
geee 14811 B 11 WWoNT yertical Tab
BBeee 1188 C 12 W FF Form Feed
gBeg 1141 D 13 CR Carriage Return
Beee 1118 E 14 50 Shift Out
Beee 1111 F 15 51 Shift In
BEA1 0068 18 16 OLE Data Link Escape
Bea1 66881 11 17 Cl (XON) Deyice Control 1
Bea1 Ba1s 12 18 DC2 Device Control &
geoe1 6611 13 19 DC3(XO0FF) Device Control 3
BEa1 B168 14 2B DC4 Device Control 4
Bea1 8181 15 21 NAK Negatiy Acknowledgemnt
Bea1l B118 16 22 SYN synchronous Idle
Beal @811l 17 23 ETB End of Transmission Block
Bea1 1088 18 24 CAN Cancel
gea1l 16881 19 25 EM End of Medium
geel 1018 1A 26 SUB Substitute
Bea1l 1811 1B 27 he | ESC Escape
Bea1 1188 1C 28 FS File Separator
geal 1181 1D 29 GS Group Separator
Beal 1118 1E 38 RS Regst to Send
Bea1 1111 1F 31 us Unit Separator

Page: 268

Binary | Hex

Decimal| Char

BO18 BBBB 20 32 ({space)
galg egel 21 33 !
galg eglg << 34 "
galg g1l £3 35 #
galg eleg 24 36 %
galg elgl 5 37 %
galg elrig e 38 &
galg 11y £7 39 '
galg 18eg <8 48 {
ga18 1861 29 41)
galg 1818 #A 4¢ "
galg 1811 B 43 +
galg 118 £C 44 .
galg 1181 £D 45 -
galg 1118 £k 46 .
Bale 1111 £F 47 !
gall eeeg 38 48 0
gall eegl 31 49 1
gall el 3 58 Pl
gall eg1l 33 51 3
gall eleg 34 5¢ 4
gall e1gl 35 53 5
gall grig 3e 54 b
gail 11y 37 55 f
gall 18eg 38 56 8
gall 1@l 39 57 9
gall 181 3A 5B

gall 1a1l 3B 59 :
galrl 118 3C 60 <
galrl 1181 3D 61 =
galrl 111 3k b >
parl 1111 3F 63 ?

Page: 269

Binary | Hex

pecimal| char

Binary | Hex

pecimal| char

g186 8886 48 64 @ 8118 BBOAO 68 96

B186 B8e8a1 41 65 H B118 BBAB1 61 97 d
gl1ee ggig 4< 66 B 8118 8818 & 98 b
g18e a1l 43 &7 C 8118 BB811 &3 99 C
6188 8188 44 &8 I 6118 8168 &4 188 d
6188 8181 45 &9 E B118 8181 65 181 e
B1ee 8118 46 78 F B118 8118 66 18 f
B1eg 8111 47 i1 b g118 B111 &7 183 g
g1ee 1888 48 e H B118 1886 &8 184 h
g1ee 1881 19 73 I B118 1881 &9 185 1
6188 1818 4R 74 J g11g 1818 &A 186]
6188 1811 4B 75 K g11g 1811 6B 187 k
B188 1188 4AC 76 L g11g 1188 &L 188]
B1eg 1181 a0 Ex H g11a 1181 &0 189 m
g1eg 1118 4E /8 N g118 1118 6k 118 n
g1ee 1111 AF 79 0 g11g 1111 &F 111 0
g181 6pae 5B 80 F 8111 BB88H6 78 11 p
g181 8881 51 g1 0 8111 BBB1 71 113 q
g181 gg1e 5¢ 8¢ R 8111 8818 e 114 r
6181 Ba11 53 83 5 B111 8811 73 115 5
6181 8188 G54 84 T B111 8168 74 11& L
B181 8181 55 85 u B111 B181 75 117 u
g181 8118 56 86 ¥ 8111 8118 6 118 v
B1e1 B111 57 87 W g111 B111 1 119 1
g181 1888 58 88 X 8111 1888 78 128 X
6181 1881 59 89 Y B111 1861 79 121 Y
B181 1818 GA 98 z g111 1818 /A 12 z
B181 1811 5B 91 [a111 1811 /B 123 i
g181 1188 5C 9 \ B111 11688 e 124 |
B1e1 1181 5D 93 1 a111 1181 0 125 1
g181 1118 5E 94 ” B111 1118 JE lea ~
g181 1111 S5F 95 gri1 1111 7F 127

Page: 270

Einarg Hex [lecimal| Char Einarg Hex [lecimal| Char
1000 §OOB 80 128 1910 9BBB AG 160 &
1900 8881 81 129 i 1818 8881 Al 161 i
1000 8918 82 130 & 1910 8818 A2 162 &
1808 8811 83 131 & 1818 8811 A3 163 i
1000 9188 84 132 & 1910 9188 A4 164 fi
1808 8181 85 133 a 1818 8181 A5 165 0
1000 8118 86 134 4 1910 8118 As 166 a
1800 8111 87 135 < 1818 8111 A7 167 @
1000 1980 88 136 & 1010 1888 A8 168 :
1800 1881 89 137 & 1818 1881 A9 169 -
1009 1918 8A 138 & 1919 1818 AR 178 -
1000 1811 8B 139 i 1918 1811 AB 171 *
1900 1180 8C 148 i 1918 1188 AC 172 14
1888 1181 8D 141 i 1818 1181 AD 173 :
1900 1118 8E 147 A 1918 1118 AE 174 «
1900 1111 8F 143 A 1919 1111 AF 175 »
1001 89BB 90 144 E 1911 9BBB BO 176 e
181 8881 91 145 = 1811 8881 Bl 177 o
1801 8918 92 146 i 1911 8818 B2 178 &
1881 8811 93 147 5 1811 8811 B3 179 |
1001 9188 94 148 5 1911 9188 B4 180 Y
1881 8181 95 149 5 1811 8181 BS 181 4
1801 8118 96 158 o 1811 8118 Bs 182 1
1881 8111 97 151 i 1811 8111 BY 183 -
1001 1988 98 152 i 1011 1888 B8 184 .
1881 1881 99 153 i 1811 1881 B9 185 4
1801 1918 9A 154 i 1811 1818 BA 186 I
1881 1811 9B 155 & 1811 1811 BB 187 .
1801 1188 9C 156 £ 1011 1188 BC 188 d
1881 1181 9D 157 ¥ 1811 1181 BD 189 1
1801 1118 9E 158 E 1811 1118 BE 190 d
1801 1111 9F 159 f 1911 1111 BF 191 .

Page: 271

—

Binary

Binary

[lecimal

Char

Hex [lecimal| Char Hex

1188 8888 CA 19 L 1118 BBBG EB e d o
1188 BB61 C1 193 L 1118 BB61 El 5 B
1188 818 C& 194 T 1118 8818 Ed e T
1188 8811 C3 195 F 1118 8811 E3 e/ II
1188 8188 C4 196 — 1118 8188 E4 8 ¥
1188 8181 C5 197 1 1118 8181 ES e G
1188 8118 Cso 198 E 1118 8118 Eb ¢ 30 1
1188 8111 C7 199 F 1118 8111 E7 31 T
1188 1888 CB <88 L 1118 18886 E8 i &
1188 1881 Co 281 F 1118 1881 EY ¢33 &
1188 1818 CA <8¢ AL 1118 1818 EA ¢34 0l
1188 1811 CB <83 F 1118 1811 EB ¢35 &
1188 1188 CC <84 L 1118 1188 EC ¢ 36 a
1188 1181 Ch <85 = 1118 1181 ED 37 &
1188 1118 CE 86 =t 1118 1118 EE <38 £
1188 1111 CF <87 = 1118 1111 EF <39 I
1181 8888 DA <88 1 1111 BBBA FB 48 =
1181 BB61 b1 289 - 1111 BBB! F1 241 t
1181 8818 D <18 T 1111 BB18 Fe cde Z
1181 8811 03 211 L 1111 8811 F3 243 <
1181 8188 D4 2 1e L 1111 B188 F4 <44 [
1181 8181 D5 213 F 1111 Bl@l F5 45 |
1181 8118 De <14 T 1111 8118 Fo 246 +
1181 8111 D7 215 4 1111 8111 F7 247 2
1181 1888 D8 216 + 1111 18886 F8 <48 ®
1181 1881 D% 217 . 1111 1881 F9 249 *
1181 1818 DA <18 r 1111 1818 FA 50

1181 1811 DB 219 B 1111 1811 FB ¢51

1181 1188 DC 22l - 1111 1188 FC e5e o
1181 1181 DO 2 | I 1111 1181 FD 53 2
1181 1118 DE e | 1111 1118 FE 54 u
1181 1111 DF 4¢3 - 1111 1111 FF 255 O

Page: 272

Appendix: Celsius vs. Fahrenheit Table

Celsius Fahrenheit

Celsius Fahrenheit

Fahrenheit Celsius

Fahrenheit Celsius

-40 -40.00 -39.5 -39.10
-39 -38.20 -38.5 -37.30
-38 -36.40 -37.5 -35.50
-37 -34.60 -36.5 -33.70
-36 -32.80 -35.5 -31.90
-35 -31.00 -34.5 -30.10
-34 -29.20 -33.5 -28.30
-33 -27.40 -32.5 -26.50
-32 -25.60 -31.5 -24.70
-31 -23.80 -30.5 -22.90
-30 -22.00 -29.5 -21.10
-29 -20.20 -28.5 -19.30
-28 -18.40 -27.5 -17.50
-27 -16.60 -26.5 -15.70
-26 -14.80 -25.5 -13.90
-25 -13.00 -24.5 -12.10
-24 -11.20 -23.5 -10.30
-23 -9.40 -22.5 -8.50
-22 -7.60 -21.5 -6.70
-21 -5.80 -20.5 -4.90
-20 -4.00 -19.5 -3.10
-19 -2.20 -18.5 -1.30
-18 -0.40 -17.5 0.50
-17 1.40 -16.5 2.30
-16 3.20 -15.5 4.10
-15 5.00 -14.5 5.90
-14 6.80 -13.5 7.70
-13 8.60 -12.5 9.50
-12 10.40 -11.5 11.30
-11 12.20 -10.5 13.10
-10 14.00 -9.5 14.90

-9 15.80 -8.5 16.70

-8 17.60 -7.5 18.50

-7 19.40 -6.5 20.30

-6 21.20 -5.5 22.10

-5 23.00 -4.5 23.90

-4 24.80 -3.5 25.70

-3 26.60 -2.5 27.50

-2 28.40 -1.5 29.30

-1 30.20 -0.5 31.10

-40| -40.00 -39 -39.44
-38| -38.89 -37| -38.33
-36| -37.78 -35| -37.22
-34| -36.67 -33| -36.11
-32| -35.56 -31) -35.00
-30, -34.44 -29| -33.89
-28| -33.33 -27| -32.78
-26| -32.22 -25| -31.67
-24) -31.11 -23| -30.56
-22| -30.00 -21] -29.44
-20| -28.89 -19] -28.33
-18| -27.78 -17| -27.22
-16| -26.67 -15| -26.11
-14) -25.56 -13| -25.00
-12| -24.44 -11| -23.89
-10, -23.33 -9 -22.78
-8 -22.22 -7| -21.67
-6 -21.11 -5 -20.56
-4/ -20.00 -3| -19.44
-2| -18.89 -1 -18.33

0 -17.78 1 -17.22

2| -16.67 3| -16.11

4 -15.56 5 -15.00

6| -14.44 7] -13.89

8 -13.33 9 -12.78
10| -12.22 11| -11.67
12| -11.11 13| -10.56)
14| -10.00 15 -9.44
16/ -8.89 17| -8.33
18 -7.78 19| -7.22
20f -6.67 21 -6.11
22| -5.56 23| -5.00
24 -4.44 25| -3.89
26| -3.33 27| -2.78
28| -2.22 29 -1.67
300 -1.11 31 -0.56

Page: 273

Celsius Fahrenheit Celsius Fahrenheit
IOS200 [o5 329
1 33.80 1.5 34.70
2 35.60 2.5 36.50
3 37.40 3.5 38.30)
4 39.20 4.5 40.10
5 41.00 5.5 41.90
6 42.80 6.5 43.70
7 44.60 7.5 45.50
8 46.40 8.5 47.30
9 48.20 9.5 49.10
10 50.00 10.5 50.90
11 51.80 11.5 52.70
12 53.60 12.5 54.50
13 55.40 13.5 56.30
14 57.20 14.5 58.10
15 59.00 15.5 59.90
16 60.80 16.5 61.70
17 62.60 17.5 63.50)
18 64.40 18.5 65.30
19 66.20 19.5 67.10
20 68.00 20.5 68.90)
21 69.80 21.5 70.70
22 71.60 22.5 72.50
23 73.40 23.5 74.30
24 75.20 24.5 76.10
25 77.00 25.5 77.90
26 78.80 26.5 79.70
27 80.60 27.5 81.50
28 82.40 28.5 83.30
29 84.20 29.5 85.10
30 86.00 30.5 86.90
31 87.80 31.5 88.70
32 89.60 32,5 90.50
33 91.40 33.5 92.30
34 93.20 34.5 94.10
35 95.00 35.5 95.90)
36 96.80 36.5 97.70
37 98.60 37.5 99.50)
38 100.40 38.5 101.30
39 102.20 39.5 103.10
40 104.00 40.5 104.90

Fahrenheit Celsius Fahrenheit Celsius
| 32 oo 33 056
34 1.11 35 1.67
36 2.22 37 2.78
38| 3.33 39| 3.89
40 4.44 41 5.00
42| 556 43| 6.11
44 6.67 45 7.22
46| 7.78 47 8.33
48 8.89 49| 9.44
50, 10.00 51| 10.56
52| 11.11 53] 11.67
54| 12.22 55| 12.78
56| 13.33 57, 13.89
58/ 14.44 59| 15.00
60, 15.56 61| 16.11
62| 16.67 63| 17.22
64| 17.78 65 18.33
66| 18.89 67| 19.44
68 20.00 69| 20.56
700 21.11 71 21.67
72| 22.22 73| 22.78
74/ 23.33 75| 23.89
76| 24.44 77| 25.00
78| 25.56 79| 26.11
80| 26.67 81 27.22
82| 27.78 83| 28.33
84| 28.89 85| 29.44
86/ 30.00 87| 30.56
88 31.11 89| 31.67
90| 32.22 91 32.78
92| 33.33 93] 33.89
94| 34.44 95 35.00
96| 35.56 97| 36.11
98| 36.67 99| 37.22
100 37.78 101] 38.33
102| 38.89 103| 39.44
104, 40.00 105/ 40.56

Page: 274

Celsius Fahrenheit

Celsius Fahrenheit

Fahrenheit Celsius

Fahrenheit Celsius

1 105.80 41.5 106.70
42 107.60 42.5 108.50
43 109.40 43.5 110.30
44 111.20 44.5 112.10
45 113.00 45.5 113.90
46 114.80 46.5 115.70
47 116.60 47.5 117.50
48 118.40 48.5 119.30
49 120.20 49.5 121.10
50 122.00 50.5 122.90
51 123.80 515 124.70
52 125.60 52.5 126.50
53 127.40 53.5 128.30
54 129.20 54.5 130.10
55 131.00 55.5 131.90
56 132.80 56.5 133.70
57 134.60 57.5 135.50
58 136.40 58.5 137.30
59 138.20 59.5 139.10
60 140.00 60.5 140.90
61 141.80 61.5 142.70
62 143.60 62.5 144.50
63 145.40 63.5 146.30
64 147.20 64.5 148.10
65 149.00 65.5 149.90
66 150.80 66.5 151.70
67 152.60 67.5 153.50
68 154.40 68.5 155.30
69 156.20 69.5 157.10
70 158.00 70.5 158.90
71 159.80 71.5 160.70
72 161.60 72.5 162.50
73 163.40 73.5 164.30
74 165.20 74.5 166.10
75 167.00 75.5 167.90
76 168.80 76.5 169.70
77 170.60 77.5 171.50
78 172.40 78.5 173.30
79 174.20 79.5 175.10
80 176.00 80.5 176.90

106 | 41.11 107 | 41.67
108 | 42.22 109 | 42.78
110 | 43.33 111 | 43.89
112 | 44.44 113 | 45.00
114 | 45.56 115 | 46.11
116 | 46.67 117 | 47.22
118 | 47.78 119 | 48.33
120 | 48.89 121 | 49.44
122 | 50.00 123 | 50.56
124 | 51.11 125 | 51.67
126 | 52.22 127 | 52.78
128 | 53.33 129 | 53.89
130 | 54.44 131 | 55.00
132 | 55.56 133 | 56.11
134 | 56.67 135 | 57.22
136 | 57.78 137 | 58.33
138 | 58.89 139 | 59.44
140 | 60.00 141 | 60.56
142 | 61.11 143 | 61.67
144 | 62.22 145 | 62.78
146 | 63.33 147 | 63.89
148 | 64.44 149 | 65.00
150 | 65.56 151 | 66.11
152 | 66.67 153 | 67.22
154 | 67.78 155 | 68.33
156 | 68.89 157 | 69.44
158 | 70.00 159 | 70.56
160 | 71.11 161 | 71.67
162 | 72.22 163 | 72.78
164 | 73.33 165 | 73.89
166 | 74.44 167 | 75.00
168 | 75.56 169 | 76.11
170 | 76.67 171 | 77.22
172 | 77.78 173 | 78.33
174 | 78.89 175 | 79.44
176 | 80.00 177 | 80.56

Page: 275

Celsius Fahrenheit

Celsius Fahrenheit

81 177.80 81.5 178.70
82 179.60 82.5 180.50
83 181.40 83.5 182.30
84 183.20 84.5 184.10
85 185.00 85.5 185.90
86 186.80 86.5 187.70
87 188.60 87.5 189.50
88 190.40 88.5 191.30
89 192.20 89.5 193.10
90 194.00 90.5 194.90
91 195.80 91.5 196.70
92 197.60 92.5 198.50
93 199.40 93.5 200.30
94 201.20 94.5 202.10
95 203.00 95.5 203.90
96 204.80 96.5 205.70
97 206.60 97.5 207.50
98 208.40 98.5 209.30
99 210.20 99.5 211.10
100 212.00 100.5 212.90

Fahrenheit Celsius Fahrenheit Celsius
178 | 81.11 179 | 81.67
180 | 82.22 181 | 82.78
182 | 83.33 183 | 83.89
184 | 84.44 185 | 85.00
186 | 85.56 187 | 86.11
188 | 86.67 189 | 87.22
190 | 87.78 191 | 88.33
192 | 88.89 193 | 89.44
194 | 90.00 195 | 90.56
196 | 91.11 197 | 91.67
198 | 92.22 199 | 92.78
200 | 93.33 201 | 93.89
202 | 94.44 203 | 95.00
204 | 95.56 205 | 96.11
206 | 96.67 207 | 97.22
208 | 97.78 209 | 98.33
210 | 98.89 211 | 99.44
212 | 100.00 213 | 100.56

Page: 276

Appendix: LM34 Data Sheet

The full datasheet (TI Literature Number: SNIS161B) is included herein by reference to last known valid TI URL:

http://www.ti.com/lit/ds/symlink/Im34.pdf

When reviewing that document the reader may find the following sections to be of interest:

November 2000

National Semiconductor

LM34

Precision Fahrenheit Temperature Sensors

General Description

The LM34 series are precision integrated-circuit temperature
sensors, whose output voltage is linearly proportional to the
Fahrenheit temperature. The LM34 thus has an advantage
over linear temperature sensors calibrated in degrees
Kelvin, as the user is not required to subtract a large con-
stant voltage from its output to obtain convenient Fahrenheit
scaling. The LM34 does not require any external calibration
or trimming to provide typical accuracies of £12°F at room
temperature and *1%%'F over a full =50 to +300°F tempera-
ture range. Low cost is assured by trimming and calibration
at the wafer level. The LM34’s low output impedance, linear
output, and precise inherent calibration make interfacing to
readout or control circuitry especially easy. It can be used
with single power supplies or with plus and minus supplies.
As it draws only 75 pA from its supply, it has very low
self-heating, less than 0.2°F in still air. The LM34 is rated to
operate over a =50° to +300°F temperature range, while the
LM34C is rated for a —40° to +230°F range (0°F with im-
proved accuracy). The LM34 series is available packaged in

Connection Diagrams

TO-46
Metal Can Package
(Note 1)

DS006685-1

Order Numbers LM34H,
LM34AH, LM34CH,
LM34CAH or LM34DH
See NS Package
Number HO3H

Note 1: Case Is connected to negative pin (GND).

BOTTOM VIEW

Order Number LM34C2Z,
LM34CAZ or LM34DZ
See NS Package
Number Z03A

hermetic TO-46 transistor packages, while the LM34C,
LM34CA and LM34D are also available in the plastic TO-92
transistor package. The LM34D is also available in an 8-lead
surface mount small outline package. The LM34 is a comple-
ment to the LM35 (Centigrade) temperature sensor.

Features

Calibrated directly in degrees Fahrenheit
Linear +10.0 mV/°F scale factor

1.0°F accuracy guaranteed (at +77°F)
Rated for full -50° to +300°F range
Suitable for remote applications

Low cost due to wafer-level trimming
Operates from 5 to 30 volts

Less than 90 pA current drain

Low self-heating, 0.18°F in still air
Nonlinearity only £0.5°F typical
Low-impedance output, 0.4Q for 1 mA load

TO-92
Plastic Package

S0-8
Small Outline
Molded Package

_/
Vour 1! B +Vs
N.C.=—42 7=N.C.
DSO06685-2 N.C.=— 3 6= N.C.
GND =] 4 5= N.C.

DS006685-20
N.C. = No Connection
Top View
Order Number LM34DM
See NS Package Number MOSA

Page: 277

http://www.ti.com/lit/ds/symlink/lm34.pdf

Absolute Maximum Ratings (Note 11)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Supply Voltage +35V to -0.2V
Qutput Voltage +6V to -1.0V
QOutput Current 10 mA

Storage Temperature,

TO-46 Package -76°F to +356°F

TO-46 Package

(Soldering, 10 seconds) +300°C
TO-92 Package
(Soldering, 10 seconds) +260°C
S0 Package (Note 13)
Vapor Phase (60 seconds) 215°C
Infrared (15 seconds) 220°C

Specified Operating Temp. Range (Note 3)
Tain t0 Trax

TO-92 Package -76°F to +300°F LM34, LM34A ~50°F to +300°F
SO-8 Package -65°C to +150°C LM34C, LM34CA -40°F to +230°F
ESD Susceptibility (Note 12) 800V LM34D +32°F to +212°F
Lead Temp.
DC Electrical Characteristics (Notes 2, 7)
LM34A LM34CA
Parameter Conditions Tested Design Tested Design Units
Typical Limit Limit |Typical Limit Limit (Max)
(Note 5) | (Note 6) (Note 5) | (Note 6)
Accuracy (Note 8) Ta=+77°F 04 £1.0 04 1.0 °F
Ta=0F *0.6 06 20 ‘F
Ta = Thax +0.8 2. +0.8 2.0 ‘F
Ta=Tun 0.8 2.0 0.8 3.0 °F
Nonlinearity (Note 9) L S5 U sS U +0.35 0.7 +0.30 0.6 °‘F
Sensor Gain Tin € Ta € Thax +10.0 +9.9, +10.0 +9.9, mV/°F, min
(Average Slope) +10.1 +10.1 mV/'F, max
Load Regulation Ta=+77°F + 1.0 1.0 mV/mA
(Note 4) T € Ta € Tax 0.5 3.0 0.5 3.0 mV/mA
0<l £1mA
Line Regulation Ta=+77°F $0.01 10.05 £0.01 10.05 mV/V
(Note 4) BV < Vg < 30V 10.02 0.1 £0.02 0.1 mV/V
Quiescent Current Vg = +5V, +77°F 75 90 75 90 HA
(Note 10) Vg = +5V 131 160 116 139 HA
Vg = +30V, +77°F 76 92 76 92 HA
Vg = +30V 132 163 117 142 HA
Change of Quiescent 4V < Vg <30V, +77°F +0.5 2.0 0.5 2.0 HA
Current (Note 4) BV €£Vg €30V +1.0 3.0 1.0 3.0 HA
Temperature Coefficient +0.30 +0.5 +0.30 +0.5 MA/F
of Quiescent Current
Minimum Temperature In circuit of Figure 1, +3.0 +5.0 +3.0 +5.0 ‘F
for Rated Accuracy IL=0
Long-Term Stability T; = Tmax *0.16 *0.16 ‘F
for 1000 hours

Page: 278

LM34 LM34C, LM34D
Parameter Conditions Tested Design Tested Design Units
Typical Limit Limit |Typical Limit Limit (Max)
(Note 5) | (Note 6) (Note 5) | (Note 6)
Accuracy, LM34, LM34C | T, = +77°F +0.8 2.0 +0.8 +2.0 °F
(Note 8) To=0F 1.0 1.0 °F
Ta = Tax 186 *3.0 1.6 °F
Ta =T 186 3.0 1.6 = °F
Accuracy, LM34D T, =+77°F 1.2 £3.0 °F
(Note 8) Ta = Thax 1.8 4.0 ‘F
Ta = Ty 1.8 4.0 ‘F
Nonlinearity (Note 9) Toin < Ta € Tuax 0.6 1.0 04 1.0 °F
Sensor Gain Tinn = Ta <€ Trax +10.0 +9.8, +10.0 +9.8, mV/°F, min
(Average Slope) +10.2 +10.2 mV/°F, max
Load Regulation Ty =+77°F 25 2.5 mv/mA
(Note 4) Tuin < Ta < +150°F x 16.0 x 16.0 mV/mA
O<i <1 mA
Line Regulation Ta =+77°F +0.01 01 +0.01 0.1 mV/V
(Note 4) 5V < Vg <30V *0.02 *0.2 10.02 *0.2 Y
Quiescent Current Vg = +5V, +7T°F 75 100 75 100 HA
(Note 10) Vg = +8V 131 176 116 154 HA
Vg = 430V, +77°F 76 103 76 103 HA
Vg = +30V 132 181 117 159 HA
Change of Quiescent 4V < Vg <30V, +77°F | +0.5 3.0 0.5 3.0 HA
Current (Note 4) 5V £ Vg <30V +1.0 5.0 1.0 5.0 HA
Temperature Coefficient +0.30 +0.7 +0.30 +0.7 MASF
of Quiescent Current
Minimum Temperature In circuit of Figure 1, +3.0 +5.0 +3.0 +5.0 °F
for Rated Accuracy [, =0
Long-Term Stability T; = Tuax +0.16 +0.16 °F
for 1000 hours

Note 2: Unless otherwise noted, these specifications apply: =50°F < Tj < + 300°F for the LM34 and LM34A; —40°F < Tj < +230°F for the LM34C and LM34CA; and
+32°F < Tj <+ 212°F for the LM34D. Vs = +5 Vdc and ILOAD = 50 pA in the circuit of Figure 2; +6 Vdc for LM34 and LM34A for 230°F < Tj < 300°F. These specifications
also apply from +5°F to TMAX in the circuit of Figure 1.
Note 3: Thermal resistance of the TO-46 package is 720°F/W junction to ambient and 43°F/W junction to case. Thermal resistance of the TO-92 package is 324°F/W
junction to ambient. Thermal resistance of the small outline molded package is 400°F/W junction to ambient. For additional thermal resistance information see table

in the Typical Applications section.

Note 4: Regulation is measured at constant junction temperature using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed
by multiplying the internal dissipation by the thermal resistance.

Note 5: Tested limits are guaranteed and 100% tested in production.

Note 6: Design limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to

calculate outgoing quality levels.

Note 7: Specification in BOLDFACE TYPE apply over the full rated temperature range.
Note 8: Accuracy is defined as the error between the output voltage and 10 mV/°F times the device’s case temperature at specified conditions of voltage, current,

and temperature (expressed in °F).

Note 9: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line over the device’s rated temperature

range.

Note 10: Quiescent current is defined in the circuit of Figure 1.
Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating
the device beyond its rated operating conditions (Note 2).
Note 12: Human body model, 100 pF discharged through a 1.5 kQ resistor.

Note 13: See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” or the section titled “Surface Mount” found in a current National

Semiconductor Linear Data Book for other methods of soldering surface mount devices.

Page: 279

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

-

. / 4.19
. I 3.65
_—

e —— e

EJECE?NﬁMaEQ
T0.38 MAX N

;/r-SEATING PLANE

H 2.29 MAX
(UNCONTROLLED LEAD DIA)

0.55 _ T i
0.4 TPk ——1.2720,05 «ILU-W

0.36
—c2.24%0.1

—
%Zﬂ DIMENSIONS ARE IN MILLIVMETERS
I .

Order Number LM34CZ, LM34CAZ or LM34DZ
NS Package Z03A

Page: 288

Typical Applications

LM34

2K

e —

HEAVY CAPACITIVE LOAD, WIRING, ETC.

TO A HIGH
IMPEDANCE LOAD

DS006685-7

FIGURE 3. LM34 with Decoupling from Capacitive Load

750

| 1 F
L T

*

0.1 4F BYPASS \
(OPTIONAL} HEAVY CAPACITIVE LDAD, WIRING, ETC.
DS006685-8

FIGURE 4. LM34 with R-C Damper

Temperature Rise of LM34 Due to Self-Heating (Thermal Resistance)

Conditions TO-46, TO-46, TO-92, TO-92, S0O-8 S0-8
No Heat Small Heat Fin No Heat Small Heat Fin No Heat Small Heat Fin

Sink (Note 14) Sink (Note 15) Sink (Note 15)
Still air 720°F/W 180°F/W 324°F/W 252°F/W 400°F/W 200°F/W
Moving air 180°F/W T2°FIW 162°FW 1268°F/W 190°F/W 160°F/W
Still oil 180°F/W T2°FIW 182°F/W 1268°F/W
Stirred oil 90°F/W 54°F/W 81°F/W T2°FIW
(Clamped to metal, (43°F/W) (95°F/W)
infinite heat sink)

Note 14: Wakefield type 201 or 1" disc of 0.020" sheet brass, soldered to case, or similar.
Note 15: TO-92 and SO-8 packages glued and leads soldered to 1" square of 1/16" printed circuit board with 2 oz copper foil, or similar.

LIFE SUPPORT POLICY

NATICNAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.

2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.

™

National Semiconductor
Corporation

Americas

Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

www national.com

National Semiconductor

Europe
Fax:
Email:
Deutsch Tel:
English Tel:
Francais Tel:

+49 (0) 160-530 85 86
europe. support@nsc.com
+49 (0) 69 9508 6208
+44 (0) 870 24 0 2171
+33 (0) 1 4191 8790

National Semiconductor
Japan Ltd.

Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

National Semiconductor
Asia Pacific Customer
Response Group

Tel: 65-2544466

Fax: 65-2504466

Email: ap.support@nsc.com

Page: 281

Appendix: MS takes Bow Shot at console applications

With Windows 7 Microsoft took a bow shot at all console based applications. They reduced the functionality of
"SetConsoleCtrlHandler()" , "atexit()"' and "_onexit()" such that console based applications can no longer do a
proper shutdown when the OS closes the application. In all previous versions of the Windows operating system
programmers could use any of the above to determine that the Operating system was going to terminate the
console application. There was also a special key code that was generated. With Windows Vista they reduced
the application’s time to respond to that event to approximately two seconds. In Windows 7 (and later versions)
Microsoft has eliminated that capability entirely. The most disastrous result of this action is that console based
applications may be closed with the cached data never having been written to disk (the OS does NOT flush the
write buffers it is has implemented on behalf of the application).

Microsoft's response to this issue is for developer/programmer to rewrite the application as Windows based GUI
(even if they only use the GUI Window to launch a CUI window).

With one modification of the core operating system code Microsoft has seriously compromised the viability of
all console applications ever written as well as making it extremely difficult or at least overly complex to create a
viable console application for any future Microsoft OS. There seems to be some controversy if this was an
internal marketing decision or just a monumental goof on Microsoft’s part. Personally | think the answer to that
question is obvious.

Page: 282

	Introduction
	End Product:
	Legal Disclaimer:

	Table of contents:
	Requirements:
	Access to a working computer:
	Arduino Compatible Development Board:
	Three Bread Board jumpers, 1-1/2 to 2 inches long
	Optional components
	Small Ceramic Disk Capacitor
	3.5mm stereo female jack, PCB Mount, 3 contacts
	3.5mm stereo male plug, solder terminal, 3 contacts
	3.5mm stereo extension cable
	22 K Ohm 1/4 watt resistor, solder leads

	Optional Tool Requirements
	Wire cutter
	Small soldering iron
	Small quantity of electrical/electronic solder
	Magnifying Glass or Eye Loop
	Tweezers

	Microcontroller: Meet the Arduino Nano
	Arduino Development Environment
	Arduino Programing Environment:
	Setting up the Arduino IDE:

	Arduino IDE: Compile and Upload
	Enter, Save, Serial Monitor: “Hello Word”
	Funny Math: Bits, Nibbles and Bytes
	Zeroes and Ones (Decimal, Binary and Hexadecimal)
	Divide by Zero (yes we can)
	Special Numbers (true or false?)

	Memory: FLASH, SRAM, EEPROM
	SRAM: Hello Word 001/002
	FLASH: Hello Word 003/004
	EEPROM: Hello Word 005/006 (Write, Read)
	EEPROM: EEPROM_Dump, EEPROM_Erase

	Building a Library: The easy way
	Functions: Passing Parameters and Return Values
	Library HexDec: Developing Functions
	Library HexDec: Overloading
	Library HexDec: ASCII Table
	Library HexDec: EEPROMDump
	Library HexDec: Creating the Library
	Library HexDec: Testing the Library

	AVR Internal Temperature Sensor
	Using the ChipTemp Library
	Develop Avr Temperature Functions
	Storing Calibration Constants (EEPROM)

	Thermometer Program
	Reporting Protocol

	Thermometer Program, Plan “A”
	Main File Functions
	Global Declarations
	Includes
	EEPROM address
	Conversion Factors/Calibraton Data
	Global operational mode Variables
	Global work Variables

	Setup() Function
	Loop() Function
	CmdProcessor() Function
	HelpMe() Function
	PrintSeperatorLine() Function
	ReadTwoCharacters ()Function
	DrainCmdTermiantors() Function
	DebugPrintCharacters() Function

	Thermometer Functions File
	EnableADC() Function
	Read_Calibration_Data() Function
	Write_Calibration_Data() Function
	ClearStorage() Function
	EEmodeFlagSet() Function
	EEmodeFlagClear() Function
	EEmodeFlagTF() Function
	Check_EEPROM() Function
	Print_IdString() Function
	PrintTrueFalse() Function
	ReportStatus() Function
	avrRawTemp() Function
	Convert()Function
	Report() Function
	QuickBlink() Function
	Report2EEPROM() Function
	DumpStorage() Function
	PrintOKStr() Function
	PrintNotRecognized()Function
	PrintNotImplemented() Function
	ShutDown() Function
	software_Reset() Function
	SetRawReadMode() Function
	SetFahrenheitMode() Function
	SetCelsiusMode() Function
	SetReportMode() Function
	ToggleDebugMode() Function
	NewReportTime() Function
	Report_Reset() Function
	NewIdString() Function
	NewOffset() Function
	CelsiusEquals() Function
	FahrenheitEquals() Function
	NewCelsius() Function
	NewFahrenheit() Function
	RestoreFromBackup() Function
	OverwriteBackup() Function
	TestData1() Function
	TestData2() Function
	CalibrationMode() Function
	void EepromDumpAll() Function

	Temperature Calibration Theory
	Temperature Calibration Procedure
	Temperature Calibration Procedure: Observation Point 1
	Temperature Calibration Procedure: Observation Point 3
	Temperature Calibration Procedure: Observation Point 2

	Plan “A”, Evaluation and Summary

	Thermometer Program, Plan “B”
	External Temperature Sensor: LM34
	EEPROM Layout
	Global Variables and Constants
	Main Program File Functions
	setup() Function
	loop()Function
	cmdProcessor() function
	HelpMe() function
	PrintSeperatorLine() function
	ReadTwoCharacters() function
	DrainCmdTermiantors() function
	DebugPrintCharacters () function

	Thermometer Functions File
	Read_Calibration_Data() function
	Write_Calibration_Data() function
	ClearStorage() function
	EEmodeFlagSet() function
	EEmodeFlagClear() function
	EEmodeFlagTF() function
	Check_EEPROM() function
	Print_IdString() function
	PrintTrueFalse() function
	ReportStatus() Function
	AvrTemperature() function
	ReadRawTempA1() function
	Convert(word RawReading) Function
	nearestquater () function
	nearesthalf () function
	Report() function
	QuickBlink() function
	Report2EEPROM() function
	DumpStorage() function
	Response() function
	PrintOKStr () function
	PrintNotRecognized() function
	PrintNotImplemented() function
	ShutDown() function
	software_Reset() function
	SetRawReadMode() function
	SetCelsiusMode() function
	SetFahrenheitdMode() function
	SetReportMode() function
	ToggleDebugMode() function
	SetAvrInternalMode() function
	ToggleRoundMode() function
	NewReportTime() function
	Report_Reset() function
	NewIdString() function
	PrintDegreeOffsetEffect() function
	ValueNotAccepted() function
	NewDegreeOffset() function
	CalculateDegreeOffset() function
	FahrenheitEquals() function
	CelsiusEquals() function
	NewRefVolt() function
	RestoreFromBackup() function
	OverwriteBackup() function
	TestData1() function
	TestData2() function
	CalibrationMode() function
	EepromDumpAll()function

	Temperature Sensor Calibration
	Calibration Theory
	Calibration Method 1
	Calibration Method 2
	Temperature Sensor Extension Cable

	Plan “B”, Evaluation and Summary

	Thermometer Program, ATMEGA168
	Arduino Debugging
	Common errors to look for:
	Other Hints:

	RS232 Serial Monitor
	FreeBasic Compiler
	Serial Port Monitor Program
	PC Alternatives: Microsoft
	PC Alternatives: Non-Microsoft
	Why FreeBasic

	ArduinoThermometer.exe
	Strip Semicolon Lines Utility
	Receiver Modifications:

	Conclusion
	Possible Enhancements
	Temperature Accuracy
	EEPROM Storage Mode
	Number of sensors
	Remote Data Collection
	LCD Display
	GUI Interface

	Photo Gallery
	Appendix: Atmel MPU Table
	Appendix: Arduino Check Speed
	Appendix: AVR ADC Sensor Registers
	Appendix: ADC Function test
	Appendix: Disabling Auto Reset
	Appendix: Arduino ElfDump
	Appendix: Arduino Receiver
	Appendix: Thermometer.exe
	Main Program Code
	Global Variables
	Thermometer Functions
	Ini File for Main Program
	Utility Program

	Appendix: Thermometer One Program Code (Plan “A”)
	Thermometer One Main Program File
	Thermometer One Functions Module

	Appendix: Thermometer One Program Code (Plan “B”)
	Thermometer One Main Program File
	Thermometer One Functions Module

	Appendix: Thermometer ATMega168
	Main Program File (ATMega168)
	Thermometer Function ATMega168 File

	Appendix: ASCII Table
	Appendix: Celsius vs. Fahrenheit Table
	Appendix: LM34 Data Sheet
	Appendix: MS takes Bow Shot at console applications

